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A utility deviation in
discounted Markov decision processes

with general utility
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Abstract. A utility treatment is studied in the framework of discounted
Markov decision processes. We will define a new index called a utility devia-
tion related to the risk premium, which is characterized by an iterative formula.

‘Examples are given in the quadratic and the exponential utility cases.

1. Introduction

This paper is concerned with the risk premium in finite Markov decision processes
(MDP’s) with general utility. In the utility theory, the risk premium for an arbitrary
risk is defined as expected monetary value minus the amount for which a decision
maker would exchange the risk, which presents a measure of aversion to the risk.

It is known by Fishburn[3] and Pratt[8] that the greater the risk aversion is, the
larger the risk premium is. Thus, for the utility analysis of a stochastic process, it is
meaningful to examine the risk premium associated with each policy in detail. For a
utility optimization of MDP’s, see our preceding paper [5] and [1, 2, 4, 7, 10, 11].

Here, in the framework of MDP’s with general utility we introduce a new in-
dex, called a utility deviation, by which the risk premium can be characterized also.
Differing from the risk premium, it is possible to approach the utility deviation by
an operator, which leads us to the analysis of the iterative formula and the fixed
point theory. The method employed here is closely related to the one in Sobel[10],
White[11] and Chung and Sobel[1].

Section 2 will define a utility deviation on an arbitrary risk and derive its relations
to the risk premium. Section 3 will prepare several notations and describe the problem
concerning with a utility deviation in MDP’s. Section 4 will show that an iterative

formula. supplied by MDP’s will characterize the utility deviation.



2. Risk premium and utility deviation

In Section 2, we shall define a utility deviation for an arbitrary risk and examine
its relations to the risk premium.

Consider a decision maker with a utility function g, where g is a Borel measurable
function from the set of real numbers to itself. A random variable B is called a risk,
if it is non-degenerate and both E(B) and E(g(B)) are finite. For a risk B, his risk

premium o = o(g, B) is given by
(2.1) g(E(B)—0) = E(9(B)).

The equality (2.1) means that he would be indifferent between receiv;mg the risk B
and receiving the amount E(B) — o (see Fishburn[3] and Pratt[8] in detail).
Now we shall define a new index (g, B) by

(2.2) w9, B) = E (9(B)) — 9 (EB)),

which will be called a utility deviation.

In the arguments of the present section, we need an assumption that the utility
function g is strictly increasing and continuous. The assumption assures that the
risk premium uniquely exists for B. In the following Lemma 2.1 and Propositions
2.1, 2.2, we assume this assumption, however it is not spelled out.

Lemma 2.1 shows a relation between the risk premium and the utility deviation.

Lemma 2.1. It holds that

(23) (9, B) = k(g™", 9(B))-
Proof. Since g is strictly increasing, o is rewritten by

a(g,B) = E(B) - g~ (E(9(B)))
= E(97'9(B)) — g7 (E(g9(B))) = w9, 9(B)).
O
Propositions 2.1 and 2.2 describe the relations among the class of functions for the
risk premium and the utility deviation. Pratt[8] gives several equivalent conditions

to Proposition 2.2(i) with the C?-class utility function. Proposition 2.1 easily follows

from Jensen’s inequality.
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Proposition 2.1.
(i) If g is (strictly) concave, o(g,B) > (>)0 and (g, B) < (<)0 for any risk B.
(i) If g is (strictly) convez, o(g,B) < (<)0 and x(g,B) > (>)0 for any risk B.
(iii) If g is linear, o(g,B) = k(g,B) = 0 for any risk B.

Let g1 and g, be the utility functions. According to Nielsen[6], g; is called less
risk averse than go if go(c) < F (g2(B)) holds for a risk B and a real number ¢, then
g1(c) < E(g:(B)). Notice that g(c¢) < E(g(B)) implies ¢ < g~'(E(g(B))), so that
o(g,B) < E(B) — ¢ is equivalent to g(c) < FE(g(B)). This fact will be used in the
proof of Proposition 2.2 bellow.

Proposition 2.2. The following (i)~(iv) are equivalent.
(i) (g1, B) < o(g2, B) for any risk B;

(i) x(gr", 01(B)) < k(g5 ", 92(B)) for any risk B;
(ili) gy is less risk averse than go;

(iv) g2 97" is concave.

