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Abstract

In this paper, in the same framework as the previous papers, we will specify the
long-run average fuzzy reward from any continuous fuzzy stationary policy and de-
velop its optimization by so-called “fuzzy max order” on the bounded convex fuzzy
numbers under the ergodicity and continuity conditions. By introducing the relative
value functions, the average reward is characterized as a unique solution of the as-
sociated equation. Moreover, using the “vanishing discount factor” approach which
is well-known in the theory of Markov decision processes we derive the optimality
equation.
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1 Introduction and notations

In our previous paper [7], we defined Markov-type fuzzy decision processes (FDP’s, for
short) with a bounded fuzzy reward on the real line and developed its optimization under
the discount reward criterion. Also, the long-run average fuzzy reward for some dynamic
fuzzy system has been specified in our another paper [8]. However, the optimization was
not given there. In this paper, in the same framework as [8] we will specify the long-
run average fuzzy reward from any fuzzy policy and develop its optimization by the so-
called “fuzzy max order” on the convex fuzzy numbers under the ergodicity (contraction)
condition for the fuzzy state transition and the continuity condition for the fuzzy reward
relation. That is, by introducing the relative value functions, the average reward from
any admissible stationary policy is characterized as a unique solution of the associated
equation which may be useful in the policy improvement. Moreover, using the “vanishing
discount factor” approach which is well-known in the theory of Markov decision processes
(for example, see [13]), we derive the optimality equation under the average fuzzy reward
criterion. In the reminder of this section, we will give notations and some mathematical
facts.

Let E, E,, E, be convex compact subsets of some Banach space. The set of all fuzzy
sets § on E is denoted by F(FE), which is upper semi-continuous and has a compact
support with the normality condition : sup .z 3(z) =1.

The fuzzy relation is p : Fy x Ey — [0,1] and p € F(E; x E;). The a-cut (a € [0,1})
of the fuzzy set 5 is defined as

S, ={z€FE|3=z)>a} (@a>0) and 35,:=c{z € E|3(z)> 0}.
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- A fuzzy set § € F(E) is called convex if -
S0+ (1= \)y) 2 3() A 3(y) @y € B, A€ 0,1]

Note that 3 is convex iff the a-cut 3, is a convex set for all o € [0,1] (see [4]).
A fuzzy relation p € F(E; x E,) is called convex if

ﬁ()\xl + (1 - )\)332; )\yl + (1 - )\)yz) > }5(3317?/1) /\ﬁ(xzayz)

for 4,25 € By, y1,y2 € Fy, and A € [0,1]. The class of all convex fuzzy set ié denoted by
using the sub-index c as

F(E )—-{86.7'—( ) | § is convex }.

The set of all non-empty closed convex subsets of E i is denoted by C(E ) Then clearly
3 € F.(FE) means that §, € C(E) for all @ € [0,1]. Let p be the Hausdorff metric on
C.(E), then (C.(E), p) is a complete separable metric space (c.f. [9]).

Let us restrict the term of convex fuzzy number to be convex fuzzy set with the finite
support contained in the real interval [O M) C R, :=[0,00) with a fixed positive number
M, that is,

Fo([0, M]) := {3 € F.(R4) | 30 C [0, M]},

and C([0, M]) be the set of all closed convex subsets of [0, M]. The Hausdorff metrlc on
C([0, M]) is represented by §, i.e.,

| 5([6%5],[6;61]) :=|a'—01\/|b—d| for [a,.b],[c,d]ec([o';M])-

The addition and the multiplicative operations of fuzzy sets- (fuzzy numbers) are defined
as follows (see [11, 17]): For n,m € F,(R,) and A € R,, define

(Atm)w) = sup  {afu) A(u)),

u1,u2€ERy: ur1tus=u

[ A iAs0
(Vi) () ._{ I{(O}(u)) Ao uER.

