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A continuous version of Gale’s feasibility theorem
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1. Introduction

There are several approaches to formulate flow problems on continuous
networks. In this paper, using a formulation due to Iri (1979) and Strang
(1983), we establish a continuous version of Gale’s feasibility theorem [1].

The theorem is known as the “Supply - Demand Theorem” in a special case.
By means of a cut capacity, this gives a necessary and sufficient condition for
an existence of feasible flows.

Let us recall our formulation of continuous network and state a continuous
version of the Supply - Demand Theorem. As for a discrete version, one can
refer to Ford and Fulderson’s book (1962). In this discussion, we assume that
all functions and sets are sufficiently smooth. Let 2 be a bounded domain
of n-dimensional Euclidean space R"™ and 0f) be the boundary. Let A, B be
disjoint subsets of 92 which are regarded as a source and a sink. In our
continuous network, every flow is represented by a vector field and every
feasible flow o satisfies the capacity constraint which is written as

o(z) € I'(z) for all z € Q,

where T is a set-valued mapping from 2 to R™. The flow value of o is defined
by o-v on 9Q. We call  with this capacity constraint a continuous network.

Furthermore, every cut is identified with a subset of {2 in our network. Let
S be a cut and v° be the unit outer normal to S. Then the cut capacity

C(S) is defined by

C(S) = / B (@), )ds(a),

where

B(v,z) = sup v-w
wel(z)

for v € R™ and ds is the surface element. If the capacity constraint is
isotropic, that is, I'(z) = {w € R"| |w| < ¢(z)} with some nonnegative
function ¢(z), then

C(S) = /Qnas c(z)ds(z).
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Let a, b be real-valued functions on A, B respectively and let v be the unit
outer normal to . Then the problem of supply-demand in a simple case is
stated as follows:

(SD) Find o such that
| o(z) € I'(z) for all z € ,
divoe =0o0n Q, —o-v=0o0n 0N — (AN DB),

—o-v<aond, o-v>bon B.

The Supply-Demand theorem assures that (SD) has a solution if and only if

(G) C(S) > / bds ——/ ads for each cut S.
Bnas ANaS

This can be proved by the aid of a continuous version of max-flow min-cut
theorem under some assumptions. However, we can not apply the same
method to a variant of (SD), which is called a symmetric type by Ford and
Fulkerson. :

On the other hand, Neumann [5] and Oettli and Yamasaki [8] investigated a
problem of feasibility of flows and proved similar results in their own network
formulations. Their method is based on a generalized Hahn-Banach Theorem
and is applicable even for a symmetric supply-demand problem. In the next
section, we give a concrete formulation of our problem in a more general form
than (SD), and give a corresponding condition which is equivalent with an
existence of solutions for the problem under suitable assumptions. Finally in
§3, we consider (SD) as a special case and examine the assumptions.

2. Problem setting and a main theorem

Let  be a bounded domain in n-dimensional Euclidean space R™ with
Lipschitz boundary 8. One can consider n — 1-dimensional surface measure
on 80 which is equal to n — 1-dimensional Hausdorff measure H,,_; on 0§l
We note that the unit outer normal v to Q is defined and essentially bounded
measurable on 9 with respect to H,_1. Let I' be a set-valued mapping from
2 to R™ which satisfies the following two conditions:

(H1) ['(z) is a compact convex set containing 0 for all z € €.
(H2) Let ¢ > 0 and €2y be a compact subset of (2.

Then there is 6 > 0 such that

I'(z) C T'(y) + B(0,¢) if z,y € Qo and |x — y| < 6.
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In what follows, we assume that each feasible flow is represented by an es-
sentially bounded vector field o on (2 satisfying the following capacity con-

straints:
o(z) € T(z) for a.e. 2 €.

Furthermore if dive € L"(Q), then ¢ - v can be defined as a function in
L>(09) in a weak sense by Kohn and Temam [2]. Let F' € L™(Q) and ), p €
L>(9Q) with A < p. Then for the quintuple (Q2,I', F, 4, A), our problem is
stated as follows:

(P) Find o € L*™(2; R") such that o(z) € ['(z) for a.e. z € Q,
dive=F ae onQand A\<o-v<pu H,_1-a.e. on 0

Problem (SD) considered in §1 can be written in this form with F' = 0.
To specify the class of cuts, we consider the space BV (1) of functions of
bounded variation on 2:

BV(Q) = {u € L*(Q)| Vu is a Radon measure of bounded variation on Q},

where Vu = (0u/0z1,- - ,0u/0z,) is understood in the sense of distribution.
We denote the characteristic function of a subset S of {2 by xs and set

Q ={S C Q| xs € BV(Q)}.

