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Abstract
In a seminal paper, Barrington [Bar89] showed a lovely result that, for all non-
solvable groups G, a Boolean circuit of depth d can be simulated by an M-
“program of length at most (4|G|)? working over G. In this tiny note, we improve
the upper bound on the length from (4|G|)? to 49.

1. Preliminaries

We assume that the readers are familiar with Boolean circuits. We only note that our
circuits consist of NOT-gates, AND-gates with fan-in two, OR-gates with fan-in two, and
input gates with each of which a Boolean variable is associated. In this section, we first give
the definition of M-programs over groups.

Definition 1.1. Let G be a group and n a positive integer. We define an monoid-
instruction(M-instruction for short) 4 over G to be a three-tuple (7, a, b) where i is a positive
integer, and both a and b are elements in G. We define an monoid-program(M-program for
short) P over G to be a finite sequence (¢1, a1, b1), (i2,az,b2), .. ., (¢, ax, by ) of M-instructions
over G. For this M-program P, we call the number of M-instructions the length of P and
denote it with £(P). Furthermore, we call the maximum value among 41,43, ..., % the input
size of P and denote it with n(P).

We suppose the M-program P to compute a Boolean function in the following manner.
Let n be the input size of P and let & = (z1,%2,...,2,) € {0,1}" be a vector of Boolean
values that is given as an input to P. Then, we define the value of an M-instruction
v; = (¢,a;,b;), denoted by v;(Z), as follows:

o )oa; ifx;=0

7‘7(37)_{ bj lf:IZJ=1 )

We further define the value P(Z%) of the M-program P by P(Z) = y1(Z)Y2(%) - - - v&(Z). Then
we say that P computes a Boolean function f : {0,1}* — {0,1} if, for all # € {0,1}", if
f(Z) = 0, then P(Z) = eg, and otherwise, P(Z) # eg, where eg denotes the identity element
of G. ®

__We further assume that the readers are familiar with elementary notions in group theory.
Thus, we-only give a breif definition for the nonsolvability of groups.
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Definition 1.2. Let G be any finite group. For any two elements a,b of G, we define the
commautator of a and b to be the element represented as a='b7'ab and denote it by [a,d].
We further define the commutator subgroup of G to be the subgroup of G generated by all
the commutators, and we denote it by D(G). Then, we inductively define D;(G), for all
integers ¢+ > 0, as follows: Do(G) = G, and for all + > 1, D;(G) = D(D;_1(G)). We say
that G is solvable if D;(G) = {eg} for some 1 > 0, where e¢ denotes the identity element
of G. If G is not solvable, we say that it is nonsolvable. It is easy to show that D,.;(G) is
a subgroup of D;(G) for all ¢ > 0. Hence, we see that G is nonsolvable if and only if there
exists a subgroup H such that H # {eg} and H = D(H). We will use this fact later.

2. An improvement of Barrington’s result

To show our result, we use the following lemmas. The first lemma was implicitly used
by Barrington in order to show that for all circuits C' of depth d, the Boolean function
computed by C can be computed by an M-program of length at most 4 working over the
alternating group of degree 5.

Lemma 2.1. Let G be a finite group and let eg be the identity element of G. Suppose that
there exists a subset W of G such that W # {eg} and for all elements w € W, there are two
elements a,b € W with w = [a,b]. Moreover, let w be an arbitrary element of W. Then, for
all Boolean circuits C of depth d, there exists an M-program P, over G that satisfies the
conditions below.

(1) P, is of length at most 4¢ and is of the same input size as C.

(2) For all inputs & € {0,1}" where n is the input size of both C and P, P,(Z) = eg

if C(Z) =0, and P,(Z) = w otherwise.
Proof. We show this lemma by an induction on the depth of a given circuit C. When the
depth of C' is 1 (that is, the Boolean function computed by C is either an identity function or
its negation), it is obvious that an M-program consisting of single M-instruction computes
the same function. Thus we have the lemma in this case.

Now assume, for some d > 1, that we have the lemma for all Boolean circuits of depth
at most d and all elements w € W. Suppose further that C is of depth d + 1, it is of input
size n, and g is the output gate of C. We below consider three cases according to the type
of the gate g¢.

Suppose g is a NOT-gate. Let h be a unique gate that gives an input value to g and let
C}, denote the subcircuit of C' whose output gate is A. Then, by inductive hypothesis, there
exists an M-program (),, that satisfies the following conditions.

(3) Q. is of length at most 4¢ and is of input size at most n.