It is easily seen rthat, for o € (0, 1],
(R4 M)a =g+ Mo and (A1) = ARy

holds by this operation. Here the operation for sets means the ordinary definition as
A+ B:={z+y|z € Aye B} and AA:= {\z |z € A} for A,B CR,.

Lemma 1.1 ([4, Theorem 2.3]).
(i) For any i1 € Fo(Ry) and A € R, v + 1 € F,(Ry) and Mi € Fo(Ry).
(ii) For any 3 € F,(E1) and p € F.(E; x Ezv), then sup,cp, 3(z) A p(z,-) € Fo(Es).
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2 Fuzzy Decision Processes

A fuzzy decision process, in this paper, is a controlled dynamic fuzzy system defined by
four objects (S, A, §,7) as follows:

(i) Let S and A be a state space and an action space, which are given as convex compact
subsets of some Banach space respectively. The decision process is assumed to be
fuzzy itself, so that both the state of the system and the action taken at each stage
are denoted by the element of F,(S) and F.(A), called the fuzzy state and the fuzzy .
action respectively.

(i) The law of motion for the system and the fuzzy reward can be characterized by time
invariant fuzzy relations § € F,(S x A x S) and 7 € F,(S x A x [0, M]). Explicitly,
if the system is in a fuzzy state 5§ € F,(S) and the fuzzy action & € F.(A) is chosen,
then it transfers to a new fuzzy state Q(5,a) and a fuzzy reward R(3,a) has been
earned, where (), R are defined by the following;:

Q(3,a)(y) == o0 $(z) Na(a) A g(z,a,y) (y €5) (2.1)
R, a)(u) = s S(@) Aa(e) AR aw) (0SusSM). (@2

Note that, by Lemma 1.1, it holds that Q(3,a)(-) € F.(S) and R(3,a)(-) € Fc([0, M]) for
all 3 € F.(9),a € F.(A).

Firstly we will define a policy based on the fuzzy state and fuzzy action as follows. Let
I := {x|r : Fo(S) — F.(A)} be the set of all maps from F.(S) to F.(A). Any element
7 € Il is called a strategy. A policy, # = (w1, 7,73, - ), is a sequence of strategies such
that m; € II for each t. Especially, the policy (7,7, 7, --) is a stationary policy and is
denoted by 7. :

A fuzzy strategy 7 € II is called admissible if the a-cut 7(8), of # depends only on
the scalar a and the sets 3,, that is, it would be written as

7(8)a = (@, 8,) for 3 € F(S5).

If m(a, D) is continuous in (a, D) € [0,1] x C(S), 7 is called continuous. We denote by
II4 and IIg, respectively, the collections of all admissible and continuous fuzzy strategies.
A policy # = (my, 7y, ) is called admissible (continuous resp.) if 7, € II4 (Il¢) for all
t>0.

Definition 2.1 (c.f. [6, 11]). For 4,4 € F.(E), limy_o t; = 4 iff
limy—,co SUP 4e(o,1] p(tit 0, Us) = 0, where Uy o and U are respectively the a-cut of %, and u.

For any closed interval D € C([0, M]), we put D = [D, D], where D and D are the left
and right end points of D respectively.

The partial order = on C([0, M]) is defined as follows : For any Di, D, € C([0, M]).
Dy > D; means that D; > Dy and D; > D,. Then, (C([0, M]), =) becomes a complete

lattice (see [2]) and the following lemma holds obviously.

Lemma 2.1. For any sequence {D,}2; C C([0, M]), it holds that
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(l) Suanl D"l = {SuanI .‘D_”L’ Suanl Dn]; and

(i) if 3293y Dy converges, 221 Dn = [£3% Da, E;?ZID_n].

Definition 2.2. For any ii,m € F,.([0, M]), s = m iff &, = 1, for all o € [0,1].