Let S € Q. Then the reduced boundary 9*S of S is the set of all x € 95
where Federer’s normal v = v(z) to S exists. It is known that 0*S is a
measurable set with respect to both the measure of total variation of |Vys|
and H,_1, |Vxs|(R® — 8*S) =0 and |Vxs|(E) = H,—1(E) for each |Vyxs|-
measurable subset E of 8*S. Furthermore let yu € L*(912) be the trace of
u € BV (Q). Then [4; Theorem 6.6.2] implies that yxs = Xao+snoq Hn—1-a.e.
on 0. Accordingly, replacing ds by H,—; and S by 0*S, we can define the
cut capacity as follows: ’

C(8) = /Q e B(v° (z),2)dHp—1,

where (-, z) is the support functional of I'(z) as defined in §1. Let Vu/|Vu|
be the Radon-Nikodym derivative of Vu with respect to |Vu| and set

P(u) = / B(V/|Vul, )d|Vul(z)
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for u € BV(2). Then C(S) = ¥(xs). Since § is continuous and nonnegative
by (H1) and (H2), C(S) is finite. We set

A(S) = / MH,_1, p(S) = / udH,_y, F(S) = / Fda.
aQNad* s a0Nd*S S
for convenience sake, and consider the condition

(C) C(S)>MS)—F(S)and C(S) > —u(2-S)+ F(Q-25)
hold for all S € Q.

Now we can state a continuous version of Gale’s feasibility theorem.

THEOREM 2.1. Assume that (H1) and (H2) hold. If (P) has a solution, then
condition (C) holds. Conversely if Uyeql'(z) is bounded and condition (C)
holds, then (P) has a solution.

To prove this theorem, we need some lemmas. First applying an isoperi-
metric inequality due to [4] we have

LEMMA 2.2. There is 09 € L>®(§2; R™) such that divey, = F a.e. on ).

PRrRoOOF: First assume that fn Fdz = 0. We use a max-flow min-cut theorem
of Strang’s type (1983):

sup{t >0 | dive = —tF ae. on Q, 0-v =0 H,_j-a.e. on 9f)
for some o € L*(Q}; R"™) with ||o]|c < 1}

= inf{Ho_1 (2N ")/ / Fds | / Fdz >0, S C Q,xs € BV(Q)).
S S

(The proof is in [6].) To prove the existence of oy, it is sufficient to show
that the supremum is positive. We can prove that the infimum is positive
as follows. According to [4; p.303] there is a positive constant k such that
min(m,(S), mn(Q = S)) < kH,_1(Q N 0*S)V(»=1) where m,, denotes the
Lebesgue measure on R™. Since

T xn—-l/n.’ nmln m n—1)/n
[ Fas < ([ anein ([ 1Franin < e m )

and

/ Fdz = / —Fdz < ( 1dz)(n=V/n . (/ |F|"dz)/"
S Q-5 Q-5 Q-5

< NI Flln(ma($2 = 8))tm=0/m,



87

we can conclude that

/Fd.’ll‘ S len_l(Qﬂa*S)
S

with k; = ||F||.k(™ /" for all S € Q. It follows that the infimum is not less
than 1/k1

Finally in case of fQ Fdx # 0, consider o; such that divo; equals con-
stantly fﬂ Fdzx, o9 such that divey = F — fQ Fdzx and set o9 = o1 + 0.
Then divog = F. This completes the proof.

From now on we fix o9 in Lemma 2.2. For ¢ € L*°(Q; R™) such that
dive € L™(Q2) and u € BV (Q2), according to [2] we can define the distribution

(0Vu) by

(cVu)(p) = —/ uVe - odx — / updivodz
Q Q

for ¢ € C$°(). Since BV(?) C L™ (»=1)(Q)), each integral in the definition
is finite. Furthermore it is known that (0Vu) is regarded as a bounded
measure and that

(0Vu)(Q)+/udivada:=/ yuo - vdH, _;
Q o0

holds. This is Green’s formula due to Kohn and Temam [2; Propositibn 1.1].
(See also [6; Theorem 2.3].) Using this formula, we can prove

LEMMA 2.3. If (P) has a solution, then (C) holds.

