A continuous version of Gale's feasibility theorem

Ryôhei Nozawa

札幌医科大学医学部 野澤 亮平

1. Introduction

There are several approaches to formulate flow problems on continuous networks. In this paper, using a formulation due to Iri (1979) and Strang (1983), we establish a continuous version of Gale's feasibility theorem [1].

The theorem is known as the "Supply - Demand Theorem" in a special case. By means of a cut capacity, this gives a necessary and sufficient condition for an existence of feasible flows.

Let us recall our formulation of continuous network and state a continuous version of the Supply - Demand Theorem. As for a discrete version, one can refer to Ford and Fulderson's book (1962). In this discussion, we assume that all functions and sets are sufficiently smooth. Let Ω be a bounded domain of n-dimensional Euclidean space R^n and $\partial\Omega$ be the boundary. Let A,B be disjoint subsets of $\partial\Omega$ which are regarded as a source and a sink. In our continuous network, every flow is represented by a vector field and every feasible flow σ satisfies the capacity constraint which is written as

$$\sigma(x) \in \Gamma(x)$$
 for all $x \in \Omega$,

where Γ is a set-valued mapping from Ω to \mathbb{R}^n . The flow value of σ is defined by $\sigma \cdot \nu$ on $\partial \Omega$. We call Ω with this capacity constraint a continuous network.

Furthermore, every cut is identified with a subset of Ω in our network. Let S be a cut and ν^S be the unit outer normal to S. Then the cut capacity C(S) is defined by

$$C(S) = \int_{\Omega \cap \partial S} \beta(\nu^{S}(x), x) ds(x),$$

where

$$\beta(v, x) = \sup_{w \in \Gamma(x)} v \cdot w$$

for $v \in \mathbb{R}^n$ and ds is the surface element. If the capacity constraint is isotropic, that is, $\Gamma(x) = \{w \in \mathbb{R}^n | |w| \leq c(x)\}$ with some nonnegative function c(x), then

$$C(S) = \int_{\Omega \cap \partial S} c(x) ds(x).$$

Let a, b be real-valued functions on A, B respectively and let ν be the unit outer normal to Ω . Then the problem of supply-demand in a simple case is stated as follows:

(SD) Find
$$\sigma$$
 such that $\sigma(x) \in \Gamma(x)$ for all $x \in \Omega$, $\operatorname{div} \sigma = 0$ on Ω , $-\sigma \cdot \nu = 0$ on $\partial \Omega - (A \cap B)$, $-\sigma \cdot \nu \leq a$ on A , $\sigma \cdot \nu \geq b$ on B .

The Supply-Demand theorem assures that (SD) has a solution if and only if

(G)
$$C(S) \ge \int_{B \cap \partial S} b ds - \int_{A \cap \partial S} a ds$$
 for each cut S .

This can be proved by the aid of a continuous version of max-flow min-cut theorem under some assumptions. However, we can not apply the same method to a variant of (SD), which is called a symmetric type by Ford and Fulkerson.

On the other hand, Neumann [5] and Oettli and Yamasaki [8] investigated a problem of feasibility of flows and proved similar results in their own network formulations. Their method is based on a generalized Hahn-Banach Theorem and is applicable even for a symmetric supply-demand problem. In the next section, we give a concrete formulation of our problem in a more general form than (SD), and give a corresponding condition which is equivalent with an existence of solutions for the problem under suitable assumptions. Finally in §3, we consider (SD) as a special case and examine the assumptions.

