
On Relationship Between a Monotone Function
and the Set of its Prime Implicants in OBDD Size
単調関数とその主項集合を表す OBDD サイズの関係について

Kazuyoshi HAYASE (早瀬千善)*
Department of Information Science, University of Tokyo

(東京大学大学院理学系研究科情報科学専攻)

Abstract

A state-of-the-art method for two-level logic minimization has been proposed by Coud-
ert [3]. It uses OBDDs to represent not only Boolean functions but also the sets of their
prime implicants to overcome the explosion of the number of prime implicants [4]. This
method has been shown to be quite efficient in practical use but its computational com-
plexity has been scarcely clarified. In this paper, it is shown that there exists a monotone
function that has an $O(n)$ size DNF and an exponential lower bound in OBDD size, which
is a solution to open questions concerned with computational complexity in [3].

1 Introduction

Computing the set of prime implicants of
a Boolean function lies at the base of two-
level logic minimization, which has plenty of
applications in computer science. The well-
known Quine-McCluskey method is the pio-
neer of this problem and becomes a basis of
many previously known minimizers. Unfortu-
nately, it is well-known that there are many
Boolean functions in practical use which have
intractably large sets of prime implicants and
Quine-McCluskey based two-level logic min-
imizers fail to minimize them because these
methods compute the sets of prime implicants
explicitly.

OBDDs (Ordered Binary Decision Dia-
grams) [2] have been proved to be very useful

$*\mathrm{E}$-mail: hayase@is. s .u-tokyo.ac.jp

in many fields such as VLSI CAD, AI and
combinatorics. OBDDs have desirable prop-
erties to represent Boolean functions like:
(i) OBDDs are compact for many functions
in practical use, (ii) there is an efficient algo-
rithm for Boolean operations, e.g. AND, OR,
(iii) counting the number of satisfying assign-
ments of a function can be done efficiently,
and (iv) the smallest OBDD of a function is
uniquely determined.

Coudert et al. have proposed a new method
to overcome the explosion of prime impli-
cants by using OBDDs [4] and their mini-
mizer succeeds to minimize many logic cir-
cuits which could have never been treated
with other methods due to the large number
of prime implicants [3]. One of the key tech-
niques of Coudert’s method is that we can
process the set of prime implicants implicitly
by representing it with an OBDD and com-
putational complexity has relation to not the

数理解析研究所講究録
950巻 1996年 1-7 1

size of that set but the size of that OBDD.
As five questions have been left open in [3],
however, computational complexity of this
method is scarcely clarified. Followings are
two of these questions: “What is the rela-
tion between the size of a sum-of-products
and the size of the BDD of the function it
represents?” and “What is the relation be-
tween the size of a BDD and the size of the
CS (Combinational Set) of the set of its prime
implicants?”, where CS is a kind of OBDD
which had been originally proposed in [6] and
called $0- \mathrm{S}\mathrm{u}\mathrm{p}- \mathrm{B}\mathrm{D}\mathrm{D}$ (0-suppressed BDD).

In this paper, we will discuss this problem
in the class of monotone (or unate) functions
to make our argument not only simple but
also extensible to general Boolean functions.
At first, relationship in OBDD structure be-
tween a function and its prime implicants
will be described. Later, we will give a so-
lution to the two questions by showing that
there exists a monotone function which has
an $O(n)$ size DNF (Disjunctive Normal Form)
and an exponential lower bound in OBDD
size, though the second question is still left
open partially.

2 Preliminaries

2.1 Monotone Boolean Func-
tion and Prime Implicant

We adopt the class of monotone Boolean
functions as an analyzing tool for discussing
computational complexity of the OBDD-
based method for implicit computation of
the set of prime implicants. Here we give
some definitions and well-known properties of
monotone functions.

