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Pohozaev-type inequalities for
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1 Introduction

In this note, we are concerned with the following quasilinear elliptic equations

—Apu = |u|%u in Q,
(E)S u=0 on 09,
u(z) — 0 (as |z| — o0),

where Ayu(z) = div(|Vu(z)[P~2Vu(z)) and Q is a domain in RY such that Q :=
Qg X ]RN_d, 4 C IR? and has a smooth boundary 0f2.

When () is a bounded domain, this equation arises from the minimizing problem
for Rayleigh quotient R(v) := ||Vv||ze/||v||ze. That is to say, assume that v minimizes
R(), i.e.,

R(u) = min{R(v);v € Wo"(2) \ {0}}.

This is equivalent to the fact that u attains the best possible constant for the well-
known Sobolev-Poincaré-type inequality:

(SP)  |vllzs < C|Volle Vo € WEH(Q).

Then u, normalized in a proper way, gives a nontrivial solution for (E).

When Q is a general unbounded domain, the significance of our equation from this
point of view might fade away, since the Sobolev-Poincaré-type inequality (SP) above
does not hold any more in general.

However, from the view-point of nonlinear P.D.E., the existence of nontrivial so-
lutions for our type of equation has been studied vigorously by many peoples in un-
bounded domains. For example we here quote the work by

e Jianfu & Xiping [4, 5] @ = RY (d =0), ~A,u = f(u), where f(u) admits much
more complicated nonlinearity than ours.

e Schindler [12] Q@ =Q; x R¥™4 (0 < d < N), Q; C R? : bounded.



Therefore, from this point of view, it would be meaningful to investigate the non-
existence of nontrivial solution in unbounded domains. In fact, some attempt in this
direction are already done by several peoples, say by [1, Esteban & Lions], [8, Ni
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& Serrin], [6, Kawano, Ni & Yotsutani] in the class of classical solution or radially -

symmetric solutions. However it should be noted that the degeneracy of p-Laplacian
causes the lack of regularity of solutions of our equation. More precisely, we have the
following proposition.

Proposition 1.1 Let p > 2. then any nontmvzal solution u of (E) does not belong to
CHQ)NC(Q).

Proof. Let u € C?(Q) N C(Q), u # 0 be a nontrivial solution of (E). Then without
loss of generality, we may assume there exists a point 24 € Q s.t., u(zg) = max u(z) >0
z€

and Vu(zy) = 0.
On the other hand, we can write down the equation (E) in the following form

— Apu(z) = — .Zl [Vu(z)P7(6i; + (p— 2) Ié Té Yz (z) = |u]"u(z). (1)

If 36 > 0 s.t. |Vu(z)| =0 Vz € B(zg;6), then u(zg) = 0. This is a contradiction.
So there exists a sequence {z,} C Q@ s.t. =, — zo as n — oo and |Vu(:vn)| # 0.

Uy (T )Ug; (T
Since xllézzmg:)(lf) < 1, ugiz;(2a)] < Const. and [Vu(zn)| — |[Vu(zo)| = 0 as
n — oo, putting z = z,, in (1) and letting n — oo, we derive |u|?"?u(z¢) = 0. This is
a contradiction. ' O

The main purpose of this note is to discuss the nonexistence of nontrivial solutions

for (E) when  is an exterior domain or a cylindrical domain in a class of weak solutions-

which is analogous to that introduced in [9]. Most of proofs for nonexistence results for
nonlinear elliptic equations such as (E) obtained so far rely essentially on “Pohozaev-
type identity’. As for our case, we introduce a “Pohozaev-type inequality” for weak
solutions, which is effective enough for discussing the nonexistence in a class of weak
solutions. ’

2 Main results

To formulate our results, we need the notion of starshapedness of the domain Q. We
say that  is starshaped if (z - i(z)) > 0 holds for all z € 9 with a suitable choice
of the origin, where 7i(z) = (n:(z),...,nn(z)) denotes the outward normal unit vector
at x € 9.
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We also need the following two exponents p’ (holder conjugate) and p* (Sobolev con-
jugate):
Np .
p * — if < N1
p’ = —1’ p = N _ p p
p— o ifp>N.
Then our main results read as follows.
Theorem 2.1 Let Q = RY \ Qo, and let Qg := Oy x ]RN'd, and Q4 be bounded and

starshaped. Put
Q° = {u € LUQ); Vu € (LP(2))", uloqg = 0}.

Then the following hold.
1. Let q < p*, then (E) has no nontrivial weak solution belonging to Q¢.

2. Let ¢ = p* with p < N, then (E) has no nontrivial weak solution of definite sign
belonging to Q°.

Theorem 2.2 Let Q = Qy x RV~¢ and put

Q' = {u € LI(Q); Vu € (LX), ulsq = 0,z;[ul""" € L% (Q),i = 1,2,..., N}.

loc

Then the following hold.
1. Let q > p*, then (E) has no nontrivial weak solution belonging to Q*.