2. Problem setting and a main theorem

Let Ω be a bounded domain in n-dimensional Euclidean space R^n with Lipschitz boundary $\partial\Omega$. One can consider n-1-dimensional surface measure on $\partial\Omega$ which is equal to n-1-dimensional Hausdorff measure H_{n-1} on $\partial\Omega$. We note that the unit outer normal ν to Ω is defined and essentially bounded measurable on $\partial\Omega$ with respect to H_{n-1} . Let Γ be a set-valued mapping from Ω to R^n which satisfies the following two conditions:

- (H1) $\Gamma(x)$ is a compact convex set containing 0 for all $x \in \Omega$.
- (H2) Let $\varepsilon > 0$ and Ω_0 be a compact subset of Ω . Then there is $\delta > 0$ such that $\Gamma(x) \subset \Gamma(y) + B(0, \varepsilon)$ if $x, y \in \Omega_0$ and $|x - y| < \delta$.

In what follows, we assume that each feasible flow is represented by an essentially bounded vector field σ on Ω satisfying the following capacity constraints:

$$\sigma(x) \in \Gamma(x)$$
 for a.e. $x \in \Omega$.

Furthermore if $\operatorname{div} \sigma \in L^n(\Omega)$, then $\sigma \cdot \nu$ can be defined as a function in $L^{\infty}(\partial\Omega)$ in a weak sense by Kohn and Temam [2]. Let $F \in L^n(\Omega)$ and $\lambda, \mu \in L^{\infty}(\partial\Omega)$ with $\lambda \leq \mu$. Then for the quintuple $(\Omega, \Gamma, F, \mu, \lambda)$, our problem is stated as follows:

(P) Find
$$\sigma \in L^{\infty}(\Omega; \mathbb{R}^n)$$
 such that $\sigma(x) \in \Gamma(x)$ for a.e. $x \in \Omega$, div $\sigma = F$ a.e. on Ω and $\lambda \leq \sigma \cdot \nu \leq \mu H_{n-1}$ -a.e. on $\partial \Omega$

Problem (SD) considered in §1 can be written in this form with F = 0. To specify the class of cuts, we consider the space $BV(\Omega)$ of functions of bounded variation on Ω :

 $BV(\Omega) = \{u \in L^1(\Omega) | \nabla u \text{ is a Radon measure of bounded variation on } \Omega\},$

where $\nabla u = (\partial u/\partial x_1, \dots, \partial u/\partial x_n)$ is understood in the sense of distribution. We denote the characteristic function of a subset S of Ω by χ_S and set

$$Q = \{ S \subset \Omega | \ \chi_S \in BV(\Omega) \}.$$

Let $S \in Q$. Then the reduced boundary $\partial^* S$ of S is the set of all $x \in \partial S$ where Federer's normal $\nu = \nu(x)$ to S exists. It is known that $\partial^* S$ is a measurable set with respect to both the measure of total variation of $|\nabla \chi_S|$ and H_{n-1} , $|\nabla \chi_S|(R^n - \partial^* S) = 0$ and $|\nabla \chi_S|(E) = H_{n-1}(E)$ for each $|\nabla \chi_S|$ measurable subset E of $\partial^* S$. Furthermore let $\gamma u \in L^1(\partial \Omega)$ be the trace of $u \in BV(\Omega)$. Then [4; Theorem 6.6.2] implies that $\gamma \chi_S = \chi_{\partial^* S \cap \partial \Omega} H_{n-1}$ -a.e. on $\partial \Omega$. Accordingly, replacing ds by H_{n-1} and dS by $d^* S$, we can define the cut capacity as follows:

$$C(S) = \int_{\Omega \cap \partial^* S} \beta(\nu^S(x), x) dH_{n-1},$$

where $\beta(\cdot, x)$ is the support functional of $\Gamma(x)$ as defined in §1. Let $\nabla u/|\nabla u|$ be the Radon-Nikodym derivative of ∇u with respect to $|\nabla u|$ and set

$$\psi(u) = \int_{\Omega} \beta(\nabla u/|\nabla u|, x) d|\nabla u|(x)$$

for $u \in BV(\Omega)$. Then $C(S) = \psi(\chi_S)$. Since β is continuous and nonnegative by (H1) and (H2), C(S) is finite. We set

$$\lambda(S) = \int_{\partial\Omega\cap\partial^*S} \lambda dH_{n-1}, \ \mu(S) = \int_{\partial\Omega\cap\partial^*S} \mu dH_{n-1}, \ F(S) = \int_S F dx.$$

for convenience sake, and consider the condition

(C)
$$C(S) \ge \lambda(S) - F(S)$$
 and $C(S) \ge -\mu(\Omega - S) + F(\Omega - S)$ hold for all $S \in Q$.

