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" BRANCH LOCI AND MONODROMY
OF NORMAL SINGULARITIES

MAKOTO NAMBA

(This is a jointb work with Mr. Ryoichi Ueno, a D.C. student of RIMS.)
1. Introduction

We denote by A"™(O,€) the n-dimensional polydisc in C" with the center the
origin O and the (multi)radius e = (€¢/. €, ), where € = (e1,...,€n-1).

In this talk, we prove the following theorem:

Theorem 1. Let (X,z) be an n-dimensionel normal singular point. Then there
exists a surjective proper finite holomorphic mapping

g (X, z) — (A"(0,¢),0)
for a sufficiently small €, whose branch locus 1s contained in the hypersurface
B={(z',2,) €A™(0,€) | (zn—g1(z")...(zn — gn(a’)) =0},
where gj(z') are holomorphic functions of 2’ = (x1,...,%5-1) such that g;(O) = 0.
Let B be a hypersurface of A"(O, €) defined as in the theorem. From the theo-

rem, we can construct a lot of normal singular points if we compute the fundamental
group m1(A"(0, ¢) — B) and construct homomorphisms

o : (A0, €) — B) — 54

(Sq is the d-th symmetric group), whose images are transitive. In fact, by the
theorem of Grauert anf Remmert ([1]), there exists a (unique up to isomorphisms)
normal singular point (X, z) and a surjective proper holomorphic mapping

b (X,2) — (A™(0,€),0)

of degree d whose branch locus i1s contained in the hypersurface B and the mon-
odromy representation is .

We carry this program out for two dimensional normal singular points.



2. Proof of Theorem 1

Let (X, z) be an n-dimensional normal singular point. It is known (see Gunning-
Rossi ([2]) that there exists a surjective proper finite holomorphic mapping

T (Xaw) — (An(o’ 6)30)
for a sufficiently small €, whose branch locus By is given by
Br = {(z',20) € A"(0,¢) | f(z',2n) =0},
where
SC’ = (.’L‘l,. .. 71',1_1),
f@',zn) = za™ +enoa(z)za VT 4+ (2,
cj(z') are holomorphic functions on  A"(0,¢) with ¢;(O)=0.

(That is, f(z',zn) is a Weierstrass polynomial.)

The holomorphi mapping x in the theorem is defined to be the composition
u=GNn_10---0Gro7T

where G; are polynomial type mappings and N is the degree of the ahove Weier-
strass polynomial f(2',z,).

We assume for simplicity
N =4.

(The proof for general N is similar.)

(1) Put
Gy : (CC',J?n) — (Zlgzn) = ($'7f($’71_‘7n))-

This is a surjective proper finite holomorphic mapping from an open neighborhood
of O onto an open neighborhood of 0. The properness follows from the fact that
the roots of an algebraic equation are (multi-valued) continuous functions of the
coefficients.

The branch locus of # (= Br) is mapped by G to {2z, = 0}. Consider
the mapping G, o m. The branch locus of this mapping is contained in the union
of {z, = 0} and the branch locus of G, which is contained in the hypersurface
{R = 0}, where R is the resultant of

f(z',zn) — 2o and f‘(z',xn)

as polynomials of z,,. Note that R can be written as

R = —4*2,* + (the lower terms).



Put R
fl = 14? = gn3 +d2(z’)zn2 +d1(2’)2n +(lg(zl)

Note that f; is again a Weierstrass polynomial, that is d;(O) = 0.

Thus the branch locus of GG; o 7 is contained in the union of the hypersurfaces

{zn = 0} and {f, = 0}.

