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My talk at the RIMS conference summarized the recent joint work with D.
Lehmann and M. Soares [LSS] (see also [LS2]).

We give a differential geometric definition of the residues, which include
the index defined in [GSV] (see also [Se], [BG], [G], [SS]) as a special case, of a
holomorphic vector field tangent a singular variety and also integral formulas to
compute them. The method is a generalization of the one initiated in [L].

Let $V$ be a pure $p$ dimensional reduced subvariety of a complex manifold $W$

of dimension $n$ . Assume that $V$ is a local complete intersection. Thus the normal
bundle $N_{V’}$ of its regular part $V’$ extends (canonically) to a vector bundle $N_{V}$ on
$V$ and we have a commutative diagram of vector bundles on $V$ with an exact row

$TW|_{V}rightarrow\pi N_{V}$

$\uparrow \mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}$ . $\uparrow \mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}$ .

$\mathrm{O}rightarrow TV’arrow TW|_{V’}arrow N_{V’}rightarrow 0$ .

Suppose, furthermore, that $V$ is a $‘\zeta \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}$

” local complete intersection in the sense
of [LS1], i.e., $N_{V}$ still extends to a $(C^{\infty})$ vector bundle on a neighborhood of $V$ in
$W$ . This class of varieties include, beside the non-singular ones, every hypersurface
with a natural holomorphic extension of $N_{V}$ (the line bundle on $W$ determined
by the divisor $V$ ), every complete intersection with a trivial extension of $N_{V}$ and
every complete intersection in the projective space with a holomorphic extension of
$N_{V}$ depending only on the degrees of polynomials defining $V$ . See [LS1] for more
details.

Suppose we have a holomorphic vector field $X$ on $W$ leaving $V$ invariant
and define the singular set $\Sigma$ to be the set of singular points of $X$ on $V$ and singular
points of $V;\Sigma=(\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(X)\cap V)\cup \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(V)$. For each compact component of $\Sigma$ ,
we may define the residues, which are localized characteristic classes of the virtual
tangent bundle $TW|_{V}-N_{V}$ of $V$ .
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First we consider the case of isolated singularities. Let $P$ be an isolated
point of $\Sigma$ and $f_{1},$

$\ldots,$
$f_{q},$ $q=n-p$, local defining functions for $V$ near $P$ . The

invariance condition for $V$ by $X$ is given by

$Xf_{i}= \sum_{=j1}^{q}cijfj$ , $i=1,$ $\ldots,$ $q$ ,

with $c_{ij}$ holomorphic functions near $P$ ([Sa], [BR]). We set $C=(c_{ij})$ , a $q\cross q$ matrix.
Then we have the following lemma ([LS1] Theorem 2).

Lemma 1. There exists a local coordinate syst $\mathrm{e}m(z_{1}, \ldots, z_{n})$ near $P$ in $W$ such
that, if we express $X$ as

$X= \sum_{i=1}a_{i}(Z_{1}, \ldots, Z_{n})n\frac{\partial}{\partial z_{i}}$ ,

the sequence $(a_{1}, \ldots, a_{p}, f_{1}, \ldots, fq)$ is $\mathrm{r}eg$ular, $i.e.$ , the set of common $z$eros of the
holomorphic functions $a_{1},$

$\ldots,$ $a_{p},$
$f_{1},$

$\ldots,$
$f_{q}$ consists only of $P$ .

Letting $J= \frac{\partial(a_{1},.\cdot.,a_{n})}{\partial(z_{1},..,z_{n})}$ be the Jacobian matrix, we denote by $[c(-J)\cdot$

$c(-C)-1]_{k}$ the holomorphic function given as the coefficient of $t^{k}$ in the formal

power series expansion of $\det(I-t\frac{\sqrt{-1}}{2\pi}J)\cdot\det(I-t\frac{\sqrt{-1}}{2\pi}C)^{-1}$ in $t$ .

Theorem 1. We take a coordinate system as in $L$emma 1 and set

$\mathrm{I}\mathrm{n}\mathrm{d}_{V,P}(X)=\int_{\Gamma}\frac{[c(-J)\cdot c(-c)-1]pd_{\mathcal{Z}}1^{\wedge dd}z2\wedge\cdots\wedge z_{p}}{a_{1}a_{2}\cdots a_{p}}$ .