PROOF: Let o be a solution of (P). Then by Green’s formula stated above,

C(S) > (6Vxs)(Q) = / o-vdH,_1 — / divodz
oNNa*S S
> A(S) = F(S). '
Another inequality in (C) can be similarly proved.

To prove the converse, we follow the idea in [5] and [8]. Let us consider
the Sobolev space

W Q) = {u € L}(Q) | Vu € L} (Q; R™)},
which is a linear subspace of BV (). We set

U=L'(R") x L'(09) and V = {(Vu,yu)| u € WH1(Q)}.
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Since yu € LY(0N) for u € WH1(Q), V is a linear subspace of U. Let
ut = max(u,0) and u~ = —min(u,0). Note that ut,u™ € WhH1(Q). We
define a functional ¢ on V by

& (Vu,yu) = /

Q

+ / MyutdH,_; — / pyu=dH,_y
o0 N

oo - Vudzr — / o9 - vyudH,_1
Elp)

and set '
K ={o € L®(Q;R")| o(z) € I'(z) for a.e. z € Q}.

For v € L'(; R™), we define a functional p on U by
p(v,a) = / B(v(z), z)dx = sup / v - ¢dz
Q PEK JQ

for (v,a) € U. The last equality follows from a measurable selection theorem.
(Cf. Castaing and Valadier (1977).) Since p(v, @) is independent of o, it is
sometimes denoted by p(v). We note that 1)(u) = p(Vu) for all u € WH1(Q).
The inequality A < p implies the next lemma.

LEMMA 2.4. ® is superlinear on V, that is , concave and positively homoge-
neous, and p is sublinear on U, that is, —p is superlinear. Furthermore p is
continuous at the origin of U if UzeqI'(z) is bounded.

Condition (C) can be replaced by an inequality with ® and p.
LeEMMA 2.5. If (C) holds, then ® < pon V.

PROOF: We use equalities of coarea formula type which are stated in [6]: Let
u € WHi(Q). Set N; = {z € Q| u(z) >t} and M; = Q — N, for any real
number t. Then N;, M; € @) for a.e. t and

v = [ wooe

Furthermore by [6; Lemma 4.6]

/Fuda:z/ (/ FXNtdx—/FXM_tdm)dt,
Q 0 Q Q

/ )\7u+dHn_1=/ / Ayxn,dHp-1dt,

o0 0o Joq

/u”yu_dan:/ //1’7XM_1dHn—1dt-
) 0o Jon
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It follows from these equalities and (C) that

p(Vu) = (u) = / " PO )dt = / " Bl )+ / " o)t
/ C(Ny) dt+/ C(Q = M_,)dt
/ (A(N2) — F(N,))dt + / (—p(M_) + F(M_))dt

2/ ( AyXNthn_l—/FXNtda:)dt
o Jag Q

+/ (—/ #’)’XM_thn—1+/ Fx_,dz)dt
0 N Q

:/ )\'yu+dHn_1~/ ,u7u"dHn_1——/udivagda:
19} E) Q ,

=/ A’)/’U,+dHn._1—/ ,U:')’U_dHn-—l
I719) N

- / oo - vyuH,_ +/ oo - Vudz
E1) Q
> &(Vu,yu).

Here we have used Green’s formula in the last equality. This completes the
proof.

By Lemma 2.5 and a version of Hahn-Banach theorem ([3; Corollary 2.2 in
p.114]), there is a linear functional ¢ on U satisfying ® < £ on V and £ < p
on U. The next lemma is directly proved.

LEMMA 2.6. IfUgzeqI'(2) is bounded, then £ is continuous on U with respect
to the canonical norm topology.

By Lemma 2.6, there is 0 € L>(Q; R™) and n € L*°(99) such that

f(v,a)z/o-vda:-{—/ nadH,_,
Q a0

for all (v,a) € U. However, from the inequality {(v,a) < p(v) for all « €
L>(0Q), n must be 0.
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LEMMA 2.7. Assume that U,eql'(z) is bounded. Then the vector field o
obtained above is a solution to (P).

