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1 Introduction

Consider a parametric plane curve $f$ : $S^{1}arrow \mathrm{R}^{2}$ which is generic, namely an immersion
with just transverse self-intersections. Since $f$ is topologically stable ( $=$ stable topo-
logically under small perturbations), the curve $f$ has the same isotopy type with a curve
defined by some leading terms of the Fourier expansion of $f$ . Therefore any isotopy type of
generic plane curves can be realized by a trigonometric plane curve. Then, for the classifi-
cation problem of generic plane curves, it is natural to classify the isotopy types realized by
trigonometric curves of a given degree from 1, 2, 3, . . . and so on.

Let $f$ : $S^{1}arrow \mathrm{R}^{2}=\mathrm{C}$ be a plane curve defined by a trigonometric polynomial map
$f(z)=\Sigma_{i=-n}^{n}aiZ^{i}$ of degree $n$ , where $z=\cos(\theta)+\sqrt{-1}\sin(\theta)\in S^{1}\subset \mathrm{C}$ , and $a_{i}\in \mathrm{C},$ $-n\leq$

$i\leq n$ . We simply call $f$ a Fourier curve of degree $\leq n$ . Non-generic Fourier curves of
degree $\leq n$ form a semi-algebraic set $\Sigma$ in $\mathrm{C}^{2n+1}$ . Then the problem is to classify generic
Fourier curves $f\in \mathrm{C}^{2n+1}-\Sigma$ up to isotopy.

The general classification theory of parametric plane curves goes back to Gauss (Gauss
words or Gauss diagrams $[12][6][11])$ . Whitney [28] gave essential results on the regular
homotopy ( $=\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ through immersions) invariant, Gauss index or Whitney index $(=$

the mapping degree of the Gauss map), of immersed plane curves. Scott Carter [6] showed
that the Gauss diagram is the complete invariant for the plane curves as spherical curves.
Arnold [2] [3] gave three kinds of basic isotopy invariants $J^{\pm}$ and strangeness St of generic
plane curves. These are first order invariants of Vassiliev type [22]. Also there exist many
works about plane curves related to the knot theory.

First remark that for a Fourier curve $f$ of degree $n$ there naturally corresponds a real
rational curve $f$ : $\mathrm{R}\mathrm{P}^{1}arrow \mathrm{R}\mathrm{P}^{2}$ of degree $2n$ , if we set $\cos(\theta)=(1-t^{2})/(1+t^{2}),$ $\sin(\theta)=$

$2t/(1+t^{2})$ . This reflects the fact that $S^{1}=\{x^{2}+y^{2}=1\}\subset \mathrm{R}^{2}\subset \mathrm{R}\mathrm{P}^{2}$ is rational of degree
2.
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Viro [26] studies the classification problem of real rational curves from Vassiliev’s point
of view. On the other hand this problem has analogous feature to the 16th problem of
Hilbert [24], especially to the first half of it.

The first half of the 16th problem of Hilbert [24] treats the classification problem of non-
singular real algebraic curves of fixed degree $m$ up to isotopy in the real projective plane
$\mathrm{R}\mathrm{P}^{2}$ . This problem is solved for $m\leq 7$ up to present. (For the case $m\leq 5$ the classification
is classically known; Gudkov classified for $m=6$ and Viro for $m=7$ . Harnack showed
that the number $l$ of connected components of a real algebraic curve of degree $m$ is at most
$(1/2)(m-1)(m-2)+1$ . A non-singular curve of degree $m$ is called (after Petrovskii) an
$M$-curve if it has the maximal number of connected components. For the first non-trivial
case, namely $m=6$ , the classification result shows clearly certain symmetry or duality. For
instance, there exist three isotopy types of $M$-curves of degree 6 as in Fig.2. However, as far
as I know, the full explanation of this duality is not given yet.

We observe that, in the topological classification problem, the strategy then is first to
find restrictions or estimates of topological invariants and second to find realizations or
constructions of given topological types.

We are naturally led to the topological classification problem of real rational curves and
Fourier curves.

For the basic topological restrictions on the real rational curves, we have easily the
following:

Lemma 1.1 Let $f$ be a generic ($=with$ just transverse self-intersections) real rational curve
of degree $m$ . Then

(1) The number of self-intersection points $p\leq(1/2)(m-1)(m-2)$ (by, for instance,
genus formula).