A Boolean function $f:\{0,1\}^{n}arrow\{0,1\}$ is
assumed to have its variable set as $X=$
$\{x_{1}, x_{2}, \ldots X_{n}\}$. $[f, a]$ denotes the value or
subfunction of f obtained by applying a truth

assignment a . For simplicity we denote truth
assignments even by bit strings. The satis-
fying set of a function f , which is denoted
by f^{-1} , is the set $\{a\in\{0,1\}^{n};[f, a]=1\}$.
We often use f_{j} (j $=0$ or 1) to denote
the subfunction $[f, \{x_{i}:=j\}]$ for readabil-
ity. A Boolean function f is called pos-
itive (negative) monotone in a variable x_{i}

if $(f\mathrm{o})^{-1}\subseteq(f_{1})^{-1}$ $((f_{1})^{-1}\subseteq(f_{0})^{-1})$. f

is called monotone (or unate) if it is pos-
itive or negative monotone for all variables
x_{i} in X. f is called positive if it is positive
monotone for all variables. In place of gen-
eral monotone functions, we often consider
only positive functions without loss of gen-
erality. Next we define prime implicants of
a Boolean function. A product p is a con-
junction of some literals which are made from
different variables each other. The satisfy-
ing set of a product p is defined as the set
$p^{-1}:=\{a\in\{0,1\}^{n};[p, a]=1\}$. A product p

is an implicant of f if $p^{-1}\subseteq f^{-1}$. $p^{-1}\subseteq q^{-1}$.
An implicant p is called a prime implicant of
f if any other implicant q is not greater than
p , that is, $p^{-1}\not\in q^{-1}$. We denote the set
of all the prime implicants of a function f by
$PI(f)$. A prime implicant p is called essential
if it is not covered by other prime implicants,
that is, $p^{-1} \not\in\bigcup_{q\in PI}(f)-\{p\}q^{-1}$. Monotone
functions have the following desirable prop-
erties.

Proposition 2.1 Any prime implicant of a
monotone function f is essential. The small-
est DNF (or sum-of-product form) of f is
uniquely determined and furthermore it is
built out of all the prime implicants of f . \square

Proposition 2.2 f is positive (negative)
monotone in x_{i} if and only if any prime im-
plicant of f has no literal $\neg x_{i}(x_{i})$. \square

We give decomposition of a function f and
the set of its prime implicants $PI(f)$ in or-
der to understand the structure of OBDDs.

2

The well-known Shannon’s expansion shows
the relationship of a Boolean function f with
the two subfunctions concerning a variable x_{i} .

$\mathrm{f}=$ ($\neg \mathrm{x}_{1}$ A $\neg \mathrm{x}_{3}$) ${ }$ (x_{2} A x_{3}) ${ }$ (x_{1} A $\neg \mathrm{x}_{2}$)

$f=(\neg x_{i}\wedge f0)\mathrm{v}(x_{i^{\wedge f_{1}}})$ (1)

Some notation is necessary before stating
a previously known decomposition of prime
implicants. We define the product $l\wedge S$ be-
tween a literal l and a set of products S , as
the set T of products which are the conjunc-
tions l with any elements in S , that is, $T:=$

$\{p;p=l\wedge q, q\in S\}$. $PI(f)$ is known to be
expanded by a variable x_{i} as follows [7, 1, 4]:

$PI(f)=$ $PI(f_{1}\wedge f\mathrm{o})$

\cup
$\neg x_{i}$ A $(PI(f_{0})\backslash PI(f_{1}\wedge f_{0}))$

\cup
x_{i} A ($PI(f_{1})\backslash PI$ (f_{1} A f_{0})) (2)

2.2 QOBDD

In this section, we briefly describe OBDDs.
An OBDD is a labelled directed acyclic graph
with a root [2] to represent a Boolean func-
tion. Each non-terminal node v has two out-
going edges and is labelled by a Boolean vari-
able label $(v)\in X$. There is a total order π

on the variable set X called variable order-
ing. We assume that $\pi=x_{1}<\ldots<x_{n}$ un-
less otherwise specified. Each directed path
follows π in the sense that label $(u)<label(v)$

if it contains an edge u to v .
By sharing isomorphic subgraphs, OBDD

is known to be determined uniquely for a
Boolean function and a variable ordering [2].
QOBDD (Quasi-reduced OBDD, figure 1) is
obtained by applying the following rule max-
imally with the restriction that any directed
path from the root to a terminal node con-
tains just $n+1$ nodes. “If the two subgraphs
rooted by two nodes u and v are isomor-
phic, redirect all incoming edges of u to v and
delete $u.$

” To analyze the size of QOBDD, we
consider the width of each level. The width

Figure 1: An Example of QOBDD

$W(D)_{l}$ of QOBDD D in level l is the number
of the nodes which are labelled by the l-th
variable of the variable ordering.