2. Let g = p* with p < N, then (E) has no nontrivial weak solution of definite sign
belonging to Q°.

Remark Above results together with our previous results in [9], [12] and [3] suggest
the following duality between the interior problems and the exterior problems for star-
shaped (cylindrical) domains. Although the existence of nontrivial positive solutions
for the exterior problems with ¢ < p* is not yet proved, it is likely that it should hold
true.

duality between interior and exterior problems
domain g<p" q=p" q>p*
interior | 3 positive solution | no positive solution | no nontrivial solution
exterior | no nontrivial solution | no positive solution | 3 positive solution ?




3 Pohozaev-type inequality

In this section, we introduce a “Pohozaev-type inequality” valid for weak solutions u
belonging to a certain class of weak solutions P. To do this, we need some approxi-
mation procedures. First of all, we prepare a sequence of bounded domains §2,,, such
that

U Q, =Q, 9Q,: smooth

n=1

ﬂn D) Q’n—la
#*

(e.g., O = QN Bp,, Br, = {r € RY;|z| < R,}, R, — o as n — o0), and the cut-off
functions g,(-) € C*(IR) such that

s |s| < m,

! —
0<gn(s)=1 s€R, g“(s)_{(n+1)signs ls| >n+1.

Let u be a weak solution of (E) belonging to @ = Q° or Q', and u, = g,(u) and
Up 1= Uy |-

We first add the term |u|?~%u to both sides of (E) to get the equation (E)": |u|9~2u—
Au = 2|ul?"?u, equivalent to (E). Then we consider the following approximate equa-
tion (E), for (E)": '

[, |7 %W, — Apwy = 2|uy) %y, in Qy, o
(E)n {wn =0 o on 0Q,. 2)

Since u, € L*(f,), we can take a sequence vj in C§°({1,,) satisfying

v Iz < Co for all € € (0,1), 7 (3)
v& — 2|u,|"%u, strongly in L7(2,) as € — 0 for all r € [1,00). (4)

We further need another approximate equation (E); for (E), of the form:

e J i ?wE 4+ Acwl, = v in Qy,
(E) {wfz =0 on 0Q,, (5)

where A.u(z) = —div{(|Vu(z)[? + £)*= Vu(z)} and & > 0.

We can show that (E), and (E)Z have unique solutions and that (E); and (E), give
good approximations for (E), and (E) respectively in the following sense.

Lemma 3.1 The following hold true.

(1) For each ¢ € (0,1) and n € N, there exists a unique solution we € C*(Q,) of
(E)z-
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(2) For eachn € NN, there exists a unique solution w, € CY*(Q,)NWyP(Q,) of (E),.
(3) w: converges to w, as e — 0 in the following sense.

Vw; — Vw, strongly in (LP(Q2,))Y ase — 0, (6)
w, = w, strongly in L7(Q,) forallr€[l,00)ase—0. (7)

4) w, converges to u as n — oo in the following sense.
g

Vi, — Vu strongly in (LP(Q))Y as n — oo, (8)

W, — u  strongly in LY(2) asn — oo, (9)
where W, is the zero extension of w, to Q.

The proof of this Lemma is shown in [3].

For the integrability of u, we assume only u € L7(f), (:cz-|u|q"1 € L”’(QR)) and
Vu € (LP(22))V, in consequence we encounter serious difficulties concerning the inte-
grability of various integrands in the procedure of deriving the Pohozaev-type inequal-
ity. To cope with this difficulty, we introduce the cut-off function ¥g(r) € C&(R)
satisfying

1 r<R, ., C
lIJR(T)z{o + >R 0SUR() S1,—5 < Uh(r) <0.

N
Modifying Pohozaev’s idea [11, Pohozaev], we calculate lir% > /Q T Ow r)(E);dz.

Then for the case of Theorem 2.1, we have:

Lemma 3.2 Let  be same as in Theorem 2.1. For any R > 0 with BRN Q # 0 and
Bor N Ln(Th = 00y, \ 0Q), there exists a number ng such that the solution w, of (E),
satisfies the followmg inequality for all n > nyg.