PrOOF: We set Qp = {z € Q| 0 ¢ I'(z) — o(z)}. Then Qp is a mea-
surable set. Assume that the measure of () is positive. Since K = {¢ €
L>(Q; R™)| ¢(z) € T'(z) —o(z)} is a weakly* closed convex set and does not
contain 0, there is ¢ € L'(Q; R") such that sup,¢ i [, ¢ ¢dz < 0. Therefore

p(@)=sup/ﬂw-(¢+0)dw</Qso-odx=£(so,0)-

peK

This is a contradiction since £ < p on U. Thus o(z) € I'(z) for almost all
z € (.
Next we prove dive = F. If u € C§°(f2), then yu = 0 so that

oo - Vudz < €(Vu,0) = / o - Vudz.
Q

¢(Vu,yu) = /

Q

/ao-Vudx=/o-Vudx
Q Q

for all u € Cg°(R). This implies that dive = divey = F in a distribution
sense.

Finally we prove that A < ¢ -v < pu H,_;-a.e. on Q. Since dive =
F € L*(Q), o - v is defined as a function in L*°(0Q) and the inequality
®(Vu,yu) < [, 0 - Vudz implies that

It follows that

/ Mut — pyu~dH,_; < / yuo - vdH, _;.
aQ E19)

For any a € L(09Q), there is u € W11(Q) such that o = yu by Gagliardo
(1957). Thus for any nonnegative function o € L'(992), we have

/ )\ad:cg/ o-vadH,_4,
1) 1)

—/ podzr < ——/ o-vadH,_;.
o9 a9

Accordingly, A <o -v < u H,_j-a.e. on 0fd. This completes the proof.

PROOF OF THEOREM 2.1: The first statement follows from Lemma 2.3 and
the second statement follows from Lemma 2.7.
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3. Supply - Demand theorem

Let A, B be disjoint Borel subsets of d{2 and a,b be Borel measurable
functions on A, B respectively. Then (SD) in §1 should be written in the
following concrete form:

(SD) Find o € L(Q; R™)
such that o(z) € I'(z) for a.e. z € Q,
dive =0 a.e. on (),
o-v=0H,_j-a.e. on 90— (AN B),
—oc-v<a H,_i-a.e. on A,
oc-v>b H,_j-ae. on B.

By setting A\ = —a on A, A = bon B, A = 0 elsewhere on 02 and u =
max(A,0), Theorem 2.1 implies

THEOREM 3.1. Assume that (H1), (H2) hold and that U,eqI'(x) is bounded.
Then (SD) has a solution if and only if

(G) c(S) > / bdH, 1 — / adH,_1 for all S € Q.
Bno*s AN* S

Finally we refer to a relation between (SD) and a max-flow problem of
Strang’s type (MFS) which has been used in the proof of Lemma 2.2 with
the boundary condition o - v = 0. Now let f be an arbitrary function in
L>(99) which satisfies the conservation law [, fdH,_; = 0. Then for
(Q,T, f), (MFS) with F' = 0 is stated as follows:

(MF'S) Maximize A
subject to (\,0) € R x L*=(Q; R™),
o(z) € I'(z) a.e. z €11,
divo=0a.e. on ), o-v=M\f a.e. on 0f),

and the corresponding min-cut problem (MCS) is

(MCS) Minimize C(S)/L(S)
subject to S C Q,xs € BV(2), L(S) > 0,

where L(S) = [50n5+5 fdHn-1. Then we have
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PROPOSITION 3.2. Assume that (H1) and (H2) hold.

(1) Assume that (G) implies the existence of solutions to (SD) for any
disjoint Borel subsets A, B of 9Q and a € L*°(A),b € L°>°(B). Then MFS =
MCS and (MFS) has an optimal solution for any f € L*(02) satisfying the
conservation law.

(2) Conversely if MFS = MCS and (MFS) has an optimal solutin for
any f € L>®(90) satisfying the conservation law, then (G) implies the ex-
istence of solutions to (SD) for any disjoint Borel subsets A, B of 01 and
a € L*(A), b € L*(B) such that [, adH,_1 = [ bdH,_;.

It is known that there is an example with MFS < MCS if T' is unbounded.
(See [7].) Thus Proposition 3.2 (1) shows that there is an example of (SD)
such that Uzeql'(z) is bounded, condition (G) is satisfied and (SD) has no
solution.
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