(2) The number of intersection points with a generic line is at most $m$ and it is congruent
to $m$ modulo 2 (by the theorem of Bez\’out).

Example 1.2 : Consider generic real rational curves of degree 4. Then $\ell\leq 3$ . In fact the
list of isotopy types are given in Fig.1.

Now we turn to the classification problem of trigonometric curves. Remark that when we
seek topological restrictions on generic plane curves, we may assume more generic conditions
upon the curves because of its topological stability of the real locus.

Lemma 1.3 Let $f$ : $S^{1}arrow \mathrm{C}$ be a generic Fourier curve of degree $n$ . $Then_{f}$ for $f$
)

(1) The number of self-intersection points $l\leq(2n-1)(n-1)$ .

(2) $|\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}$ of Gauss $\mathrm{m}\mathrm{a}\mathrm{p}|:=i\leq n,$ $i\equiv l+1(\mathrm{m}\mathrm{o}\mathrm{d}. 2)$ .

(1) is clear. For (2), we use the formula $df/d \theta=\sum_{i=-n^{\sqrt{-1}}}^{n}iaiz^{i}$ . (The differential
defines on $\mathrm{C}^{2n+1}$ just a diagonal linear action with $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}-\sqrt{-1}n,$

$\ldots,$
$\sqrt{-1}n.$ )
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A generic Fourier curve of degree $n$ is called $M$-curve if $l=(2n-1)(n-1)$ . Similarly
this definition is applied also to generic real rational curves.

Then the first result of this note is the following:

Proposition 1.4 Let $f$ be a generic Fourier curve of degree $n$ . If $f$ is an $M$ -curve, then $f$

has no infiection points.

This gives a severe topological restriction on the isotopy types of M-curves.
Example 1.5 : There does not exist a Fourier curve of degree 2 with the topological type
as in Fig.3. In fact assume it does exist. Then it is an $M$-curve, so it does not have inflection
points. However, on the other hand, we see $i=0$ , so the number of inflection points is at
least 2. This leads a contradiction.

The list of isotopy types of generic Fourier curves of degree 2 is the same with the
remaining types appeared in the list of isotopy types of generic real rational curves of degree
4.

Next let us turn to classify Fourier $M$-curves of degree 3. We observe the following result:

Proposition 1.6 There exists a set of 14 isotopy types I of generic Fourier M-curve8 of
degree 3 and an involution $\sigma$ : $Iarrow I$ such that $\mathrm{S}\mathrm{t}(i)+\mathrm{S}\mathrm{t}(\sigma(i))=2$ .

These 14 isotopy types are shown in Fig.4 with the adjacency and the values of Arnold’s
strangeness St. Notice that this result is obtained by the experiments using $\mathrm{p}_{\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{P}\mathrm{l}\mathrm{o}\mathrm{t}$

of Mathematica. I wish to find an alternative theoretic proof of Proposition 1.6. I conjecture
that the isotopy types of generic Fourier $M$-curves of degree 3 are exhausted by these 14
types. To confirm it, we need to exclude the isotopy type shown in Fig.5. But I have no
proof about it yet.

We observe that these 14 isotopy types can obtained as perturbations of the bouquet or
blossom $b_{5}$ : $f=z^{3}-z^{-2}$ with five stalks or petals (Fig. 6). (We may call it “sakura”, which
means the cherry blossom.)

In general we set $b_{2n-1}$ : $f=z^{n}-z^{-(n-1}$ ), a non-generic Fourier curve of degree $n$ (the
bouquet with $(2n-1)$-stalks or the blossom with $(2n-1)$-petals). This curve provides the
unique topological type of real algebraic curves in $\mathrm{R}\mathrm{P}^{2}$ of degree $2n$ with one real ordinary
$(2n-1)$-multiple point. (This remark is found during a conversation with T. Fukui.) We
get necessarily an $M$-Fourier curve of degree $n$ if we perturb $b_{2n-1}$ into an generic Fourier
curve of degree $n$ . The existence of the duality, in the case $n=3$, is clear from the Fig.4.
However we observe that this duality comes from more general connection with the topology
of Fourier curves and the topology of $(\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}o-)\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}$ arrangements [13] on the real plane $\mathrm{R}^{2}$ .