Now we can state a continuous version of Gale's feasibility theorem.

THEOREM 2.1. Assume that (H1) and (H2) hold. If (P) has a solution, then condition (C) holds. Conversely if $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded and condition (C) holds, then (P) has a solution.

To prove this theorem, we need some lemmas. First applying an isoperimetric inequality due to [4] we have

LEMMA 2.2. There is $\sigma_0 \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that $\operatorname{div} \sigma_0 = F$ a.e. on Ω .

PROOF: First assume that $\int_{\Omega} F dx = 0$. We use a max-flow min-cut theorem of Strang's type (1983):

$$\sup\{t \geq 0 \mid \operatorname{div} \sigma = -tF \text{ a.e. on } \Omega, \ \sigma \cdot \nu = 0 \ H_{n-1}\text{-a.e. on } \partial\Omega$$
 for some $\sigma \in L^{\infty}(\Omega; \mathbb{R}^n)$ with $\|\sigma\|_{\infty} \leq 1\}$
= $\inf\{H_{n-1}(\Omega \cap \partial^*S) / \int_S F dx \mid \int_S F dx > 0, \ S \subset \Omega, \chi_S \in BV(\Omega)\}.$

(The proof is in [6].) To prove the existence of σ_0 , it is sufficient to show that the supremum is positive. We can prove that the infimum is positive as follows. According to [4; p.303] there is a positive constant k such that $\min(m_n(S), m_n(\Omega - S)) \leq kH_{n-1}(\Omega \cap \partial^*S)^{n/(n-1)}$, where m_n denotes the Lebesgue measure on R^n . Since

$$\int_{S} F dx \le \left(\int_{S} 1 dx \right)^{(n-1)/n} \cdot \left(\int_{S} |F|^{n} dx \right)^{1/n} \le ||F||_{n} (m_{n}(S))^{(n-1)/n}$$

and

$$\int_{S} F dx = \int_{\Omega - S} -F dx \le \left(\int_{\Omega - S} 1 dx \right)^{(n-1)/n} \cdot \left(\int_{\Omega - S} |F|^{n} dx \right)^{1/n}$$

$$\le \|F\|_{n} (m_{n}(\Omega - S))^{(n-1)/n},$$

we can conclude that

$$\int_{S} F dx \le k_1 H_{n-1}(\Omega \cap \partial^* S)$$

with $k_1 = ||F||_n k^{(n-1)/n}$ for all $S \in Q$. It follows that the infimum is not less than $1/k_1$.

Finally in case of $\int_{\Omega} F dx \neq 0$, consider σ_1 such that $\operatorname{div} \sigma_1$ equals constantly $\int_{\Omega} F dx$, σ_2 such that $\operatorname{div} \sigma_2 = F - \int_{\Omega} F dx$ and set $\sigma_0 = \sigma_1 + \sigma_2$. Then $\operatorname{div} \sigma_0 = F$. This completes the proof.