(ii) Next put

G ('ZI?Z”) L (wlawn) = (Z’,f1(2',2n))-

A similar argument to (i) shows that the branch locus of the composition G5 o
(G o 7 is contained in the union of the hypersurfaces

w, =0, w,= fl(uv',()) = dg(w') and f, =0,

where fs is the resultant of

afl !
62n (u, ’ "Tl)

(as polynomials of z,,) divided by 3%. This is again a Weierstrass polynomial:

f2 = wn? + e1(w)w, + eo(w).

fi(w', 2zn) —w, and

Note that {w, = 0} and {w, = do(w')} contain G2({fi = 0}) and Gy({z, =
0}), respectively. )

(iii) Finally put
Gs : (W' wy) — (v'0n) = (w0, fa(w', wy,)).
A similar argument to (i) shows that the branch locus of the coniposition
u=G30Gy0G 07
is contained in the union of the hypersurfaces
{vn =0}, {on=eo(¥)}, {vn=fo(v',do(v")) := ho(v')} and {v, = hy(v")},

where v, — h1(v') is the resultant of

fo(v',wy) — v, and ;]:2 (v, wy)
(as polynomials of w,) divided by —22:
20,1
hi(v') = ep(v') — %2.

Note that {v, = 0} and {v, = eo(v")} contain Gs({f2 = 0}) and G3({w, = 0}),
respectively. Note also that the equation v, = h¢(v') is obtained by eliminating
w, from the equations

v = fo(v',w0n) and  w, = do(v').

This proves Theorem 1.

A similar method to the proof of Theorem 1 shows the following theorem:



Theorem 2.

Let V be an n dimensional algebraic variety. Then there exists a projective
normal algebraic variety W which is birational to V, and a surjective proper finite
morphism F of W to the complex projective space P™ such that the branch locus
of F is contained in the union of the hyperplane Hu at infinity and hypersurfaces
whose defining equations in the affine coordinate sysiem are

tn = fij(z1,...,2n=1), (F=1,...,N),

where f; are polynomials of n — 1 variables.
3. Fundamental Groups

In the rest of this talk, we assume

Let B be the curve in A?(O,€) defined by

B ={(y - gi(z))...(y — gn(z)) =0},

where (z,y) is the coordinate system and g;(z) are holomorphic functions with

g;(0) = 0.

We can compute the fundamental group 71(A?%(0,€) — B) by the method of
Zariski-van Kampen. That is, we take a sufficiently small positive number r, which
is smaller than e and we consider the line z = r. The line meets with the curve B
at N points ¢; = (r,y;), 1< j < N. Taking a reference point o on the line with
o # ¢;, we consider the lassos (meridians) v;, 1 < j < N, which start from the
point o and round the points ¢;. Next consider the circle {re’* | 0 < ¢ < 27}
When a point moves on the circle counterclockwisely, the N intersection points
of the curve B and the line z = re* induces a braid, which induces the braid
monodromy on the lassos 7;, which gives the generating relations between them.
The fundamental group 7, (A%(O, €)— B) is the group generated by v;, 1<j < N,
with the generating relations.

We describe the fundamental group dividing into several cases depending on
the forms of the power series expansions at z = 0 of the holomorphic functions g;.

Case 1. gj(z) = a;z + higher terms, (a; # ax forj # k).
In this case,
1 (A*(0,€) — B) =<71,.. ..y~ | Y7o =7y, forl <j <N >,

where
’ Yo = YN ---71-



Case 2. gj(x) = apz + a;z* + higher terms, (a;j # ax * forj # k).

In this case,
m(A*0,€) = B) =< 7y1,...,77 | 770 =7y forl<j< N >,

where
Yo =N ---M-

Case 3.

g1(z) = ayz + byz? + higher terms,
ga(z) = ayz + byz® + higher terms,
g3(z) = a1z + b3z* + higher terms,
g4(z) = ayz + cy2® + higher terms,
g5(2) = agz + coz? + higher termsi,
(a1 # a2, c¢1 #c2, bj are distinct).

In this case,

U8 (A2(076) - B) =< Y1,72,73, V4 s I » . )
Y0170 = 61075 (3 =1,2,3), 76270 = S2v0v; (j =4,5) >,

where
C Yo = YsYaY3YeYi, 01 = Y321, 02 = Y5Ya.