A pseudo-line arrangement $A$ of $s$ strings in $\mathrm{R}^{2}$ is a proper (say $C^{\infty}$ ) embedding
$F:\coprod_{s}\mathrm{R}arrow \mathrm{R}^{2}$ with the following properties: If we denote by $F_{i}$ the restriction of $F$ to the
i-th $\mathrm{R}$ and by $L_{1},$

$\ldots,$
$L_{s}$ the images $F_{1}(\mathrm{R}),$

$\ldots,$
$F_{S}(\mathrm{R})$ , then $L_{i}$ and $L_{j}$ intersect at only one
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point in $\mathrm{R}^{2}$ . A point $p\in \mathrm{R}^{2}$ is called an $m$-multiple point (with respect to $F$ ) if $F^{-1}(p)$

consists of $m$-points in $\coprod_{s}$ R. A pseudo-line arrangement is called simple if there does not
exist $m$-multiple points with $m\geq 3$ .

Two mappings $F$ : $Marrow N$ and $G$ : $M’arrow N’$ between topological spaces are called
homeomorphic if there exist homeomorphisms $\sigma$ : $Marrow M’$ and $\tau$ : $Narrow N’$ such that
$G\circ\sigma=\tau \mathrm{o}F$ .

$F$ and $G$ are called isotopic if there exist a homeomorphism $\sigma$ : $Marrow M’$ and a one-
parameter family of homeomorphisms $\tau_{\lambda}$ : $Narrow N’(\lambda\in[0,1])$ such that $\tau_{0}=1_{N}$ and that
$G\circ\sigma=\tau 1^{\circ F}$ .

$F$ and $G$ are called strictly isotropic if there exist one-parameter families of homeo-
morphisms $\sigma_{\lambda}$ : $Marrow M’$ and $\tau_{\lambda}$ : $Narrow N’(\lambda\in[0,1])$ such that $\sigma_{0}=1_{M},$ $\tau_{0}=1_{N}$ and that
$G\circ\sigma_{1}=\tau 1\mathrm{O}F$ .

Any pseudo-line arrangement $F$ of $s$ strings is strictly isotopic to an arrangement $F’$ with
the following property: there exists a permutation $\rho$ of $\{1, \ldots, s\}$ such that each string $F_{\rho(i)}$

coincides with the straight line $l_{i}$ : $\mathrm{R}arrow \mathrm{R}^{2}=\mathrm{C}$ defined by $\ell_{i}(t)=te^{\sqrt{-1})/s}(i-1\pi$ outside of
a compact subset of R.

We call an arrangement $F’$ normarised if it has the above property.
Any pseudo-line arrangement $F$ of odd $(2n-1)$ strings is isotopic to an arrangement $F’$

with the following properties: $F_{1},$
$\ldots,$

$F_{s}$ coincide with the straight lines

$l_{1},$ $-p_{2},l_{3},$
$\ldots,$

$-\ell 2n-2,\ell 2n-1$ .

(In fact we only need a permutation of the components of $\square _{s}\mathrm{R}$ and reversing some of $\mathrm{R}’ \mathrm{s}$

for a normalised representative.) Fig. 6.
We call a pseudo-line arrangement $F’$ of odd strings admissible if it has the above

property.
We are going to construct two (isotopy types of) closed curves $S^{1}arrow \mathrm{R}^{2}$ from an ad-

missible pseudo-line arrangement $F$ of $(2n-1)$ strings as foll$o\mathrm{w}\mathrm{s}$ : Take a circle $C_{r}$ on $\mathrm{R}^{2}$

containing all multiple points of $F$ in the inside and intersecting each string just twice. First
start at the point $F_{1}(0)$ and move along $F_{1}$ until we hit $C_{r}$ . Then move along the arc coun-
terclockwise till we hit $L_{2}=F_{2}(\mathrm{R})$ . Change to $L_{2}$ and draw along $F_{2}$ until we hit $C_{r}$ . Then
draw along the arc counterclockwise. Continuing this process, we get a (piecewise $C^{\infty}$ ) closed
curve $S^{1}arrow \mathrm{R}^{2}$ . By smoothing this, we have an immersion $c(F)$ : $S^{1}arrow \mathrm{R}^{2}$ of Gauss index $n$ .
If we move clockwise instead of counterclockwise and in order $F_{1},$ $F_{s},$ $F_{s-1},$ $\ldots$ , then we get
another plane curve $c’(F):S^{1}arrow \mathrm{R}^{2}$ of Gauss $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}-n$ . We call $c(F)$ and $c’(F)$ closures
of F. (Fig.8). If $F$ is simple, then both $c(F)$ and $c’(F)$ are generic and have $(2n-1)(n-1)$
double points.

