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Wagnar parsimony criterion
= The criterion of maximum parsimony
Most Parsimonious Reconstruction (F&i#I1&c)

MPR [iE

The problems are as follows : for a given el-tree T'

determine L*(T),

find any one MPR on T,

enumerate all MPRs on T,

obtain the MPR-sets for all internal nodes in T,
problems on the ACCTRAN reconstruction on (7%, r),
problems on the DELTRAN reconstruction on (7,r),
problems on the MPR-poset (Rmp(T), <),
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Ha-Na-Mi algorithm ([4]) 225

The key Lemma 1, Lemma 2 and Theorem 1 ([6]) Z#& T
Ha-Na algorithm ([6]) ~.
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The Result for the computational complexties

Problem Complexity Order
No Ha-Na-Mi Ha-Na
1 n n
2 n n
3 exp. exp.
4 n? n

7 : The number of nodes

The key points

f Two pass algorithm
The first pass : Bottom-up
The second pass : Top-down

f The i-th smallest number selection
The median 2 points of 2n numbers
The median 4 points of 2n numbers

Notations

i Q := the set R of real numbers

or the set N of nonnegative integers
faneltree T=(V:VoUVy, E,0)

g:Vo—Q

Vo := the set of leaves

Vi := the set of internal nodes

# a reconstruction on T := an assignment A : V — Q (A\|Vp = o)
f T|\ := an el-tree T' under the reconstruction A

#f the length l(e) of a branch e = {u, v} in T|X := |A(u) — A(v)|
# the length L(T|\) := X .cxl(e)
f L*(T) = min{L(T|\) | ) is a reconstruction on T}

#f an MPR (Most Parsimonious Reconstruction) on an el-tree T
:= a reconstruction A (L(T|\) = L*(T))
#f Rmp(T) := the set of all MPRs on an el-tree T

#f The MPR-set S, of a node u := {A(u) |\ € Rmp(T)}
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1 Introduction

For over a century, biologists have attempted to infer the evolutionary trees whose leaves
are present day species. When constructing a tree, points of interest are the topology,
when the transformation occurred, the length of the branches as well as the length of
the tree itself. In the last four decades, the mathematical and algorithmic aspects of tree
construction have been investigated.

Recent development of the theory of phylogeny enables scientists to estimate more pre-
cisely the evolutionary history of organisms. One of the main points of research is the
reconstruction of ancestral character states on a given phylogeny under the criterion of
maximum parsimony. This is known as character state optimization. Which basically
means that character states are assigned to the internal nodes of a phylogenetic tree so as
to minimize the total amount of evolutionary change, that is the length of the tree.

In phylogenetic analysis the optimization problem of assigning character states to the
hypothetical ancestors of an evolutionary tree under the principle of maximum parsimony is
known as the Most Parsimonious Reconstruction problem (MPR-problem). The biological
and cladistic implications of this problem are beyond the scope of this paper. Rather
we examine the mathematically formulated problem from a combinatorial point of view.
In general, the MPR-problem is discussed under a given possible transformation relation
of character states. For the MPR-problem under a rather general transformation relation,
there is the dynamic programming method, i.e., a generalized algorithm which is essentially
a brute-force method examining all possible assignments, which is described in [3]. In the
paper [4], the MPR-problem and the related problems under linearly ordered states are
discussed and an efficient method for this case is presented. In this paper, we present a
more efficient algorithm for one of MPR problems than that in [4].

We use the (slightly refined) notations in Hanazawa-Narushima-Minaka [4]. We use
to denote the set that may be either the set R of real numbers or the set N of nonnegative
integers. Let T'= (V = Vo U Vi, E, 0) be any tree with the leaves evaluated by a weight
function o : Vo — ), where V is the set of nodes, Vj, is the set of leaves, Vj is the set of
internal nodes, and E is the set of branches. We call this tree an el-tree, where “el” is an
abbreviation of “evaluated leaf”. For an el-tree T, we define an assignment ) : V — {2 such
that A|Vo (the restriction of A to Vo ) = o, where A(v) is called a state of v under . This
assignment is called a reconstruction on an el-tree T. For each branch e in E of an el-tree
T with a reconstruction A, we define the length I(e) of branch e = {u, v} by |A(u) — A(v)].
Then the length L(T'|\) of an el-tree T' under the reconstruction ) is the sum of the lengths
of the branches. That is L(T|\) = Y .cx(e). Furthermore we define the minimum length



L*(T) of T by
L*(T) = min{L(T'|A) | A is a reconstruction on T'}.