From now on we fix σ_0 in Lemma 2.2. For $\sigma \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that $\operatorname{div} \sigma \in L^n(\Omega)$ and $u \in BV(\Omega)$, according to [2] we can define the distribution $(\sigma \nabla u)$ by

$$(\sigma \nabla u)(\varphi) = -\int_{\Omega} u \nabla \varphi \cdot \sigma dx - \int_{\Omega} u \varphi \operatorname{div} \sigma dx$$

for $\varphi \in C_0^{\infty}(\Omega)$. Since $BV(\Omega) \subset L^{n/(n-1)}(\Omega)$, each integral in the definition is finite. Furthermore it is known that $(\sigma \nabla u)$ is regarded as a bounded measure and that

$$(\sigma \nabla u)(\Omega) + \int_{\Omega} u \operatorname{div} \sigma dx = \int_{\partial \Omega} \gamma u \sigma \cdot \nu dH_{n-1}$$

holds. This is Green's formula due to Kohn and Temam [2; Proposition 1.1]. (See also [6; Theorem 2.3].) Using this formula, we can prove

LEMMA 2.3. If (P) has a solution, then (C) holds.

PROOF: Let σ be a solution of (P). Then by Green's formula stated above,

$$C(S) \ge (\sigma \nabla \chi_S)(\Omega) = \int_{\partial \Omega \cap \partial^* S} \sigma \cdot \nu dH_{n-1} - \int_S \operatorname{div} \sigma dx$$

$$\ge \lambda(S) - F(S).$$

Another inequality in (C) can be similarly proved.

To prove the converse, we follow the idea in [5] and [8]. Let us consider the Sobolev space

$$W^{1,1}(\Omega) = \{ u \in L^1(\Omega) \mid \nabla u \in L^1(\Omega; \mathbb{R}^n) \},$$

which is a linear subspace of $BV(\Omega)$. We set

$$U = L^1(\Omega; \mathbb{R}^n) \times L^1(\partial\Omega)$$
 and $V = \{(\nabla u, \gamma u) | u \in W^{1,1}(\Omega)\}.$

Since $\gamma u \in L^1(\partial\Omega)$ for $u \in W^{1,1}(\Omega)$, V is a linear subspace of U. Let $u^+ = \max(u,0)$ and $u^- = -\min(u,0)$. Note that $u^+, u^- \in W^{1,1}(\Omega)$. We define a functional Φ on V by

$$\Phi(\nabla u, \gamma u) = \int_{\Omega} \sigma_0 \cdot \nabla u dx - \int_{\partial \Omega} \sigma_0 \cdot \nu \gamma u dH_{n-1} + \int_{\partial \Omega} \lambda \gamma u^+ dH_{n-1} - \int_{\partial \Omega} \mu \gamma u^- dH_{n-1}$$

and set

$$K = \{ \sigma \in L^{\infty}(\Omega; \mathbb{R}^n) | \sigma(x) \in \Gamma(x) \text{ for a.e. } x \in \Omega \}.$$

For $v \in L^1(\Omega; \mathbb{R}^n)$, we define a functional ρ on U by

$$\rho(v,\alpha) = \int_{\Omega} \beta(v(x), x) dx = \sup_{\phi \in K} \int_{\Omega} v \cdot \phi dx$$

for $(v, \alpha) \in U$. The last equality follows from a measurable selection theorem. (Cf. Castaing and Valadier (1977).) Since $\rho(v, \alpha)$ is independent of α , it is sometimes denoted by $\rho(v)$. We note that $\psi(u) = \rho(\nabla u)$ for all $u \in W^{1,1}(\Omega)$. The inequality $\lambda \leq \mu$ implies the next lemma.

LEMMA 2.4. Φ is superlinear on V, that is, concave and positively homogeneous, and ρ is sublinear on U, that is, $-\rho$ is superlinear. Furthermore ρ is continuous at the origin of U if $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded.

Condition (C) can be replaced by an inequality with Φ and ρ .

LEMMA 2.5. If (C) holds, then $\Phi \leq \rho$ on V.