N 1 p—N
. q N 9.’ r - P
-, el e(r)d L ol r¥(rde + = [ IVwala(r)ds
1 / Vw0, |Pr¥ (r)dz + / Vw2 (z - V n)Z‘I’R(’“)
P
- 2/0 |[un | *u, Y r(r)z - Vwpdz + R, <0, (10)

where R, = im ———/ (IVwe [ +€)% (—a-7)Ug(r)dS, r = |z| and p = min(p, 2).
90NBa g
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Proof Take ng so that @dBap N T, = 0, then Ug(r) =0 on [, for all n > ny. We are

N we
going to calculate » /Q T;
i=1 n

owy,
Oz

Ur(r)(E);dz. By the integration by parts, we get

1
o [ wtrwa(r)de < [ ot ftr¥(r)de

+ [ (Vuif + o) F VP eat)de - = [ (il + e)fen(rio

! LRRY I 12 4 VB (g a2 ZR(T)
p/ﬂn([anl te) r\I!R(r)da:—l—/(;n(]an] +6)7 (2 Vg 24

- [ e usta(ide + 2o [ (Vi 4 o) A)a()as
— / (IVwi|? + €)% (=2 - ) Up(r)dS. (11)
MNNBag

Since w? converges to w, strongly in L%(f,) and Wy?(Q,) by (3) of Lemma 3.1, we
can easily show that

[wE|(Wr(r))i = |wal(ZR(r))7  strongly in LI(1,), (12)

WS l(—rUR(r)s = |wal(—rPR(r))7  strongly in L(R,),  (13)
(|Vw,i|2+s)%(\IlR(r))xl7 — |an|(\IJR(r))% strongly in L?(f2,), (14)
(VWi + )2 (—rUp(r)? — [Vwal(—r¥p(r))? strongly in L?(Q.), (15)

where we used the fact that |Wg(r)| <1 and |[rPi(r)| < C.
On the other hand, noting that (—z - @) > 0 on 99, we get

\V/ €12 %2 [PV
e /mm(' wi|? + €)% (—2 - 7)dS

( 2 N .
3(—1 - ds f1 <2
Lo, (2 @) if1<p<2,
_9 »
< { P—= € |2 Y —x.-7 16
< ; LQnan(|an| +¢e)2(—z - 7i(z))dS (186)
2 P .
- ?(—z - 7ii(x))dS f2<p.
\ +p/&mnB2R€ (—z - 7i(z)) if2<p
Now, let &€ — 0 in (11), then (10) is derived from (6), (12)-(15), and (16). ]

Now we are ready to introduce our “Pohozaev-type inequality”, which is formulated
in terms of solutions w, of approximate equations (E);.



132

Theorem 3.3 Let Q be same as in Theorem 2.1 and put
P = {u € LYQ); Vu € (LP())N, ulsq = 0, |ul*"! € L¥'(QR), for all R > 0},

where Qg = QN Br. Then every solution of (E) belonging to P satisfies the following
Pohozaev-type inequality:

(-]Y-+p”N)/|u|de+7zgo, (17)
q p Q , '

where

'R = Bm Im Lim 2=
R—oon—00 g—0 P

1 2
Vwe |? 2(—x-n)¥ ds
Jop, (Uil + ) (-2 ) Un(r)dS,

and we is the solution of (E); uniquely determined by u.

Proof By virtue of the fact that u,(z) — u(z), |ua(z)| < |u(z)| for a.e. z € Q, and
z;Jul*"%u € LF, (D), we note

29 (|2 || 2wy — ;¥ R(|z])|ul"?u strongly in LP'(Q) as n — oo.
Hence we find

—2/ lun " 2un Ur(r)z - Vo,dz — —2/ lu|"*u¥g(r)z - Vudz
Qn — - ' Q

% | el wn(ryda + % [ lulrrwi(r)de.
as n — Q.

Since ,, the zero extension of w, to {1, converges strongly to u in L¢(Q2) and Vb,
to Vu in (LP(Q))V, by (4) of Lemma 3.1, we can repeat the same verifications as for
(12)~(15), with we, w, and Q, replaced by ®,, u and . Consequently, by letting
n — oo in (10), we obtain '

N | _
- /Q|Vu|p\I!R(r)dx +In+ fm R, <0, (18)

% /Q |70 p(r)d + 2

Uh(r

7

1
Ip = %/{; |u|fr@g(r)dz — I—)/ﬂquPMI’h(r)dx + /Q |VulP~%(z - Vu)? )d:c.

Q

Hence it easily follows from the fact that v € LI(Q), |Vu| € LP(Q), |YR(r)| £ —=

and supp U’s(r) C {z € ;R < |z| < 2R}, that I[r — 0 as R — 0. Then to com-
plete the proof, it suffices to let R — oo in (18) and use the relation || Vu||}, = ||ul|}q.. O

&

As for the case where Q = 0y x RV ‘(cylindrical domain), we can repeat the same
argument as above and derive the following result.



