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The smgular limit of the Cahn-Hilliard
equation with a nonlocal term

Georg S. Weiss!(Chiba University), joint work with Yasumasa
Nishiura (Hokkaido University)

Let us consider thé Landau-Ginzburg energy with an additional nonlocal
term Fe(u) =

Q/ (51Vul + “W(w) + o / ((—A;vl)(u - ﬁ / u>) (u fgz—' / w)

where W(z) := (22 —1)? is the usual double-well potential, Ay" is the inverse
of the Laplace operator with respect to homogeneous Neumann boundary
data and € and o are small positive parameters. When minimizing F, on the
affine subspace of H"?*(£}) which prescribes fixed mean value, then the first
part E.(u):= [ (§|Vu|2 + %W(u)) of the functional wants the minimizer to
take values —I—lnor —1 while minimizing the interface area (the area where the

minimizer takes values strictly between +1 and —1), however the nonlocal
term N,(u) := o g{ ((——AJ_Vl)(u - ﬁéu)) (u — Tfl?—lgu) wants the minimizer
to oscillate.

This leads to microstructures: according to numerical results the ’phase’
{u < 0} forms laminar structures when the mean value of u is close to 0,
however other, for example sieve-like structures (in two dimensions) appear
for values far from 0. The arising question whether global minimizers are
periodic has been positively answered by S. Miiller for mean value = 0 in
one space dimension ([Mul]); for the case of mean values different from 0 and

other boundary conditions see ([NiWe]). In higher dimensions however the
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question of periodicity presents a very hard problem, but steps in this direc-
tion (like estimating the frequency of minimizers) are done in a joint work
with S. Miiller.

Periodicity (in the time-dependent case) is interesting for other reasons, too,
since it makes it possible to rescale the case o = O(%) to the case o = O(1)
(see [NiOh]).

The present paper is concerned with the singular limit as € — 0 in the latter
case, i.e. the singular limit of the gradient flow in H~'(Q) with respect to
the functional F;. This gradient flow has been used in [OhKa] and [NiOh] to
model the micro-phase separation of di-block copolymers where the param-
eter ¢ is inversely proportional to the square of the copolymers’ total chain
length.

In the stationary case one can prove that F, converges to
| 1 1 1
Fo(o) = [ V)| + ho(v) + [ [(~a7) 0= = [0)) (v = [ )
J J 1l U

in the sense of I'-convergence in L!(2) (here ((z) := \/Ef\/W(s)ds and
' 0

I(v) = { 0 ,ve{-1,+1} ae. ) |

+oo ,otherwise

which leads to the conjecture that the solution (u,v.) of the time-dependent

e-problem '
1

Ou+ue— — [ ue = Av in 0, T[xQ
o1/ |

1
v, = —eAu, + ZWI(UE) in ]0,T[xQ ,
Vue-v=Vu.-v=00n]0,T[x3N, u(0,-) =ul(:)

converge to a solution (u,v) of

u € {-1,+1} a.e. in N,



Oyu + u — Tfl-ﬂ /u = Awv in ]0,T[x$ in the distributional sense ,
Q

the first variation of /(IVC((]S)I — v¢) vanishes in ¢ = u(t) for a.e. ¢,
Q

Vv-v=00n]0,T[x00, u(0,) =u’() .

Without the nonlocal term this system is known as Hele-Shaw system or
Mullins-Sekerka equation: Xinfu Chen showed global existence of a solu-
tion in two dimensions in the case where the initial interface is close to a
sphere ([Che]), and Luckhaus and Sturzenhecker ([LuSt]) considered an im-
plicit time-discretization (assuming a Dirichlet condition for v) and proved
existence of a weak solution provided that no energy loss occurs in the lim-
iting process.

Regarding the above singular limit problem (still without our nonlocal term)
Alikakos, Bates and Xinfu Chen ([A1BaCh]) showed that if the limit problem
admits a unique smooth solution, then the E.-gradient flow converges to the
limit problem.

However (bearing in mind the dumbbell-shaped interface appearing in mean
curvature flow, the second order counterpart of the Mullins-Sekerka equation)
one cannot expect existence of a smooth solution in general (not to speak
of uniqueness), and because of the fourth-order situation viscosity methods
may not be applied.