PROOF: We use equalities of coarea formula type which are stated in [6]: Let $u \in W^{1,1}(\Omega)$. Set $N_t = \{x \in \Omega | u(x) \ge t\}$ and $M_t = \Omega - N_t$ for any real number t. Then $N_t, M_t \in Q$ for a.e. t and

$$\psi(u) = \int_{-\infty}^{\infty} \psi(\chi_{N_t}) dt.$$

Furthermore by [6; Lemma 4.6]

$$\int_{\Omega} F u dx = \int_{0}^{\infty} \left(\int_{\Omega} F \chi_{N_{t}} dx - \int_{\Omega} F \chi_{M_{-t}} dx \right) dt,$$

$$\int_{\partial \Omega} \lambda \gamma u^{+} dH_{n-1} = \int_{0}^{\infty} \int_{\partial \Omega} \lambda \gamma \chi_{N_{t}} dH_{n-1} dt,$$

$$\int_{\partial \Omega} \mu \gamma u^{-} dH_{n-1} = \int_{0}^{\infty} \int_{\partial \Omega} \mu \gamma \chi_{M_{-t}} dH_{n-1} dt.$$

It follows from these equalities and (C) that

$$\begin{split} \rho(\nabla u) &= \psi(u) = \int_{-\infty}^{\infty} \psi(\chi_{N_t}) dt = \int_{0}^{\infty} \psi(\chi_{N_t}) dt + \int_{0}^{\infty} \psi(\chi_{\Omega - M_{-t}}) dt \\ &= \int_{0}^{\infty} C(N_t) dt + \int_{0}^{\infty} C(\Omega - M_{-t}) dt \\ &= \int_{0}^{\infty} (\lambda(N_t) - F(N_t)) dt + \int_{0}^{\infty} (-\mu(M_{-t}) + F(M_{-t})) dt \\ &\geq \int_{0}^{\infty} (\int_{\partial \Omega} \lambda \gamma \chi_{N_t} dH_{n-1} - \int_{\Omega} F \chi_{N_t} dx) dt \\ &+ \int_{0}^{\infty} (-\int_{\partial \Omega} \mu \gamma \chi_{M_{-t}} dH_{n-1} + \int_{\Omega} F \chi_{M_{-t}} dx) dt \\ &= \int_{\partial \Omega} \lambda \gamma u^+ dH_{n-1} - \int_{\partial \Omega} \mu \gamma u^- dH_{n-1} - \int_{\Omega} u \operatorname{div} \sigma_0 dx \\ &= \int_{\partial \Omega} \lambda \gamma u^+ dH_{n-1} - \int_{\partial \Omega} \mu \gamma u^- dH_{n-1} \\ &- \int_{\partial \Omega} \sigma_0 \cdot \nu \gamma u H_{n-1} + \int_{\Omega} \sigma_0 \cdot \nabla u dx \\ &\geq \Phi(\nabla u, \gamma u). \end{split}$$

Here we have used Green's formula in the last equality. This completes the proof.

By Lemma 2.5 and a version of Hahn-Banach theorem ([3; Corollary 2.2 in p.114]), there is a linear functional ξ on U satisfying $\Phi \leq \xi$ on V and $\xi \leq \rho$ on U. The next lemma is directly proved.

LEMMA 2.6. If $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded, then ξ is continuous on U with respect to the canonical norm topology.

By Lemma 2.6, there is $\sigma \in L^{\infty}(\Omega; \mathbb{R}^n)$ and $\eta \in L^{\infty}(\partial\Omega)$ such that

$$\xi(v,\alpha) = \int_{\Omega} \sigma \cdot v dx + \int_{\partial \Omega} \eta \alpha dH_{n-1}$$

for all $(v, \alpha) \in U$. However, from the inequality $\xi(v, \alpha) \leq \rho(v)$ for all $\alpha \in L^{\infty}(\partial\Omega)$, η must be 0.

LEMMA 2.7. Assume that $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded. Then the vector field σ obtained above is a solution to (P).