(4) For all inputs & € {0,1}", Q,(Z) = eg if Cx(Z) =0, and Q,(Z) = w otherwise.
From this Q,,, we construct an M-program @), -: such that: '

(5) Q-1 is of length at most 4¢ and is of input size atmost n, and

(6) for all inputs £ € {0,1}*, Q,1(Z) = eg if Ch(Z) = 0, and Q,—:(Z) = w!
otherwise. '
To construct @),-1, we may first replace each M-instruction (z;,a;, b;) by (z;, aj‘l, b;l) and

may further reverse the sequence of those M-instructions. Finally, we define P, to be an
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M-program obtained from @Q,-1 by replacing its first M-instruction, say (i, ¢1,d;), with
(¢1,wey, wdy). Then, we can easily see that P, satisfies the conditions (1) and (2) above.
Suppose next that g is an AND-gate (with fan-in two). Let h; and h, are gates of C' that
give input values to g, and let C; and C; denote the subcircuits of C' whose output gates
are hy and h, respectively. Furthermore, let @ and b be elements of W such that w = [a, b].
Then, by inductive hypothesis, we have two M-programs @, and @), such that:
(5) both @, qand @, are of length at most 4% and they are of input size at most n,
and |

(6-1) for all inputs Z € {0,1}", Q.(Z) = eg if C1(Z) = 0, and Q,(Z) = a otherwise, and
- (6-2) for all inputs Z € {0,1}", Qu(Z) = eg if C2(&) = 0, and Q4(Z) = b otherwise.

Then, we define P, by P, = Qu-1,Qp-1, Qa, s, Where Qy—1 and ()y-1 denote M-programs
obtained from (), and @), respectively, by using the same method as mentioned in the above
paragraph. It is not difficult to see that P, satisfies the conditions (1) and (2) above. Thus
we have the lemma in this case.

Suppose g is an OR-gate. In this case, we can obtain a desired M-program by using De
Morgan’s Law and the technique mentioned above. We leave the detail to the reader. &

From this lemma, we may show that any finite nonsolvable group has a subset W satisfing
the conditions mentioned above. We below show this. Then, we can immeidiately obtain
our result mentioned in the abstract section.

The following lemma is obtained by a simple calculation.

Lemma 2.2. Let G be any finite group and let a, b, ¢ be any elements in G. Then, we have

the following equations.
(1) ¢ Ya,blc = [ctac,c7 ).  (2) [ad,c] = b7 a,c)b[b,c].  (3) [a,bc] = [a,c|ca,bc
®

By using the above equations repeatedly, we can easily obtain the following lemma. We
leave the detailed proof to the interested reader.

Lemma 2.3. Let G be any finite group, let V be a subset of G such that V =, 97 'Vy,
and let ay,...,a, by,..., b, be any elements of V. Then, the commutator [a; - - - ag,b; - - - by, ]
is represented as a product of commutators of elements in V. ®

Lemma 2.4. For all finite nonsolvable groups G, there exists a subset W of G such that
W # {eg} and for all w € W, there are two elements a,b € W with w = [a, b], where eg
denotes the identity element of G.

Proof. Let H be a subgroup of G satisfying that H # {eg} and H = D(H). Such a
subgroup surely exists since G is nonsolvable. Furthermore, let S be a subset of H that
generates H, and let us define U by U = U,¢q 97" Sg. Then, we inductively define a subset
V; of G, for all integers z > 0, as follows.

Vo=U, Vi={la,b] : a,beV,_1} (z2>1).

We below observe that for each ¢ > 0, (i) Vi = Uyeq 97 Vig, and (ii) V; generates H, by
induction on i. From the definition of U = Vj, it is obvious that Vj satisfies (i). Moreover,
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Vo generates H since it includes all elements in S. Assume V] satisfies (i) and (ii). Since H =
D(H), each element h in H is represented as a product, say [h1 1, k1 2|[h21,h22] - - - [RE1, RE2],
of commutators of elements of H. Moreover, since V; generates H, each h; ; is represented
as a product of elements in V;. Hence, the element A is represented as a product of elements
of the form [a; ---ak,b;...b,] where each @; and each b; are elements in V;. Then, from
Lemma 2.3 and the inductive hypothesis that V; satisfies (i) above, we have that h is
represented as a product of elements in V,;;. Thus V,;; generates H. From Lemma 2.2(1)
and the inductive hypothesis, it follows that V;;; satisfies the condition (i) above.

Since each V; is a subset of G which is finite, there exists two integers 7,7 > 0 such that
i < j and V; = V,. Then, we define a desired set W by W = Uf;ﬁ Vi. Since H # {eg} and
each V; generates H, we have W # {eg}. Moreover, from the definitions of each V; and W,
we see that for all w € W, there are two elements a,b with w = [a,b]. Thus we have the
lemma. ®

Combining Lemma 2.4 with Lemma 2.1, we immediately obtain the following theorem.

Thoerem 2.5. Let G be any finite nonsolvable group and C' any circuit of depth d. Then,
the Boolean function computed by C' is computed by an M-program over G of length at
most 49. ®

3. Concluding Remarks

In [CL94], Cai and Lipton imporved Barrington’s result on the alternating group of
degree 5. They showed that any circuit of depth d can be simulated by an M-program over
the group of length at most 2*¢ where A = 1.81.... However, it is unknown whether their
result holds for all nonsolvable groups. They further showed a lower bound on the length
of M-programs over groups: for any group G and any M-program P over G, if P computes
the conjunction of n Boolean variables , then it must be of length at least Q(nloglogn).
Hence, any M-program over any group simulating a circuit of depth d must have length
asymptotically greater than 2¢.

In [Cle90], Cleve showed that for any constant ¢ > 0, a circuit of depth d can be
simulated by a bounded-width branching program of length 2(%)¢_ It would be interesting
to ask whether the same result holds for M-programs over groups.
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