If $F$ and $F’$ are admissible pseudo-line arrangements and they are isotopic, then the set
of isotopy classes $\{c(F), C’(F)\}$ coincides with that of $\{c(F’), c^{;}(F’)\}$ . Thus, to an isotopy
class $A$ of pseudo-line arrangement of odd strings, there corresponds a set $\{c(A), C’(A)\}$ of
isotopy classes of closed curves $S^{1}arrow \mathrm{R}^{2}$ as $\{c(F), C’(F’)\}$ for a admissible representative $F$
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of $A$. We call also $\{c(A), C’(A)\}$ the closures of $A$ . Remark that there is no preference to
choose one of the closures $\{c(A), C’(A)\}$ of an isotopy class $A$.

Theorem 1.7 Let $A,$ $A’$ be isotopy types of simple $(2n-1)$ pseudo-line arrangements and
$\{c(A), C’(A)\},$ $\{c(A’), c’(A’)\}$ closures of $A,$ $A’$ respectively. Then we have

(1) If $c(A)$ or $c’(A)is$ isotopic (resp. homeomorphic) to $c(A’)$ or $c’(A’)_{)}$ then $A$ and $A’$

are isotopic (resp. homeomorphic).

(2) $\mathrm{S}\mathrm{t}(c(A))+\mathrm{S}\mathrm{t}(C’(A))=n-1$ .
(3) $J^{+}(c(A))=J+(_{C’}(A))=(n-1)(n-2)$ .
(4) $J^{-}(c(A))=J-(c’(A))=-(n-1)(n+1)$ .

From (the proof of) Theorem 1.7, we have the following:

Proposition 1.8 If $n$ is even, then $c(A)$ and $c’(A)$ are not isotopic (even after the reversing
the parameter $S^{1}$). In general, if $c(A)$ and $c’(A)$ are isotopic, then, for any addmisible
representative $F$ of $A$ and the admissible arrangement $G$ obtained from $F$ by reversing all
orientations of $\mathrm{L}\mathrm{I}_{2n-1}\mathrm{R}$ and rotating by $\pi/s,$ $F$ and $G$ are strictly isotopic.

The line arrangements are of course important examples of pseudo-line arrangements.
In particular, by Theorem 1.7, there exists a duality on the set of isotopy types of plane
curves $S^{1}arrow \mathrm{R}^{2}$ obtained as a closure from a line arrangement. Remark that this set of
isotopy types is contained in the set of isotopy types of curves $S^{1}arrow \mathrm{R}^{2}$ without inflection
points.

A pseudo-line arrangement is called stretchable if it is isotopic to a line arrangement [13].
The pseudo-line arrangement shown in bottom left of Fig.8 is an example of non-stretchable
simple pseudo-line arrangement of 9 strings due to Ringel and Gr\"unbaum. As stated in [13],
$\mathrm{R}.\mathrm{J}$ . Canham, E. Halsey showed in 1971 that all simple pseudo-line arrangements of $s$ strings
$(s\leq 7)$ are stretchable. Gr\"unbaum [13] conjectured that all simple pseudo-line arrangements
of $s$ strings $(s\leq 8)$ are stretchable.

The numbers $n_{s}$ of homeomorphism types of (pseudo-)line arrangements of s-strings
$(s\leq 7)$ are given, for instance in [19]: $n_{s}=1$ , for $s\leq 4,$ $n_{5}=6,$ $n_{6}=43,$ $n_{7}=922$ .

The number of isotopy types of line arrangements of 5 lines is equal to 7 (Fig.9). The
adjacency of these isotopy types is represented by the graph of Fig.10. By Theorem 1.7, we
have 14 isotopy types of plane curves with $\ell=10,$ $i=3$ . and a duality among these isotopy
types, which coincides with the duality found in Proposition 1.6. The graph of adjacency
(Fig.11) is the double covering of the graph of adjacency for line arrangements of 5 lines.

The Gauss diagrams of the curves No.l and No.14 are drawn in Fig.12. These are
connected by successive bifurcations of death-barth triangles as shown in Fig.13.