For any admissible policy % = (1,73, - -+) and an initial fuzzy state § € F, (5), we can
define a sequence of fuzzy rewards on [0, M],

{R(8:,m(5:))}2,, where
-§1 = 3§ and §t+1 = Q(§t7 ’/Tt(gt)) for ¢ 2 1. (23)
Here we are concerned with two performance criteria. The first one is the total dis-

counted fuzzy reward with a discount factor 8 (0 < B < 1), where the definition depends
on the following lemma. The lemma is a special case of the convergence theorem in [17].

Lemma 2.2. For any 5 € F.(S) and any admissible & = (w1, 7y, +),

{t};ﬂt”lR(émt(gt))} (2.4

T>1
is convergent in F.([0, M/(1 — B3)]).

From the above lemma, we can define the discounted total fuzzy reward as follows :

=1

Y(7, 8) = Zﬂt YR(3;,mi(81)) € ]-'([0 M/(1-p)] (2.5)

for § € F,(S) and & = (w1, ma,- - -).

The problem in the discounted case is to maximize 14(#, §) over all admissible policy
# with respect to the order > on F,([0, M]), which has been investigated in [7]. The
second performance criteria is the long-run average fuzzy reward per unit time, which is
formally defined by :

U(s, %) = Jim %, | (2.6)
Rr =) R(&,m(3)) (T>1). (2.7)

=1
Our problem in this paper is to show the convergency of U(3,7) and maximize ¥(3, %)

over some class of continuous policies 7 with respect to the order > on F, ([O M ]) which
is given in Sections 4 and 5. :



3 Assumptions and preliminary results
A map Q4 : C(S) x C(A) — C(S5) («a € [0,1]) is defined by

{v € S| q(z,a,y) > a for some (z,a) € D x B}, oa>0,

Qa(D x B) := { c{y € S| 4(z,a,y) > 0 for some (z,a) € D x B}, a=0,

and a map R, : C(S) x C(A) — C([0, M]) (« € [0,1]) by

{u € Ry | #(z,a,u) > «a for some (z,a) € D x B}, «a>0,

Ro(D x B) 5:{ c{u € Ry | #(z,a,u) > 0 for some (z,a) € D x B}, a=0.

Since Ry(D x B) is a closed interval for each a € [0,1], we can write it as

Ro(D x B) := [Ry(D x B),Ru(D x B)].

Assumption A (Ergodicity or contraction). There exits y; (0 < v, < 1) such that

p(Qa(D, B),Qu(D’, B)) < vp(D, D) for all B € C(A).

Assumption B (Lipschitz condition). There exists a constant C such that

|Bo(D x B) — R, (D' x B)|V|Ra(D x B) — Ro(D' x B)| < Cp(D, D"

for any D, D' € C(S) and B € C(A).

We now derive the optimality equation for the discounted case. Let
V= {v:C(S) ~ C([0,M])}.
Define a metric dy on V by

dy(v,w) == Dselé%)s*) 8(v(D),w(D)) forv,we V.
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Then, (V, dy) becomes a complete metric space. Define a map U2 : V — V (a > 0) by

UZu(D) = sup {Ru(D x B) + $0(Qu(D x B))

for v € V and D € C(S). If we write v(D) and Ufv(D) respectively by v(D)

[v(D),v(D)] and UPv(D) = [ng(D),Ugv(D)], (3.1) becomes, from Lemma 2.1,

USv(D) = Bsélé&){ﬁa(l? x B) + pu(Q.(D x B))},

T2u(D) = sup {Ba(D x B) + B5(Qa(D x B))}.
BeC(A)

(3.1)
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In [7], it is shown that the operator UP is a contraction with modulus 3. Thus, there
exists a unique map v, g € V such that

Vo, = Ugva,ﬁ' (34)
Let va5(D) := [145(D),Vap(D)] for all D € C(S5).

Lemma 3.1. Suppose that Assumptions A and B hold. Then, we have

C
1—pm

[we(D) — w5(D)| V [75(D) = To(D")] <

(e

p(D, D) (3.5)

for all D, D' € C(S).