Note that L*(T) is well-defined. A Most Parsimonious Reconstruction denoted by MPR
on an el-tree T is a reconstruction A such that L(T|\) = L*(T'). Generally an el-tree T has
more than one MPR. The set {A(u) | A is an MPR on T'} of states is called the MPR-set
of a node u and written as S,,.

The problems are as follows: for a given el-tree T’
determine L*(T),
find any one MPR on T,
enumerate all MPRs on T,

obtain the MPR-sets for all internal nodes in T'.

A

These problems are called the MPR, problems in [4]. For their meanings in phylogeny, the
reader may refer to Swofford-Maddison [2]. J. S. Farris, D. L. Swofford and W. P. Maddison

have succeeded in solving the case of completely bifurcating trees. Hanazawa-Narushima-.

Minaka [4] present a solution for the MPR problems by introducing the concept of median
interval obtained from sorting the endpoints of closed intervals, and then, discuss the
computational complexity of their algorithms. In this paper, we present a more efficient
algorithm for the problem 4. Compared with the previous algorithm in [4], the new al-
gorithm has two main improved points. One is related to computing the median interval
in the second pass of the algorithm The other is in obtaining the MPR-sets, that is, the
complexity of the previous algorithm in [4] for Problem 4 is O(n?) for the number n of
nodes in a given el-tree, but that of the new algorithm is O(n).

2 The Key Lemmas and The Theorem

We denote the set {1,2,---,n} of n elements by [n]. Let a; (¢ € [2n]) be any elements
in 2, and be sorted in ascending order as follows:

2129 < - L2y STy S0 < T

Then we call z,, and 11 the median two points of the numbers a; (¢ € [2n]), and denote

(Zn, Tnt1) by
' med2(ay, ag, -+, a2,) or med2(a; : 1 € [2n]).

We also call 1, Zn, Zni1 and z,,o the median four points of the numbers a; (i € [2n]),
and denote (Z,_1, Zn, Tni1, Tni2) DY

med4(ay, az, - -+, ag,) or medd(a;: i € [2n]).
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Lemma 1 Let a and b; (i € [2m]) be any elements in Q. Then
med2(a, a, b; : i € [2m]) = med2(a, a, med4(d; : i € [2m])).

Proof. Let med4(b; : i € [2m]) be (Tm-1,Zm, Tmi1, Tmi2). One may examine all possible
cases with respect to a, Zp—1, Ty, Zmy1 and z,, 0. If @ < z,,_1, then we have

the left side = [z,—1, Zm] = the right side.
One can easily check the other four cases in a similar way. O
Lemma 2 Let a,b and ¢; (i € [2m)) be any elements in Q. If a < b, then
min(med2(a, a,c; : i € [2m])) < min(med2(b,b,c; : i € [2m]))

" and
max(med2(a, a,c; : ¢ € [2m])) < max(med2(b,b,¢; : i € [2m])).

Proof.  Let med4{c; : i € [2m]) be (Zm_1,Zm, Tm+1, Tms2). Then from lemma 1, we see
that it is sufficient to examine all possible cases with respect to a, b, Zp_1, Tm, Tmt1 and
T2 Ifa <z 1 and b < z,,,_1, then we have

min(med2(a, a,¢; : i € [2m])) = 2m_1 < 2,1 = min(med2(b, b, ¢; : i € 2m]))
and
max(med2(a,a,c; : i € [2m])) = 2y, < 2z, = max(med2(b, b, c; : i € [2m])).