Theorem 3.4 Let Q = Qyx RY™¢, then every solution of (E) belonging to Q' satisfies
the following Pohozaev-type inequality.
(N -p N

. ——q-)/nmlquwzgo, Q9)

where

R = Tim Fm Tm 2=
R— oo n—00 g—0 p

1 Y 12 B —
/a QrM(|v7.on| +e)5(z - ) Up(r)ds.

4 Proofs of Main Theorems

In this section, we complete the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1 Regularity results in [3] assures that if ¢ < p*, then Q° is
contained in P. Therefore every solution v in Q¢ enjoys the Pohozaev-type inequality
(17). Since R > 0, (17) with ¢ < p* (equivalently N/q+ (p — N)/p > 0), implies that
|lu]|lz« = 0. Thus the first assertion is verified. | S

As for the critical case ¢ = p*, we need further delicate arguments. At first, by virtue
of Theorem 1.1 of [7, Ladyzhenskaya & Ural’ceva, p.251] and a comparison theorem
(see [10, Otani & Teshima, Lemma 3]), we find that w,(z) > 0 for a.e. © € Q,,, whence
follows wpy1aq, = 0 = Wylsq,. Hence again by applying the comparison theorem in
2, we observe that w,41(z) > wy(z) for a.e. z € Q, Consequently it follows that
Wnp1(z) > Wy(z) in Q, and then '

Wn(z) Tu(z) for a.e. z € (. ' S (20)
Moreover the Harnack pr.inciple (see [13, Trudinger]) assures that |
u(z) > wp(z) >0 for ae. z € Q. | ’ (21)

On the other hand, (17)> with ¢ = p* implies that R = 0. Then for any n > 0, thefe
exist Ry, Ny and &g > 0 such that

/m (Vi +e)f(—z-R)dS <n forall R2 Ron > Noand e € (0,c0). (22)
NBgr :

Since 2 is an exterior of a cylindrical domain, there exist a positive number p and a
relatively open subset I'y C 0 such that (—z - ) > p >0 on T,

Therefore it follows from (22) that

/F IVwE |PdS < % for all n > N and ¢ € (0, o). (23)
o]
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Then, by the same argument based on barrier functions
v(z) = a(38 — r)’ — o’ (o, 4,6 : positive parameters)

as in [3] and have

o e—0

(bl 1PITo| < | lim |Vui(2)PdS <Tim | [Vuwi()PdS < 2,
T e—0JIy P
which leads to a contradiction. O

Proof of Theorem 2.2 The first assertion is a direct consequence of (19) in Theorem
3.4, since R > 0.
For the critical case ¢ = p*, we can repeat the same argument as above. (Since 0

is a cylindrical domain, there exist a positive number p and a relatively open subset
[o C 99 such that (z-7) > p > 0on I.) a

References

[1] M. J. EsTeBAN & P. L. Lions, Existence and non-existence results for semilinear
elliptic problems in unbounded domains, Proc. Royal Soc. Edi., 93A (1982), 1-14.

[2] D. GiLBARG & N. TRUDINGER, “Elliptic Partial Differential Equations of Second Or-
der”, Springer-Verlag, 1977.

[3] T. HasHIMOTO & M.OTaNI, Nonexistence of weak solution of nonlinear elliptic equa-
tions in exterior domains, preprint.

[4] Y. Ji1ANFU & Z. XIPING, On the existence of nontrivial solutions of a quasilinear elliptic
boundary value problem for unbounded domains (I): positive mass case,Acta Mathemat-
ica Scientia, T (1987),341-359.

[5] Y. JiaNFU & Z. XIPING, On the existence of nontrivial solutions of a quasilinear elliptic
boundary value problem for unbounded domains (II): zero mass case,Acta Mathematica
Scientia, T (1987), 447-459.

- [6] N. KawanNo, W. -M. N1 & S. YOTSUTANI, A generalized Pohozaev identity and its
applications, J. Math. Soc. Japan, 42, (1990), 541-563.

[7] O. A. LADYZHENSKAYA & N. N. URAL'CEvA, “Linear and quasilinear elliptic equa-
tions”, Academic Press, 1968.

[8] W. -M. N1 & J. SERRIN, Non-existence theorems for quasilinear partial differential
equations, Rend. Circ. Mat. Palermo, Suppl., 8 (1985), 171-185.

[9] M. OTANI, Existence and nonexistence of nontrivial solutions of some nonlinear degen-
erate elliptic equations, J. Funct. Anal. 76 (1988), 140-159.

134



135

[10] M. OTANI & T. TESHIMA, On the first eigenvalue of some quasilinear elliptic equations,
Proc. Japan. Acad. 64 (1988), 8-10.

[11] S. I. PonozAEV, Eigenfunctions of the equation —Au + Af(u) = 0, Soviet Math. Dokl.,
6 (1965), 1408-1411.

[12] I. SCHINDLER, Quasilinear elliptic boundary-value problems on unbounded cylinders
and a related mountain pass lemma, Arch. Rational Mech. Anal., 120 (1992), 363-374.

[13] N. S. TRUDINGER, On Harnack type inequalities and their application to quasilinear
elliptic equations, Comm. Pure Appl. Math., 20 (1967), 721-747.