A pseudo-line arrangement $F$ : $\square _{s}\mathrm{R}arrow \mathrm{R}^{2}$ is convex (resp. concave) if there ex-
ists a closed disk $D_{r}\subset \mathrm{R}^{2}$ containing all multiple points of $F$ such that on $F^{-1}(D_{r})$ the
determinant $|F’(t)F’’(t)|>0$ (resp. $<0.$ )
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If $F$ is convex, then the closure $a(F):S^{1}arrow \mathrm{R}^{2}$ is a convex curve. If $F$ is concave, then
$a’(F)$ is concave. The isotopy type of a simple line arrangement are realised by a simple
convex (resp. concave) pseudo-line arrangement. This fact causes the duality on a class of
isotopy types of plane curves without inflection points.

Miscellaneous Remarks and Questions:
(1) We remark that the example (Fig.8) of simple non-stretchable pseudo-line arrange-

ment is realised by a convex pseudo-line arrangement: Fig.14. I do not know any example
for isotopy types of simple pseudo-line arrangements which can not be realised by convex
(or concave) pseudo-line arrangements.

Related to the existence of non-stretchable pseudo-line arrangements we observe the
following result from the singularity theory:

Proposition 1.9 The deformation $\tilde{F}$ : $\{\coprod_{9}(\mathrm{R}, 0)\}\cross \mathrm{R}^{N}arrow \mathrm{R}^{2}$ by all line arrangements
of the parametrization $F:\mathrm{I}\mathrm{I}9(\mathrm{R}, \mathrm{o})arrow \mathrm{R}^{2},0$ of straight 9-lines (Fig.15) is not topologically
versal.

(A deformation of a $\mathrm{m}\mathrm{a}\mathrm{p}-(\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}-)\mathrm{g}e\mathrm{r}\mathrm{m}$is topologically versal if it contains all topological
types appearing as perturbations of the original germ. For the rigorous definition, see [8] [9]
for instance.)

The proof is a easy consequence of Puppus’s theorem (Fig.16). By a infinitely flat per-
turbation of $\tilde{F}$ , we get a non-stretchable pseudo-line arrangements as a $\mathrm{p}$ erturbation of $F$ .
Originally this example was found by Levi [13].

Based on Gr\"unbaum’s conjecture, I conjecture that the deformation by all line arrange-
ments of straight $s$ -lines is topologically versal for $s\leq 8$ .

(2) It seems that few results are known for the concret $e$ topological classification of real
rational curves of degree 6 in $\mathrm{R}\mathrm{P}^{2}$ (besides trivial observations). Here we just mention that,
using Petrovsii-Marin’s inequality [15], we see the left picture of Fig.17 is not realised as an
isotopy type of $\mathrm{r}e$al rational curve of degree 6. But this method can not applied to the right
picture of Fig.17. I do not know whether it exist or not.

Let $C\subset \mathrm{P}^{2}$ be a $\mathrm{r}e$al rational $M$-curve of degree 6. Then after blowing up at the 10
double points and taking ramified double coverings along the strict transform, we get a real
$K3$ surface with the cohomology classes of doubled exceptional divisors. I wish to ask the
relation to the Nikulin’s theory [16].

(3) Ozawa pointed out that the space $C_{n}$ of convex curves $S^{1}arrow \mathrm{R}^{2}$ with Gauss index
$n$ is connected for any $n$ . I wish to know the topology of $C_{n}$ and the subspace of curves
isotopic to Fourier $M$ curves of degree $n$ .

(4) Pecker [17] constructed (not necessarily rational) $M$-curves by using Chebyshev poly-
nomials. See also [21]. I wish to know the relation of Pecker’s construction and the pertur-
bations of a blossom $b_{2n-1}$ .
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2 Proofs of Results

Proof of Proposition 1.4: Let $C\subset \mathrm{P}^{2}$ be a generic algebraic front ( $=$ algebraic curve with
ordinary double points and ordinary cusps as singularities) of degree $m$ . Recall that the
Pl\"ucker-Klein’s formula [14] [25]:

$k$ $=$ $m(m-1)-2d-3r$,
$m$ $=$ $k(k-1)-2t-3w$ ,
$w$ $=$ $3m(m-2)-6d-8r$,

$r$ $=$ $3k(k-2)-6t-8w$.

(Here we need the first equality.) And if $C$ is defined over $\mathrm{R}$ ,

$m+w’+2t”=k+r’+2d”$ .