4 Characterization of the average fuzzy reward

This section concerns the convergence of the average fuzzy reward ¥(3,7*), which for-
mally given in (2.6).
For any 7 € Il¢, we put

Rr(3,7%) := Y R(3, 7(3)), (4.1)
where §;:=3§ and 3§,y = Q(5,7(8)) (> 1).
Let define maps @7, : C(S) — C(S) and R, : C(S) = C([0, M]) (7 € 4, a € [0,1]) by

Qa(D) = Qua(D x 7(a, D))
R:(D) :=R,(D x n(a, D))

for D € C(S). For m € Il4, QF, (t > 1) is defined inductively by using the composition
of maps as follows :

Q1.(D) = Q3(D)
Qiv1,4(D) = Q1 ,Q%(D) fort>1and D e C(S).

Lemma 4.1. Let m# € Ilo. Then :
(1) 3t410 = QF4(8s) fort>1,
(i1) Rr(3,7>) € F([0,TM]) forT > 1,
(iii) (Rz(3,7°))a = L, Ra(8ta, (0, 3:4)) for T > 1.
For any continuous strategy = € Il¢, we shall say that L(7) holds if there exist constant
7(0 <4 < 1), C >0 and a positive integer ?, satisfying the following (i) and (ii) :

(i) p(@F (D), Q% (D) < vp(D,D"),
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(i) 8(R3(D), RL(D")) < Cp(D, D).

Let us denote by II%, the set of all 7 € Il¢ satisfying the above condition L(r).
Theorem 4.1. For any 7 € I, ¥(3,7%) in (2.6) converges and satisfies the following :
U(s,7) = R(p", 7(p")),

where p" € F.(S) is a limiting fuzzy state satisfying that
(i) limy_o0 3; = p™, and Q7(p%) = p~, for all a € [0,1],
(ii) p™ is independent of the initial fuzzy state §, and
(i) p(8t4,p%) < C*4* with v in Assumption L(r) and some C* > 0.
Theorem 4.1 says that for any 7 € [T, ¥(3,7%) is independent of 3, so we write it
by ¥(7).
For simplicity, let, for each 7 € I, and D € C(S), Ria(D) = i, RE(QF.(D)).

Note from Lemma 4.1 that Rr(3,7%°)y = R} ,.(3,) for all T > 1 and a € [0,1]. Let

o0

T (D)= [_R_}Z(D),_RTWOZ(D)] Then, by Lemma 2.1, we have

B7 (D) =) B (Q}.(D)) (4.2)

T
Rro(D) =3 R.(Q7.(D)), (43)

where RI(D'):= [R5(D"), Ro(D')]

for all D' € C(S). By Theorem 4.1 and Assumption B, we observe that R} (8;.) — R5(53)
exponentially first as ¢ — oo. Thus, by (4.2) and (4.3),

B3(D) = Jim (Bio(D) - T x E5(5L)), (44)
ho(D) = lim (Br,(D) - T x R (L)) (45)

converge for all D € C(S). The function h, (h, resp.) is called lower (upper) relative
value function, whose basic ideas are appearing in the theory of Markov processes (c.f.

[13]).

Let us denote the a-cut of the discounted fuzzy reward of (2.5):

Pa(r, 8)a = by (1, Do B2, ], @ € 10,1, (4.6)

Then, for any m € II%, the extremal points

\Il(ﬂ-oo)a = [ga(woo)a@—a("roo)]
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are characterized in the following theorem, whose description is popular in the theory of
Markov decision processes (cf. [1, 13]).

Theorem 4.2. For any 7 € II%,, we have

gﬁ(ﬂ"x’,sN)a =Y, (7

T,(7)/(1 = B) + Ki(5a) + £(8, ), (4.7)
D1, 8)a = Ta(r™)/(1 — B) + Fr(32) + 5(8, ), (4.8)
where |g(8,a)|V [(8, )| — 0

uniformly for a € [0,1] as f — 1

Theorem 4.3. For any 7 € I}, let k7 and k., be defined as (4.4) and (4.5). Then, the
following equations hold :

(D) + b(Q5(D)),

R, (4.9)
hy(D)+ Ta(r) = Ro(D) + hy(QR(D)) for all D € C(S). (4.10)

The following theorem is useful in policy improvement.