Proof. Substitute ¢ = E(B) — o(gy, B) to o(g;, B) < E(B) — ¢ for i = 1,2. Then,
(iil) implies (i) from the equivalence described just before this proposition. (ii) is
equivalent to (iv), since they are equivalent to E(gag7  (B)) < gagi (E (l;’)) for any
B. The other proofs follow easily from (2.1), (2.2) and (2.3). a

3. Description of the problem

The previous section has shown the validity of the utility deviation on the risk B.
In this section, we shall define a utility deviation on MDP’s with the general utility.

We consider the standard MDP’s specified by (5, 4, P,r, 3), where S = {1,2, -,
N} is a finite state space, A is an action space, P = (pf;) is the matrix of transition
probabilities satisfying that pf; > 0, Xjeepf; = 1 for all i € S,a € A, r(i,a) is
an immediate reward function defined on S x A and $(0 < # < 1) is a discount
factor. Assume that A is a Borel set, r is bounded measurable and r(i,a) > 0 for all
1 € 5,a € A

The sample space is the product space = (S x A)* such that the projections
X, ¢ to the t-th factors S, A describe the state and the action of the process at time



t > 0, respectively. We treat only the randomized stationary policy, which is defined
by a conditional probability 7(-|7) on A for each i € S. The set of all randomized
stationary policies is denoted by II. Let Hy = (Xo, g, -+, Ap1, X;) for t > 0. We
assume that, for each 7 € Il with ¢ > 0,7,7 € S and a € A,

Prob(Ay = a|Hy—y, Ap—q, X = 1) = w(ali),
P’T’Ob(Xt+1 == let—h At—l,Xt - ’i, At - (l) - pg']

Then, the initial state ¢ € .S and the policy 7 € II determine the probability measure
PT on 2 by a usual way.

The present value of the state-action process (X,A) = {(X¢, Ay); t =0,1,2,---}
is defined by

BX,A = Z/Bt'f'(Xt, At)

=0

Let g be a utility function bounded bellow, evaluating the present value. Since

g(x) is equivalent to ag(z)+ b for any constants a > 0 and b, we may assume without
loss of generality that g is a function from the interval [0, 0o ) to itself.

We define the utility deviation k] of g for any initial state ¢+ and policy 7w € I by

(3.1) ki = Ef (9(Bx,a)) — 9 (Ef (Bx,a)),

where ET is the expectation with respect to P. Let the distribution functions of
Bxa fori e S be

(3.2) F(z) :== P[(Bxa <z) for z € [0,00).

k3

then, (3.1) is written by

(3.3) K = [ 9@ dbr@) g ([T adrr@).

Our problem is to give a characterization for the utility deviation ], which will

be investigated in the next section.

4. Characterization of utility deviation on MDP’s

In this section, the utility deviation will be characterized by an iterative formula.
The utility deviation 7 is given by (3.1) or (3.3) for each policy m € II and the
initial state 7 associated with MDP (S, A, P,r, 3) in the previous section. Suppressing
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this fixed 7 for the sake of brevity, we shall give several notations. For i € S, let

T = Z r(i,a)m(al7),

acA

= Zp?jw(ali) and

acA
p; = /Oooa:dF,-(x) where Fi(z) = F](x).

Note that ¢; represents the expected total discounted reward in case of a linear
utility function. Therefore the following is well known results in the theory of Markov

decision processes.

Lemma 4.1. (Ross[9]) The expected total discounted reward {p; : i € S} is the
unique bounded solution of the equation:

Pi :TH-ﬂZqijgaj for i1 €8S

JjES

The following result is given by Sobel[10] and will be used in the proof of Theorem
4.1 bellow.

Lemma 4.2. (Sobel[10]) For any © € I1 and i € S, it holds that

(4.1) quj //B)

JES

In order to characterize the utility deviation T by an operator on some family of

probability distributions, we prepare the following notations. Let
U := {(| G is the probability distribution on [0, Mj] },

where Mg := M/(1 — ) and M := supficg4eayr(i,a). Let £ := X;eg¥ be the
product space. Associated with each i € S is an operator 7% : £ — £ defined as
follows : For G(z) = (Gj(z) ; j€ S) € L, let

TH(G) = (T{@);; j€ S) and
TYG)j(z) = Gy ((z —13)/B) .

Since 0 < 7y < M and G; (Mg —13)/8) > Gi(Ms — M) /B) = Gj(Mg) = 1, it
follows (T%(G);; € S) € L. Then, the operator 7% is well defined. Notice from (4.2)
that T 7%. . T ((3),(z) means T% (T"- - ‘T(G)), (z) where T%-..T*((¥) € L.