PROOF: We set $\Omega_0 = \{x \in \Omega | 0 \notin \Gamma(x) - \sigma(x)\}$. Then Ω_0 is a measurable set. Assume that the measure of Ω_0 is positive. Since $\hat{K} = \{\phi \in L^{\infty}(\Omega; R^n) | \phi(x) \in \Gamma(x) - \sigma(x)\}$ is a weakly* closed convex set and does not contain 0, there is $\varphi \in L^1(\Omega; R^n)$ such that $\sup_{\phi \in \hat{K}} \int_{\Omega} \varphi \cdot \phi dx < 0$. Therefore

$$\rho(\varphi) = \sup_{\phi \in \hat{K}} \int_{\Omega} \varphi \cdot (\phi + \sigma) dx < \int_{\Omega} \varphi \cdot \sigma dx = \xi(\varphi, 0).$$

This is a contradiction since $\xi \leq \rho$ on U. Thus $\sigma(x) \in \Gamma(x)$ for almost all $x \in \Omega$.

Next we prove div $\sigma = F$. If $u \in C_0^{\infty}(\Omega)$, then $\gamma u = 0$ so that

$$\Phi(\nabla u, \gamma u) = \int_{\Omega} \sigma_0 \cdot \nabla u dx \le \xi(\nabla u, 0) = \int_{\Omega} \sigma \cdot \nabla u dx.$$

It follows that

$$\int_{\Omega} \sigma_0 \cdot \nabla u dx = \int_{\Omega} \sigma \cdot \nabla u dx$$

for all $u \in C_0^{\infty}(\Omega)$. This implies that $\operatorname{div} \sigma = \operatorname{div} \sigma_0 = F$ in a distribution sense.

Finally we prove that $\lambda \leq \sigma \cdot \nu \leq \mu$ H_{n-1} -a.e. on $\partial \Omega$. Since div $\sigma = F \in L^n(\Omega)$, $\sigma \cdot \nu$ is defined as a function in $L^{\infty}(\partial \Omega)$ and the inequality $\Phi(\nabla u, \gamma u) \leq \int_{\Omega} \sigma \cdot \nabla u dx$ implies that

$$\int_{\partial\Omega} \lambda \gamma u^{+} - \mu \gamma u^{-} dH_{n-1} \le \int_{\partial\Omega} \gamma u \sigma \cdot \nu dH_{n-1}.$$

For any $\alpha \in L^1(\partial\Omega)$, there is $u \in W^{1,1}(\Omega)$ such that $\alpha = \gamma u$ by Gagliardo (1957). Thus for any nonnegative function $\alpha \in L^1(\partial\Omega)$, we have

$$\int_{\partial\Omega} \lambda \alpha dx \leq \int_{\partial\Omega} \sigma \cdot \nu \alpha dH_{n-1},$$
$$-\int_{\partial\Omega} \mu \alpha dx \leq -\int_{\partial\Omega} \sigma \cdot \nu \alpha dH_{n-1}.$$

Accordingly, $\lambda \leq \sigma \cdot \nu \leq \mu \ H_{n-1}$ -a.e. on $\partial \Omega$. This completes the proof.

PROOF OF THEOREM 2.1: The first statement follows from Lemma 2.3 and the second statement follows from Lemma 2.7.

3. Supply - Demand theorem

Let A, B be disjoint Borel subsets of $\partial\Omega$ and a, b be Borel measurable functions on A, B respectively. Then (SD) in §1 should be written in the following concrete form:

(SD) Find
$$\sigma \in L(\Omega; R^n)$$

such that $\sigma(x) \in \Gamma(x)$ for a.e. $x \in \Omega$,
 $\operatorname{div} \sigma = 0$ a.e. on Ω ,
 $\sigma \cdot \nu = 0$ H_{n-1} -a.e. on $\partial \Omega - (A \cap B)$,
 $-\sigma \cdot \nu \leq a$ H_{n-1} -a.e. on A ,
 $\sigma \cdot \nu \geq b$ H_{n-1} -a.e. on B .