Theorem 4.4. For any 7 € g, let A7 and ., be defined as in (4 4) and (4. 5) Let
7' € I be such that

K3(D) + Lo () < BZ(D) + K(Q (D)) (11)
Fa(D) + Wa(x) < B (D) + FL(QZ/(D)) (412)
for all D € C(S) and a € [0,1]. Then ¥(7>) < U(7').

Corollary 4.1. For any 7 € I, let A7 and k., be defined as in (4.4) and (4.5). Suppose
that the following inequalities hold

hL(D) 4+ ¥, (7>

(D) + . (x) > BT (D) + K5(QF (D))
(D) + Ta () > BS (D) + QT (D))

for all 7' € I, D € C(S) and a € [0,1]. Then ©* is absolutely optimal in IT%, ie

U(r®) = U(x'”) forall 7' € I,
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5 The optimality equation

In this section, we derive the optimality equation and consider its validity for optimiza-
tion. The proof is done by the “vanishing discounted factor” method, using Arzela-Ascoli
theorem (c.f. [5, 14]).

Theorem 5.1. Suppose that Assumptions A and B in Section 3 hold. Then, for any
o € [0,1], there exist constants ¥, ¥, and v,,7, : C(S) — C([0,M]) such that

(1) (Lo, Uer] D [, V] (5.1)
for any a,a (@’ < ) belonging to some countable subset dense in [0,1], and

(i) 2a(D) + ¥, = suppec(a){Bal(D X B) + v.(Qa(D x B))} (5-2)

(iil) Ta(D) + Vo = suppec(a){ Bal(D X B) +Ta(Qu(D x B))} (5.3)

for all D € C(S) and « € [0, 1].

It will be shown in Theorem 5.2 that [¥,,¥,] given in Theorem 5.1 is corresponding
to the a-cut of the maximum average fuzzy reward, so that (5.2) and (5.3) are interpreted
as the optimality equations for our average fuzzy decision model. For this purpose, we
need the following lemmas.

Lemma 5.1. For any @, € F.([0, M]), if i, = (=) on some subset F' dense in [0, 1],
then i = (=)rmn.

Lemma 5.2 (c.f. [6, 12]). Suppose that a family of subsets {Dq,a € [0,1]} satisfies the
following (i) and (ii) :

(1) Do C Dy for all @, /(0 < o' < a < 1),
(ii) limyie Do = Dy for all a € [0, 1].

Then, 3(z) = sup,epyia A Ip, ()}, = € S, satisfies § € F(S) and 3, = D, for all
a € [0,1].

__ Let denote by F' a countable subset on which (i) in Theorem 5.1 holds. For ¥, and
¥, given in Theorem 5.1, let, for any « € [0, 1],

VU= lim v Vo =y
o a’Tawitha'EF_al’ 0 =0

Ut .= lim T, UF.=1,.
a a'/Tawitha/€F o 0 0

Since the conditions (i) and (i) in Lemma 5.2 hold for the family {[¥7,¥{],a € [0,1]},
we can construct the fuzzy set ¥ by

U(z) := sup {aA lg-et)(2)} z €S
a€[0,1]



Theorem 5.2.
(i) ¥ = U(r®) for any 7 € IT%,.
(ii) If there exists a strategy = € I, such that
2o (D) + Lo = Ru(D % 7°(2, D) + 2(Qul(D % (2, D))
Ta(D) 4+ Uy = Bo(D x 7*(a, D)) + 5a(Qa(D x 7*(a, D)))
for all D € C(S) and o € [0,1], then 7** is absolutely optimal in IT%, i.e.,

U(7*) = U(x*®) for all 7 € .
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