Proposition 2.3 The width $W(D)_{l}$ of func-
tion f is the number of the subfunctions which
are obtained by applying any truth assign-
ments $a\in\{0,1\}^{\iota-1}$ to $x_{1},$ $x_{2},$ $\ldots,$ x_{l-1} , that
$\dot{i}S$,

$W(D)_{l}=|\{[f, a];a\in\{0,1\}^{l}-1\}/=|$

\square

Corollary 2.1 Let $\chi(S)$ be the characteris-
tic function of a family S of subsets of X .
The width $W(D)_{l}$ of $\chi(S)$ is at most the num-
ber of subsets $|S|+1$ for each l .

$C_{onSeqen}utly\square$’

the size $|D|$ is at most $n(|S|+1)$.

3 QOBDD of $\chi(PI(f))$

In this section we treat the QOBDD of the
characteristic function of the set of prime im-
plicants of a positive function f . As we treat
only positive functions, we can take into con-
sideration only positive literals thanks to the
proposition 2.2. Now we define the character-
istic function $\chi(PI(f))$. We denote the pos-
itive product $p(a)$ which a represents. For
example, $p(a)=x_{1}\wedge x_{3}$ is represented by
$a=[1010]$.

3

Definition 3.1 For a positive function f ,
the characteristic function $\chi(PI(f))$ of $PI(f)$

is defined on X such that $\forall a\in$ $\{0,1\}^{n}$,

$\coprod[\chi(PI(f)), a]=1$ if and only if $p(a)\in PI(f)$.

3.1 OBDD Structure of f and
$\chi(PI(f))$

Owing to (2), we can construct a recursive
procedure PRIME-POSITIVE to translate
the QOBDD D of a positive function f into
the QOBDD D_{χ} of $\chi(PI(f))$. This procedure
calls internally another recursive procedure
DIFF (v_{1}, v_{2}) which computes the Boolean op-
eration $F(v_{1})\wedge\neg F(v_{2})$, where $F(v)$ denotes
the subfunction represented by the node v .
Conversely, we can translate D into D_{χ} by
a similar procedure SUM-UP which uses not
DIFF but OR internally.

procedure $\mathrm{P}\mathrm{R}\mathrm{I}\mathrm{M}\mathrm{E}- \mathrm{p}\mathrm{o}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{v}\mathrm{E}(v)$

begin
if v is terminal then return it;

$p_{0}:=\mathrm{P}\mathrm{R}\mathrm{I}\mathrm{M}\mathrm{E}-\mathrm{P}\mathrm{o}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{V}\mathrm{E}(edge(v, 0))$;
$p_{1}:=\mathrm{P}\mathrm{R}\mathrm{I}\mathrm{M}\mathrm{E}-\mathrm{P}\mathrm{o}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{V}\mathrm{E}(edge(v, 1))$;
return Get $(label(v),p_{0},\mathrm{D}\mathrm{I}\mathrm{F}\mathrm{F}(p1,p\mathrm{o}))$;

end;

Simple Boolean operations between two
OBDDs D_{1} and D_{2} can be done in quadratic
time of the size of OBDDs by using a 2-
dimensional array [2] which is called com-
puted table in literature. Still more, each
node in the resultant OBDD can be regarded
as a pair of nodes from D_{1} and D_{2} . How-
ever in the case of PRIME-POSITIVE, the
time complexity can not be bounded by poly-
nomial even if we use the computed table
although the number of recursive calls to
PRIME-POSITIVE can be reduced to the
size of the operand OBDD thanks to the com-
puted table. The reason is that it calls an-
other operation DIFF internally and DIFF

may take nodes those which was not in the
operand OBDD but which have been made
by previously called DIFF’s, as its operands.
In fact, we can prove the next theorem which
describes a node of D_{χ} in terms of those of D .
It would be an indirect evidence of exponen-
tial time complexity of OBDD-based compu-
tation of $\chi(PI(f))$.