For our purpose we chose the approach of S. Luckhaus (see [Lu], [LuSt],
[P1St] and [Sch]), and our result is the following:

suppose n < 3,00 € CVu% — u® in LY(Q) and sup,sq E(u*) < oo ; then
there exists a solution (u®,v®) of the e-equation (with respect to initial data
u%) satisfying the following:

there exists (u,v) € L*(J0,T[; BV(Q)) x L*(]0,T[; H**(?)) where u takes
only values —1 and +1 and there exists a subsequence ¢ — 0 such that u, — u
in L*(]0, T[xQ) and v. — v in L*(]0, T[; H"*(Q));

furthermore, if there is no loss in the total energy when proceeding to the

64



65

limit in €, i.e. if
T T
Tim sup / Eo(ut)) dt < / Eo(u(t)) dt
e—0 4 0

then (u,v) is a solution in the following sense:
//[ 8tn(u——u0)+77(u——ﬁ u) + Vp-Vu| =0
for any n € L*(]0, T[; H¥*(Q)) s.t. n(T) =0, and

1 .
p /u(t) div (v(t)¢) /(D{ (v)(v) — div §) d|V@|

Q

for any ¢ € CY(Q;R™) s.t. £ - vsq = 0 and a.e. ¢ €]0,T[ (here vaq means the

Vu_

outer normal on 9, |Vu| is the total variation of the measure Vu, v = 2

the Radon-Nikodym d ti du:= /W {(s)ds).
is the Radon-Nikodym derivative and u \/—_fl (s)ds)

Before giving a sketch of proof let us remark three things:

First, that no energy loss occurs in the limiting process may be interpreted in
the way that no phase-inner boundaries are allowed to appear, and thereby
it represents a condition which makes physical sense. '

Next, the condition may be verified numerically.

Last, the above notion -of solution is rather strong since the interface is the
boundary of an open set of finite perimeter and the second equation is al-

ready written as an equation on the interface.

Sketch of proofs (the detailed proofs will be given in the fourth-
coming paper [NiWe]):
We pass up the construction of the solution for the - problem satlsfymg the

following bounds:

T
sup Ee(u(t)) + / / Vo < ¢,
t€]o,T| 0 4
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) — et = 5)lg-rqay < Cav/ and

u. bounded in L*(]0, T[; H~1(2)) .
Using results of Simon ([Si]), precompactness of u. in L*(]0, T[x) follows,
and the boundedness of the energy assures that any limit u takes values in
+1 and —1 only.
Now we proceed as in [LuMo], [P1St] and [Sch]:
using the assumptions and elliptic regularity theory, it is easy to show that
u(t) € H**(Q) for a.e. t €]0,T[. Next, taking £ - Vu (for ¢ as in the
assumption) as test function for the equation of u. , we obtain after some

calculation
— /[8,-§j8,-u58ju6 — %(e|vue|2+%W(uc)) div § + u. div(vsf)}
Q
(1)

Using the lower semicontinuity of the perimeter as well as the assumption

that no energy loss occurs, we get

T
timsup [ |B.(uc(t) ~ Bo(u(®))| = 0 , (2)

therefore it is easy to deal with the second term of the sum in (1). In order
to handle the first term of the sum in (1), which is nonlinear in Vu,, let us

remark that using the convergence of the energy in (2) in can be proved that

€ 1
||\/;|Vue| - %\/W(Us(t))” — 0 and

L2(Q)

9 ¢Caue)] — (GIvuf + W) =0

for a.e. t €]0,T[as e — 0.
Therefore we may replace [ DE(Vu(t))(Vuc(t)) first by
Q

Ve(ue(t) \ [ VEC(u(t) ) \
/Dé (IVC(u ®) )|) (|V((u€(t))|) ¢ IVu(d)]
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and then by

[ 2¢(wetem) (Seteian) V2 V7e@ v

which converges by Reshetnyak’s theorem for a.e. ¢ €]0,7[ to

Ve(u(t) ) [ V)
/ be (wc(u(tm) (wcw»r) AV

Last, notice that, since (ﬁfvc(t)) [ (ue(t) div €) is by (1) bounded in
0 Q-
L>(0,T) and since u, — u € {+1,—1} strongly in L*(]0, T[xQ), ﬁfve(t)
Q

has to be bounded in L*(0,T) , which makes it possible to handle the last
term of the sum in (1).
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