(4.2)



We extend the domain of xT to £ component-wise: For G = (G;; 1 € S) € L, let
k(G) = (k(G;);i€S8) and

k(G;) = /OMﬁ g(z) dGi(z) — g (/OMBIE d(}'z-(m)).

The policy 7 determins F' = (Fj; ¢ € S) € L and (F) = (k(F;); i € S), where
Fi(z) = FF(z) is given by (3.2). It is clear from (3.3) and (4.3) that x(F;) = «] for
ies.

Now, the utility deviation x(F') is presented by an iterative formula in the follow-

(4.3)

ing theorem.

Theorem 4.1. For any fized © € 11, k(F) = (k(F;);i € S) satisfies the

following equations:
(4.4) K(Fy) = & + Yjes qijts (T(F);)  and
45) K (THT2 T (F);) = Biigy i + 3 @iy 6 (T2 TTHE);)
JES
for any i, i1, 19, -+ ,i, €S, n > 1, where »
8i = Xjes 4is9 (ri + Be;) — 9(pi) and
Bir iz, ini = Lojes Qg9 (Tia + Brig + -+ + B 'riy, + By + B ;)
—g (riy + Brig + - -+ + 577 ri, + Bp4)

Proof. We prove (4.5) in case of n = 1. The other cases are proved analogously.
By (4.2) and (4.3), we have

(4.6) K (T“(F)z) = /OMﬂ g(x) dY’il(P’)i(x) —g (/OMﬂ 2 dT" (F)Z(CL'))
Since T (F);(z) = F; ((z — nl)/ ), it holds from (4.1) that
T (F)ie) = Y 4 Fy (& = oy — Bri) /8%) = 3 ai3 (THT(F);) (@).

jeS jES
Therefore,

[ gy (e Zq”/ 9(@)d (TATH(F);) (@),

jES

/ xd(T“T’(F)j) (z) =iy + fri+ f%p; and
M, . i :
/0 ’ zdT(F)(z) =riy + By; .
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Using these facts, we get from (4.6) that
Kk (TH(F),) = jezsqz-j [ /0 " g(e)d (THTH(F);) (=)
| g ( | " d (o)) (x))}
+jeZqu-jg ( /0 Y (12 1(F),) (@)
g ( / o xdTil(F)i(x))

= > a4 (TOTH(F);) + &
j€s
which implies (4.5) in case of n = 1. \ O

The evaluation of x(F;) could be obtained iteratively using Theorem 4.1.
Corollary 4.1. Let mz(l) = g; and, forn > 1,

(nt+1) . _(n) 5
K’i T K"l + Z qi,i]qil,i2 T qin—laingi;ilyi%“'ﬂ:n'

i1,i2,in€S
If the utility g(x) is differentiable and |g'(z)| < L on [0, Mpg] for some L > 0, then
we get from (4.4) and (4.5),

IK(F}) — 6™ < B"MsL  for eachn > 1.

We shall give examples illustrating Theorem 4.1.

Example 1. Consider the case of g(z) = z%. Since k(F;) = xT = ET (B)?’A) —
(ET (BX,A))Q, the utility deviation is equal to the variance of the present value. In

this case, we get
K (TH(F);) = B (F})  and

8i = 2jes qiz(ri + 5%’)2 - 80?-
So, (4.4) becomes

(4.7) k() =&+ 0% qyw(Fy) for i€l

jes

Denoting g = (g; : i € .5), (4.7) is represented in the matrix form by

K(F)' =g'+ B°Q K(F),
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where ¢ means a transpose of the vector. Therefore,

K(F)' = (I -p*QI"'g",
which is the same expression as that obtained in Theorem 1 of Sobel[10].

Example 2. Consider the exponential utility case, i.e., gx(z) = 1 — exp(—Az)
for A > 0. The utility deviation will be denoted by x(}, F;) = ] with x(gx, Bx,a) =

(kT;1 € S). After some simple calculations, we get
K ()\, T’i(ﬁ’)j) = e Mig(BA, Fj)

and
gi — e“)“Pi _ Z q‘ije—ﬂA‘Pj

j€s
where g;; = gije~". So, (4.4) becomes
(4.8) kN F) =&+ Y Gn(BA, Fy)
j€s

for each 7 € S. Using (4.8), we can find the method of successive approximation for
obtaining k (A, F).
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