We need a kind of division of $PI(f)$ by
a partial assignment a . This is the set
of products represented by the subfunction
$[\chi(PI(f)), a]$. Let $a\in\{0,1\}$ be a truth as-
signment of length l , and a_{i} represent the
\dot{i}-th bit of a . We denote the set of on-bits
of a by $I(a)$. For example, if $a=$ [1010],
$I(a)=\{1,3\}$. Conversely, for a positive
product $p,$ $A(p)$ means the smallest satisfying
truth assignment. For example, $p=x_{1}\wedge x_{3}$

makes $A(p)=[1010\ldots 0]$. It should be noted
that if f is positive and $[f, A(p)]=1$ then p

is an implicant of f . If a_{i} is in $I(a),$ “
$a-a_{i}$

”

means another truth assignment which is dif-
ferent from a only at the \dot{i}-th bit, otherwise
it is not defined. Again if $a=$ [1010] then
$a-a_{1}=[0010]$ but $a-a_{2}$ is not defined. Let
$PI_{a}(f)$ be the set of prime implicants which
agree with a from x_{1} to x_{l} . In other words,
$PI_{a}(f):=\{p\in PI(f);p$ contains x_{i} if and
only if $a_{i}=1,$ $(1\leq\forall\dot{i}\leq l)\}$. We define
the division $PI(f)/a$ as the set of products
which are made from products in $PI_{a}(f)$ by
extracting the parts of $x_{l+1},$ \ldots , x_{n} . Namely,

$PI(f)/a:=\{[p, a];p\in PI_{a}(f)\}$.

Theorem 3.1 $PI(f)/a$ consists of prime
implicants of the subfunction $[f, a]$ which
are not prime implicants of any subfunction
$[f, a-a_{i}]$ for $a_{i}=1$. That is to say,

$PI(f)/a=PI([f, a]) \backslash (\bigcup_{i}\in I(a)IP([f, a-ai]))$

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}\cdot$. (\subseteq) Let a product p be in $PI(f)/a$

and p A $p(a)$ be an element of $PI_{a}(f)$. If p

is not a prime implicant of $[f, a]$, then there

4

exists another implicant q of $[f, a]$ such that
$p^{-1}\subset q^{-1}$. $q\wedge p(a)$ is also an implicant of
f because f is positive. Otherwise, if p is a
prime implicant of $[f, a-a_{i}]$ for some $\dot{i}\in I(a)$,
then $p_{2}:=[p\wedge p(a), \{x_{i}:=1\}]$ is also an
implicant of f .
(\supseteq) Let a product p be an element of
“

$PI([f, a] \backslash \bigcup_{a_{i}\in I(}a)([f, a-ai]),$
” and $p\wedge p(a)$

be not a prime implicant of f . Then there
exists a literal x_{i} of $p\wedge p(a)$ and another im-
plicant q of f such that difference between p

and q is only x_{i} . (i) if x_{i} is not included in q ,
$[q, a]$ is an implicant of $[f, a]$ greater than p .
(ii) otherwise, $[q, a-a_{i}]=p$ is an implicant of
$[f, a-a_{i}]$. (ii-a) if there is another implicant
r of $[f, a-a_{i}]$ greater than $p,$ r is also an im-
plicant of $[f, a]$ because f is positive. (ii-b)

$\square p$

is prime in $[f, a-a_{i}]$, otherwise.

From viewpoint of QOBDD, the sub-
function $[\chi(PI(f)), a]$ represented by the
node reached along a is equal to the next
function:

$\chi(PI([f, a]))\wedge\neg(\mathrm{v}i\in I(a)x(PI([f, a-ai])))$

(3)
In other words, the node reached along a of

length l in D_{χ} can be regarded as an $I(a)+1-$

tuple of $\chi(PI([f, a’]))_{\mathrm{S}}’$. Thus it would not
be a wild estimation that the width $W(D_{\chi})_{l}$

can become exponentially larger than the
width $W(D)_{l}$ because the number of all the
$\chi(PI([f, a’]))_{\mathrm{S}}$

’ is equal to $W(D)_{l}$ by corol-
lary 2.1.

Now we consider reverse relation. As we
can see from theorem 3.1, $PI(f)/a$ is stolen
some information on the subfunction $[f, a]$

by $PI(f)/(a-a_{i})’ \mathrm{s}$ and they are also stolen
some information by $PI(f)/(a-ai^{-}a_{j})_{\mathrm{S}},’,$ \cdot

We would have to consider all the $PI(f)/a\mathrm{s}$

such that a^{l} is smaller than a , this time.