Case 4.

g1(z) = ayz + byz?® + ¢z + higher terms,
g2(z) = a1z + biz? + e + higher terms,
93(z) = ayx + bya® + ¢} 2® + higher terms,
ga(z) = a1z + byz® + chz® + higher terms,
g5(z) = agz + b z* + di2® + higher terms,
g6(z) = agz + b\ x? + dyz® + higher terms,
g7(z) = agz + bhx® + djz® + higher terms,
gs(z) = agz + bhx? + dyx® + higher terms,
(a1 #az, bi#by, bi#b, a#c, c#c, di#d, d# dy).

In this case,



W](A2(O,E)—B) =< Y1y---,78 |
vietbivo = e1é1v0y; (U =1,2), 7viedivo = e281707; (J = 3,4),
’Yj635270 = 6352’707]‘ (j =5, 6)7 ")’j5462')’0 = 6452’70’7]‘ (j = 718) >

where

€1 = 7271, €2 = V4V, €3 = Y65, €4 = V877,

01 = Y4Y3V2V1, 02 = Y8VTY6V5, Yo = Y8 ---71-

The fundamental group in the general case can be written in a similar way.
4. Construction of Monodromy

We want to find homomorphisms
p:m(A—B)— Sq
such that the image is transitive, where
A = AY0,¢)
and Sy is the d-th symmetric group. We discuss our method only for B in Case 1

in the last section. (As for B in the general case, our method can be discussed in
a similar way.)

The fundamental group 71 (A — B) in Case 1 is generated by
Y155 IN
with the generating relations
Y0v; =%, (G =1...,N),

where
Yo =7YN---71-

The homomorphism ¢ is constructed if we find permutations By, ..., By and
A of d- letters such that

AB;=B;A, (j=1,...,N)



and

In fact, we define ¢ by

e(v;)=Bj, (J=1,...,N).

We can find such permutations as follows: Let A be any permutation of d-
letters. Let By, ..., By—1 be any permutations in Z4(S¢), the centralizer of A in
Sq. Put

By = A(By-1...By)™L

However the subgroup G of S; generated by By, ..., By and 4 is not transitive
in general. We can easily show the following lemma, whose proof is omitted:

Lemma 1. Let G be a subgroup of Z4(Sq) which contains A. If A is expressed
as the product of cyclic permutations without common letters which are not of all
equal length, then G s not transitive.

Let
A=(ar...a5)(by...bs)...(c1...¢5)

be the decomposition into the product of cyclic permutations of equal length s
without common letters. Consider the ¢ sets

a={ay,...,as},b={b1,....b:},....,c={ec1,...,cs}, (d=st).

Then we can easily show the following two lemmas, whose proofs are omitted.
Lemma 2. Every permutation B in Z 4(Sq) induces naturally a permutation W(B)

of t letters a,b,...,c. The mapping ¥ is a homomorphism of Z 4(Sq) onto S; whose
kernel is isomorphic to the abelian group (Z/sZ).

"Lemma 3. Let G be a subgroup of Z4(Sg) which contains A. Then G is a tran-
sitive subgroup of Sq if and only if U(G) is a transitive subgroup of Sy.

Using these lemmas, we can construct a lot of homomorphisms
0 : 11 (A0, €),0) — Sy

and consequently a lot of two dimensional normal singularities (X, z) and covering
mappings

p:(X,z) — (A0, ), 0),

whose branch loci are contained in the curve B and the monodromies are .



Example. Put
A = (12)(34)(56).

Then Z4(Se) consists of 48 permutations. Among them, we choose
B; = (146235), B, = (135246), B; = (145236), (d=6,N =3).

Note that
A. B B3B2B1.

Let
p:m(A,0) — Se

be the homomorphism defined by
el =By (=1,29)
Then the gorresponding covering mapping
b (X,2) — (A(0,€),0)
is a non-Galois covering of mapping degree 6 which branches at 3 lines passing
through O and the ramification indices are all 6.
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