By setting $\lambda=-a$ on $A,\ \lambda=b$ on B, $\lambda=0$ elsewhere on $\partial\Omega$ and $\mu=\max(\lambda,0)$, Theorem 2.1 implies

THEOREM 3.1. Assume that (H1), (H2) hold and that $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded. Then (SD) has a solution if and only if

(G)
$$C(S) \ge \int_{B \cap \partial^* S} b dH_{n-1} - \int_{A \cap \partial^* S} a dH_{n-1} \text{ for all } S \in Q.$$

Finally we refer to a relation between (SD) and a max-flow problem of Strang's type (MFS) which has been used in the proof of Lemma 2.2 with the boundary condition $\sigma \cdot \nu = 0$. Now let f be an arbitrary function in $L^{\infty}(\partial\Omega)$ which satisfies the conservation law $\int_{\partial\Omega} f dH_{n-1} = 0$. Then for (Ω, Γ, f) , (MFS) with F = 0 is stated as follows:

(MFS) Maximize
$$\lambda$$
 subject to $(\lambda, \sigma) \in R \times L^{\infty}(\Omega; R^n)$, $\sigma(x) \in \Gamma(x)$ a.e. $x \in \Omega$, div $\sigma = 0$ a.e. on Ω , $\sigma \cdot \nu = \lambda f$ a.e. on $\partial \Omega$,

and the corresponding min-cut problem (MCS) is

(MCS) Minimize
$$C(S)/L(S)$$

subject to $S \subset \Omega, \chi_S \in BV(\Omega), L(S) > 0$,

where $L(S) = \int_{\partial \Omega \cap \partial^* S} f dH_{n-1}$. Then we have

PROPOSITION 3.2. Assume that (H1) and (H2) hold.

- (1) Assume that (G) implies the existence of solutions to (SD) for any disjoint Borel subsets A, B of $\partial\Omega$ and $a \in L^{\infty}(A)$, $b \in L^{\infty}(B)$. Then MFS = MCS and (MFS) has an optimal solution for any $f \in L^{\infty}(\partial\Omega)$ satisfying the conservation law.
- (2) Conversely if MFS = MCS and (MFS) has an optimal solutin for any $f \in L^{\infty}(\partial\Omega)$ satisfying the conservation law, then (G) implies the existence of solutions to (SD) for any disjoint Borel subsets A, B of $\partial\Omega$ and $a \in L^{\infty}(A), b \in L^{\infty}(B)$ such that $\int_{A} adH_{n-1} = \int_{B} bdH_{n-1}$.

It is known that there is an example with MFS < MCS if Γ is unbounded. (See [7].) Thus Proposition 3.2 (1) shows that there is an example of (SD) such that $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded, condition (G) is satisfied and (SD) has no solution.

Acknowledgement

The author is grateful to Professor Yamasaki for his valuable advise, which is essential in proving Theorem 2.1.

References

- [1] Gale D. (1957) A theorem on flows in networks, Pacific J. Math. 7: 1073 1082
- [2] Kohn R. and Temam R. (1983) Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim. 10:1-35
- [3] König H. On some basic theorems in convex analysis, pp.107 144 in modern Applied Mathematics, ed. by B.Korte. North-Holland, Amsterdam, 1982
- [4] Maz'ja W. (1985) Sobolev spaces, Springer-Verlag, Berlin-New York
- [5] Neumann M.M. (1984) A Ford-Fulkerson type theorem concerning vector-valued flows in infinite networks, Czechoslovak Math. J. 34: 156-162
- [6] Nozawa R. (1990) Max-flow min-cut theorem in an anisotropic network, Osaka J. Math. 27: 805 842
- [7] Nozawa R. (1994) Examples of max-flow and min-cut problems with duality gaps in continuous networks, Mathematical Programming 63: 213 234
- [8] Oettli W. and Yamasaki M.(1994) On Gale's feasibility theorem for certain infinite networks, Arch. Math. (Basel) 62:378 384