Theorem 3.2 The subfunction $[f, a]$ is de-
scribed by the conjunction of all the products

in $PI(f)/a’$ for all $a^{l}\leq a$, that is,

$[f, a]=_{a’\leq a}(\mathrm{V}_{p/a}\in PI\prime p)$.

Sketch of proof\cdot. We can prove that any
products in $PI(f)/a^{l}$ is also an implicant of
$[f, a]$ and that for any supplemental assign-
ment b of length $n-l$ such that $[f, a\cdot b]=1$,
there exists a product q in $PI(f)/a^{l}$ such that
the first l bits of $A(q)$ is equal to $a’$. \square

In this case, the node reached along a par-
tial assignment a in D can be regarded as a
$2^{I(a)}+1$-tuple of $PI(f)/a” \mathrm{s}$, which also gives
us a negative intuition that $W(D)_{l}$ might be-
come exponentially larger than $W(D_{\chi})_{l}$. In
fact, the next section exemplifies this intu-
ition.

3.2 Solution to Coudert’s
Open Questions

It is pointed out that the size of the
QOBDD D_{χ} of $\chi(PI(f))$ and that of the
QOBDD D of f can differ exponentially for
a variable ordering so far. In this section,
we show existence of a monotone function
where the size of D has an exponential lower
bound in that of D_{χ} indeed. This implies
an exponential lower bound of time complex-
ity for SUM-UP. This fact also gives a solu-
tion to the two open questions of Coudert [3]
presented in introduction, although the sec-
ond question is still left open partially. This
function has another important property that
exponential relation holds even if we allow
these two QOBDDs to have arbitrary differ-
ent variable orderings respectively. It should
be noted that size of a QOBDD is sensitive
to variable ordering, and that there exists
a function whose size changes exponentially
due to variable ordering.

We treat a characteristic function of a fam-
ily of vertex sets in a simple undirected graph

5

G . A vertex set S is independent if it contains
no adjacent pair of vertices. The negation
of the characteristic function of independent
sets is: $\neg\chi(IS(c))=_{(x_{i},x_{j})\in E}(x_{i}\wedge x_{j})$. Our
investigation is a sequence of mesh graphs
$\{M_{k}\}$ whose example is given in figure 3.2^{1}.
$\neg\chi(IS(M_{k}))$ can be expressed by an $O(n)$ size
positive $2\mathrm{D}\mathrm{N}\mathrm{F}$ because M_{k} has only $O(n)$

edges. Thus we have $O(n^{2})$ size QOBDD
D_{χ} of $\chi(IS(M_{k}))$ for any variable ordering
by corollary 2.1. Now we show an expo-

Figure 2: The mesh graph M_{k}

nential lower bound on D of the function
$\neg\chi(IS(M_{k}))$ for arbitrary variable ordering π .
By using same argument in [5], any subset A

of vertices such that $|A|=n/2$ has at least
$k/2$ of adjacent vertices outside of it, which
we denote by C.

Lemma 3.1 For any vertex subset A of M_{k}

such that $|A|=n/2=k^{2}/2$, the set C defined
above satisfies $k/2\leq|C|$. \square

Furthermore, we can find a sufficiently
large subset B of A called path collection
which has the following properties: (i) any
vertex u in B has an adjacent vertex in C.
(ii) any pair of two different vertices u and
v in B , they do not share any adjacent ver-
tex in C. (iii) the degree of the subgraph
$M_{k}(B)$ (subgraph induced by B) is at most
2. (iv) the subgraph $M_{k}(B)$ has no cycle.

1Though we only show the case of the number of
vertices (or variables) n is equal to k^{2} for some posi-
tive integer k , this argument can be expanded to ar-
bitrary positive integer n by ignoring some variables.

Lemma 3.2 There exists a path collection B

which contains at least $3k/640$ vertices.

Sketch of proof: We construct B in three
steps. (Step I): A greedy algorithm can find
a subset $B’$ of A which satisfies the proper-
ties of (i) and (ii). In this step, we consume
at most 40 vertices of C per vertex of B^{l} .
(Step II): We remove at most half of $B’$ to
find $B”$ satisfying (iii). (Step III): We re-
move at most quarter of $B”$ to find B . It
should be noted that our construction uses
property of M_{k} like that the degree is four
and that a cycle has at least four vertices. \square

The positive $2\mathrm{D}\mathrm{N}\mathrm{F}$ also confirms the fact
that any two different truth assignments a_{1}

and a_{2} to A such that (i) $v:=0$ if $v\in A-B$,
and that (ii) keep independent set condition
in B , induce different subfunctions. The next
follows from this fact.