One can easily check the other cases in a similar way. O

Let I; = [a;,b;] (2 € [m]) be any family of closed intervals in 2. Let the median two
points of all the endpoints a; and b; of I; (i € [m]) be z,, and zp.1, i.e.,

med2{a; : i € [m],b; : ¢ € [m]) = (T, Tmi1)-

Then we call the closed interval [, Zy,11] in Q the median interval of the closed intervals
I; (i € [m]), which is the key concept in a series of our papers, and denote it by

med(ly, I, - -, I,) or med([;:i € [m]).

Let T'= (V, E) be a rooted (directed) tree, where V is the set of nodes and E (C V x V)
is the set of branches. For each u and v in V, we write v — v or u = p(v) when (u,v) € E,
that is, when u is a parent of v (or v is a child of u). For each u and v in V, u is called
“an ancestor of v (or v is called a descendent of ), written u = v, if there is a sequence



of nodes v = uy, Uy, ,u, = v in V such that u; — u;1(¢ € [n — 1]), which is called a
path in T. Note that the relation “=” on V with the additional relation v = u for each
u in V (the reflexive law) is a partial ordering on V and the relation “—” results in a
so-called covering relation on V. We call a leaf (a node without a child) of a rooted tree a
stnk to avoid ambiguity. For each @ in V', we denote a subtree of T induced from a subset
{veVju=v}of VbyT, = (Vi E,). Note that u is the root of T,.

Let T = (Vo UVy, E,0) be an el-tree rooted at r in V = Vp U V. In addition, if r is a
leaf, i.e., r € Vp and s is its unique child, we denote the rooted tree by (7%, ) to vizualize
the structure. In this case, the subtree T} is called the body of the tree T’; otherwise, i.e.,
if the root is not a leaf, the body of T is T itself.

For each node u in the body of a rooted el-tree T, we assign a closed interval I(u) of
recursively as follows:

I(uw) = { [o(u), o(u)] if u is a sink,

med(/(v) : u — v) otherwise.

We call I(u) the characteristic interval of a node u and so [ is called the characteristic
interval map on T

From the results of Theorem 1 in [4], we see that med{[A(p(u)), AM(p(w))], I(v) : u — v) is
the MPR-set of node » under the restriction that A(p()) has been assigned to u’s parent
p(u). We denote this subset of S, by S,|A\(p(u)). That is

SulA(p(w)) = med([A(p(u), A(p(w))], 1(v) : w — v).

Since it is easily determined, we often use it in our discussion and it figures in many of our

results.

Theorem 1 Let u be any internal node of a rooted el-tree T and the MPR-set S, of u be
[a,b]. Then the MPR-set S, of v such that u — v is

Sy = [min(S,|a), max(S,[b)].

Proof. First of all, from Corollary 5 in [4] we see that each MPR-set is a closed interval
in Q. From Theorem 3(ii) in [4] we also see that

U Sylz = S,.

€S,

Then by Lemma 1 the family {S,|z | z € S,} of closed intervals results in a snake chain.
Therefore we have

min(S,) = min(Sy|a) and max(S,) = max(S,[b) O
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3 Computational Complexities

We now state the results on computational complexity of our algorithms. The number
of comparisons required to “select” the i-th smallest of n numbers is essential in the com-
plexity analysis of our algorithms. Therefore, the time complexity analysis is based on the
following result for the selection algorithm called PICK by Blum et al [1].

PICK Theorem. The number f(i,n) of comparisons required to select the i-th smallest
of n numbers is at most a linear function of n, i.e., f(i,n) = O(n). O

Let’s recall the definition of Minimum Length Map I* and the proof of Theorem 4 in the
previous paper [4]. Then we see that Lemma 1 does not have any effect on the algorithm (in
[4]) for Problem 1. Let’s recall the algorithm (in [4]) for Problem 2 and 3. The algorithm is
a two-pass algorithm which consists of the first pass (bottom-up): the determination of the
characteristic interval map I on a rooted el-tree T defined recursively in the direction from
the sinks to the root and the second pass (top-down): the determination of each MPR on
(T') defined recursively in the direction from the root to sinks. As the first pass has been
already reviewed, we here review the second pass. Let T be a rooted el-tree (T, r). Let I
be the characteristic interval map on T', which is already defined in the first pass. Let Acys
denote the restriction M|V, of a reconstruction A on T to a subtree 7, of T. Then the set
Rmp2(r, s) of all most parsimonious reconstructions on T is defined recursively as follows:
A<s> € Rmp2(r, s) if and only if (1) A(s) € med([A(r),A(r)],I(t) : s = t) = S,|A(r) and
(2) for each t such that s — ¢, Acy> € Rmp2(s,t). Note that Aes (With A(r) = o(r)) can
be considered a reconstruction on T.