Here $k$ is the degree of the dual $C^{\vee}$ in the dual projective plane $\mathrm{P}^{2*},$ $d$ is the number of
double points, $r$ that of cusps, $t$ double tangents and $w$ inflection points of $C$ . The genericity
condition demands that all appearing numbers are finite. We denote by $w’$ (resp. $r’$ ) the
number of real inflection points (resp. real cusp points). For real curves, remark that there
are two kinds of $\mathrm{r}e$al double points (resp. $\mathrm{r}e$al double tangents): $t”$ designates the number of
isolat $e\mathrm{d}$ double tangents ( $=\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}$ tangent lines to imaginary points of $C$ ) and $d”$ the number
of isolated double points of $C$ .

Remark that, if there is a Fourier $M$-curve with an inflection point, then there is a Fourier
$M$-curve with the same degree satisfying the genericity conditions of Pl\"ucker-Klien formula
for the image in $\mathrm{P}^{2}$ .

Now, for a generic Fourier curve of degree $n$ , consider the corresponding $\mathrm{r}e$al rational
curve and its image in $\mathrm{P}^{2}$ . Then $m=2n,$ $d=\ell=(2n-1)(n-1),$ $r=0$ . So $k=2(2n-1)$ .
Since $r’=0,$ $d”=0$ , we have $2n+w’+2t”=2(2n-1)$ , therefore $w’+2t”=2n-2$ . But,
for Fourier curve of degree $n$ , the line of infinite is perturbed to $(n-1)$ real isolated double
tangents. Thus $t”\geq n-1$ . Therefore we see $w’=0$ . $\square$

To prove Theorem 1.7 (2), (3), (4), we use the following non-trivial result:

Lemma 2.1 Two simple admissible pseudo-line arrangements of $(2n-1)$ strings are con-
nected be $a$ one-parameter family of admissible pseudo-line arrangements with only bifurca-
tions of death-barth triangles (without tangent points).

137



The proof of Lemma 2.1 will be given in a forthcoming paper. (In the case of line
arrangements, Ringel [19] showed the result already.)

Proof of Theorem 1.7$\cdot$. Let $F$ be an admissible representative of $A$ . First we remark that, if
we add the line at infinity to $A$ , then we get a pseudo-line arrangement $\tilde{A}$ in the projective
plane $\mathrm{R}\mathrm{P}^{2}[13]$ . (The orientation of the line at infinity is determined from an admissible $F$ ).
We are going to show that the Gauss diagram $D(c(F))$ of the closure of $F$ determines the
Gauss diagram $D(\tilde{A})$ .

The circle of the Gauss diagram of a closure of a psedo-line arrangement is divided into
$(2n-1)$ -arcs. On each arc, there are $(2n-2)$ intersection points( $=\mathrm{e}\mathrm{n}\mathrm{d}$ points of chords).
If we fix a division point, which is not an intersection point, then we get a decomposition of
the circle into $(2n-1)$ -arcs, each of which posseses $(2n-2)$ intersection points on it.

Assume that there exists a division point $P$ (for another possible pseudo-line arrange-
ment) lies on the string $L_{1}$ of $F$ and $l,$ $\ell>0$ , intersection points next to $P$ on $L_{1}$ . Consider
the end point $Q$ of $L_{1}$ , the start point $R$ of $L_{2}$ and the next division point $S$ on $L_{2}$ . Let $T$

be the intersection point of $L_{1}$ and $L_{2}$ . Assume $T$ lies before $P$ . Then we have the cycle
TPQRT. Consider the $\ell$ strings intersecting to $L_{1}$ along $PQ$ . They must intersect to $L_{2}$

along $RT$ . Since $PS$ is a string for another alrangement, $T$ must come after $S$ . Besides
of $L_{1}$ , the $\ell$ strings intersect to $L_{2}$ on $TS$ . Then we have $(2n-2-\ell)+(\ell+1)=2n-1$
intersection points on $L_{2}$ . (Fig.18.) This leads a contradiction. So $T$ must lie after $P$ . Then
$S$ must lie before $T$ . However, then, considering $(2n-2-\ell)$ strings through $RS$ , we have
again a contradiction.