Lemma 3.3 $W(D(\neg\chi(IS(Mk))))n/2$ is at
least the number of independent sets in the
path collection B. It also equals to the arith-
metic product of the numbers of independent
sets in all the simple paths in B . \square

The number of independent sets in a simple
path has an exponential lower bound.

Lemma 3.4 Let $\{F_{m}\}$ be a Fibonacci num-
ber sequence defined by $F_{1}:=2,$ $F_{2}:=3$ and
$F_{m}:=F_{m-1}+F_{m-2}$ for $m\geq 3$. There exist
just F_{m} independent sets in a simple path

$of\square$

m vertices.

To sum up, we have the following.

Theorem 3.3 There exists a monotone
function f which has an $O(n)$ size DNF_{f} and
an exponential lower bound in OBDD size for
arbitrary variable ordering. Furthermore, the
set of its prime implicants can be expressed by
polynomial size OBDD of $\chi(PI(f))$ for arbi-
trary variable ordering. \square

6

4 Conclusion Acknowledgement

We have investigated relationship in
OBDD size between a monotone function and
the set of its prime implicants to give some
insights into computational complexity issue
of the implicit prime computation in [4].

We have shown relationship of OBDD
structure between a monotone function and
the characteristic function of the set of its
prime implicants from which we could imag-
ine that the time complexity of OBDD-based
implicit prime computation to be exponen-
tial. Furthermore, we have found a mono-
tone function which has a linear size DNF
and can not be represented by a polynomial
size OBDD whose existence had been sus-
pected by Coudert in [3]. This example also
becomes a partial solution to another open
question, that is, there is a Boolean function
which can not be represented by a polynomial
size OBDD, while the set of prime implicants
can be expressed by polynomial size OBDD
for arbitrary variable ordering. Our future
works are:

\bullet Find a converse example to $\neg\chi(IS(M_{k}))$

to show an exponential lower bound for
time complexity of PRIME-POSITIVE,
or show a polynomial upper bound on
OBDD size of $\chi(PI(f))$ in that of f .

\bullet The QOBDD of maximal independent
sets of M_{n} , or equivalently, that of
$\chi(PI(\chi(IS(M_{k}))))$ has an exponential
size QOBDD if we choose variable or-
dering as row-major. In other words,
it has almost same size as $\chi(IS(M_{k}))$

in a sense. Still more it is easy to see
that $f,$ $\neg f$ and f^{d} (dual of f) has the
same size of QOBDDs. Then it would
be natural to have interests in relation-
ship among QOBDDs of $f,$ $\chi(PI(f))$ and
$\chi(PI(\neg f))$.

The author would like to thank Associate
Professor Imai and members of his laboratory
for their helpful discussions and comments to
this work.

References

[1] R. Brayton, G. Hachtel, C. McMullen,
and A. Sangiovanni-Vincentelli. Logic
$M\dot{i}nim\dot{i}Zat_{\dot{i}on}$ Algorithms for VLSI Syn-
thesis. Kluwer Academic Publishers,
1984.

[2] R. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE
Transactions on Computers, Vol. C-35,
No. 8, pp. 677-691, 1986.

[3] O. Coudert. Doing two-level logic min-
imization 100 times faster. In Proc.
ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 112-121, 1995.

[4] O. Coudert and J. Madre. Implicit and in-
cremental computation of primes and es-
sential primes of Boolean functions. In
Proc. 29th $ACM/IEEE$ DAc, pp. 36-39,
1992.

[5] R. J. Lipton, D. J. Rose, and R. E. Tarjan.
Generalized nested dissection. SIAM J.
Numer. Anal., 1979.

[6] S. Minato. Zero-suppressed BDDs for set
manipulation in combinatorial problems.
In Proc. 30th A $CM/IEEEDAo$, pp. 272-
277, 1993.

[7] E. Morreale. Recursive operators for
prime implicant and irredundant normal
form determination. IEEE Transactions
on Computers, Vol. C-19, No. 6, pp. 504-
509, 1970.

7