The essential part in both of the two passes is the computation of median intervals.
Speaking more concretely, the key part of the first pass is the computing of the median two
points for defining med(/(v) :  — v) = I(u) for any internal node u under I(v)(u — v)
already defined, and that of the second pass is the computing of the median two points for
defining med([A(u), A(u)], I(w) : v — w) = S,|A(u) for each child v of any interval node
v under A(u) and I(w) (v — w) already defined. We now have two cases of making use
of Lemma 1 and making no use of Lemma 1 for computing the median two points in the
second pass. The complexity analysis of the algorithm for Problem 2 in the case of making
no use of Lemma 1 is already done in the previous paper [4], and the result is stated as
Theorem 5 in [4]. Does anything happen to the complexity analysis for the case of making
use of Lemma 1 7 We next describe briefly about it. By using Lemma 1, we get

SolA(w) = med([A(u), A\(w)], I(w) : v — w)
= med([A(u), A(u)], med4(I(w) : v — w)),

where med4(](w) : v — w) denotes the median four points of all endpoints of I(w)(v — w)



and so the last expression denotes the median interval for the six numbers of A(u), A(u)
and the median four points. From this fact, we see that the computing of the second pass
is simplified under the assumption that the median four points is already computed in
the first pass. Therefore, if the computing of not the median two points but the median
four points is done in the first pass, then in the case of making use of Lemma 1, the
computational complexity of the first pass increases but that of the second pass decreases,
comparing with each complexity in the case of making no use of Lemma 1. From the facts
described above, we may conclude that each complexity of the two cases is clearly of same
order, that is, O(n) for the number n of nodes in a given el-tree T, and that “which of
the two cases improves on the coefficients more” depends on a given el-tree T'. We leave a
work of more precise analysis on the constants.

The second pass of the previous algorithm in [4] for Problem 4 is not a little complicated
and it complexity is O(n?) for the number 7 of nodes in a given el-tree, which is described
in Theorem 6 in [4], but the second pass of the new algorithm based on Theorem 1 is much
simplified. We now state the main theorem on the computational complexity in this paper.

Theorem 2 The complexity of our algorithm based on Theorem 1 for Problem 4 is O(n)
for the number n of nodes in a given el-tree.

Proof. We prove the case of making no use of Lemma 1 for 7' = (Ts, 7). The algorithm
also consists of the two passes: the first pass (bottom-up) is to determine the characteristic
interval map I on T defined recursively, and the second pass (top-down) is to determine
the MPR-sets S, for all internal node v in T. Let Comp(A) denote the (time) complexity
for computing a formula A. We know already that Comp(The first pass) is O(n). So, we
consider the complexity of the second pass. Under the assumption that for any internal
node v and its parent u, and for each child w of v, the MPR-set S, = [a,b] and I(w) are
already defined, from the definition of S,|a and PICK Theorem we have

Comp(min(Syla)) = Comp(min(med([a,a], I(w) : v — w)))
= fmy+1,2(my + 1)) < cyma,

where m,, is the number of children of v and ¢, is a sufficiently large constant. Also we can
similarly evaluate Comp(max(S,|b)). Then from Theorem 1, we have

Comp(S,) = 2f(my, + 1,2(m, + 1)) < 2¢,m,.
Therefore, we get

Comp(The second pass) = »_ Comp(S,) <c¢ Y my =c(n—2),
veVH veVy

where ¢ = max{2¢, | v € Vg}. Thus, the complexity of our algorithm for Problem 4 is

O(n) since both complexities of the two pases are O(n). For the case of making use of

Lemma 1 we get the same result by a similar discussion previously done for Problem 2.
g
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