(1): If $c(F)$ and $c(F’)$ are isotopic (resp. homeomorphic), then there exists an orientation
preserving (resp. not necessarily orientation preserving) isomorphisms of diagrams $D(c(F))$

and $D(c(F’))$ . Then the isomorphism induces that of $D(\tilde{A})$ and $D(\tilde{A}’)$ . By a theorem of
Carter [6], we see $\tilde{A}$ and $\tilde{A}’$ are isotopic (resp. homeomorphic). Since the line at infinity is
distinguished, we can take homeomorphisms preserving the line at infinity. This implies the
$\mathrm{r}e$quired isotopy (resp. homotopy) in $\mathrm{R}^{2}$ .

(2), (3)&(4): Under the passage of a death-barth triangle, the values $\mathrm{S}\mathrm{t}(C(F))+\mathrm{s}\mathrm{t}(c’(F))$

(resp. $J^{\pm}(c(F))$ ) remains constant. By concrete computations based on the results of Viro
$[26]\square$

and Shumakovitch [20], the constant is equal to $n-1$ (resp. $(n-1)(n-2),$ $-(n-1)(n+1)$ ).
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$l=O$ $\mathit{1}=/$

$q_{\vee}--2_{-}$ $\chi_{-3}-$

$\overline{\vdash_{\mathrm{I}}}.7\ell 2$ .

$\mathrm{O}$

$\mathrm{F}_{\grave{l}}\theta\cdot 3$ .
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1
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$\mathrm{A}\mathit{4}_{)^{\mathrm{q}_{\mathrm{C}}e_{\mathrm{M}}\circ}y}\backslash$

$T^{\int-}.=_{\mathit{2}}$

ノ
$y^{rightarrow}.=-ff$

$\mathrm{t}\cdot$ -j $\mathrm{M}\mathrm{i}$rro $\gamma\sim$

$7hey$ arc $aj\nu\iota_{\ell^{h(}}\dot{\mathrm{c}}d_{\mathrm{C}}l\tau r\alpha$ $\ll n\varphi^{\{}k$
$\copyright$ \copyright $\emptyset \mathcal{O}\mathit{0}$
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R7. $\sigma’$

$\ulcorner_{\mathrm{i}f}$ . $f$

$P\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{n}\epsilon \mathrm{c}\mathrm{r}i\mathrm{c}\mathrm{p}\mathrm{l}\circ\zeta\zeta \mathrm{t}\mathrm{c}\circ 8[3\mathrm{c}]-\mathrm{c}\circ \mathrm{s}\zeta 2\mathrm{S}1,$ $\mathrm{S}\propto[3\mathrm{t}]*Si\mathrm{n}\zeta 2\mathrm{t}1\}$ ,
$\iota \mathrm{c},- \mathrm{P}i,$ $\mathrm{P}i\},$ $13[] \mathrm{a}\mathrm{s}-,$ Non$\cdot$ ]

$\dot{m}\backslash \uparrow$

$up$ $t_{\sigma}$

$C+l\sigma\iota\theta e\#$.
ノ

$t1\sigma\ t\nwarrow\prime\prime)$

$\mathrm{F}_{\mathrm{I}^{\backslash }}f,7$
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$\mathrm{F}_{1^{\backslash }}\rho,$

$\mathrm{P}$

$\mathrm{F}_{7}^{\backslash }[?$
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$\mathrm{F}_{7^{l^{0}}}^{\backslash }|$

mu $\ovalbox{\tt\small REJECT}$

$\overline{\vdash}_{1}^{\backslash }7^{11}$

$||\ t\iota u\mathrm{c}\alpha \mathrm{J}\urcorner\ovalbox{\tt\small REJECT} \mathrm{v}\prime\prime$

$\hslash_{7^{\mathrm{I}2}}^{\backslash }.$. $\mathrm{O}^{1}$

$<<\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{s}$ Diagram$>>$

Connect the pairs of double points on the circle
by chords. Give an orientation on each chord by
the Gauss rule:

$x_{/}.\backslash ^{\mathrm{j}}\chi$

$i^{arrow:}\prime \mathrm{J}$

$\mathrm{F}_{17}^{\backslash }$ . $\mathrm{I}\mathit{3}$

$\cap+$

$\mathrm{F}.|@,$
$|+$

145



$\mathrm{h}^{1\theta},$

$|\sigma$

$\mathrm{H}^{\mathrm{L}^{\wedge}}\int\uparrow|6$

$\overline{\}^{-1^{\backslash }}}7|(^{\mathrm{I}}7$

$\overline{\vdash_{\beta 1}^{\backslash }|}/\mathrm{S}$

146