Here $\Gamma$ denotes the $p$-cycl$e$ in $V$ given by

$\Gamma=\{z||a_{1}(z)|=\cdots=|a_{p}(z)|=\epsilon, f_{1}(z)=\cdots=f_{q}(Z)=0\}$ ,

for a small positive number $\epsilon$ , which is orien$ted$ so that $d\theta_{1}\wedge\cdots$ A $d\theta_{p}$ is positive,
$\theta_{i}=\arg a_{i}$ . Then
(i) $\mathrm{I}\mathrm{n}\mathrm{d}_{V,P()}x$ coin$cid$es with the index defined in $[GSV]$.
(ii) If $V$ is colnpact and if $\Sigma$ consists of isolated points, we $h$ave

$\sum_{P\in\Sigma}\mathrm{I}\mathrm{n}\mathrm{d}V,P(x)=\int_{V}c_{p}(TW|V-NV)$ .

To state more general results, we briefly recall the Chern-Weil theory of
characteristic classes. Let $Earrow M$ be a complex vector bundle of rank $r$ on a $(C^{\infty})$

manifold $M$ . For a connection $\nabla$ for $E$ and a Chern polynomial $\varphi\in \mathbb{C}[c_{1}, \ldots, c_{\Gamma}]$ ,
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homogeneous of degree $d(\deg ci=i)$ , we have a closed 2$d$-form $\varphi(\nabla)$ on $M$ rep-
resenting the characteristic class $\varphi(E)$ in the de Rham cohomology. Moreover, if
we have a finite number of connections $\nabla_{0},$

$\ldots,$
$\nabla_{k}$ for $E$ , there is a $2d-k$-form

$\varphi(\nabla_{0}, \ldots, \nabla_{k})$ such that

$\sum_{i=1}^{k}\varphi(\nabla_{0}, \ldots,\hat{\nabla}_{i}, \ldots, \nabla_{k})+(-1)^{k}d\varphi(\nabla 0, \ldots, \nabla k)=0$

(see [B2]).
’ Now let $V,$ $W,$ $X$ and $\Sigma$ be as before. The key fact in localizing the

characteristic classes of the virtual tangent bundle $TW|_{V}-N_{V}$ is that the bundles
$TW|_{V}$ and $N_{V}$ admit an “$X$ -action” on $V-\Sigma$ in the sense of [B1]: for $TW|_{V}$ ,
$\mathrm{Y}\mapsto[X, Y]$ and for $N_{V},$ $\pi(Y)\mapsto\pi([X, Y])$ . Thus there exist “special connections”
for $TW|_{V}$ and $N_{V}$ .
Lemma 2 (Vanishing theorem). Let $\nabla_{1},$

$\ldots,$
$\nabla_{s}$ be special connecctions for

$TW|_{V-\Sigma}$ and $\nabla_{1},$
$\ldots,$

$\nabla_{s’}$ special $con\mathrm{n}$ecctions for $N_{V-\Sigma}$ . Also, let $\varphi\in \mathbb{C}[c_{1}, \ldots, c_{n}]$

and $\varphi’\in \mathbb{C}[c_{1}, \ldots, c_{q}]$ be homogeneous Chern polynomials. If $\deg\varphi+\deg\varphi’=p$ ,
then we $h\mathrm{a}\mathrm{v}e$ .

$\varphi(\nabla_{1}, \ldots, \nabla_{s})\wedge\varphi’(\nabla_{1}’, \ldots, \nabla_{S}’J)=0$.
This lemma in particular implies that the cup product $\varphi(TW|_{V})\sim\varphi’(N_{V})$

of characteristic classes vanishes over $V-\Sigma$ . Thus this product “localizes” near $\Sigma$ ,
in the sense that it has a natural lift to $H^{2p}(V, V-\Sigma)$ giving rise to residues in
$H_{0}(\Sigma)$ by duality when $\Sigma$ is compact. In fact this is done as follows.

Let $\Sigma_{0}$ be a compact connected component of $\Sigma$ and $U_{0}$ an open neighbor-
hood of $\Sigma_{0}$ in $W$ such that $V_{0}-\Sigma_{0}$ is in the regular part of $V,$ $V_{0}=U_{0}\cap V$ . Also,
let $\tilde{\mathcal{T}}$ be a compact (real) manifold of dimension $2n$ with boundary in $U_{0}$ such that
$\Sigma_{0}$ is in the interior of $\tilde{\mathcal{T}}$ and that the boundary $\partial\tilde{\mathcal{T}}$ is transverse to $V$ . We write
$\mathcal{T}=\tilde{\mathcal{T}}\cap V$ and $\partial \mathcal{T}=\partial\tilde{\mathcal{T}}\cap V$ . We take an arbitrary connection $\nabla_{0}$ for $TW$ on $U_{0}$

and a special connection $\nabla$ for $TW|_{V_{0}}-\Sigma_{0}$ . Take also $\nabla_{0}’$ and V’ similarly for an
extension of $N_{V}$ and $N_{V}|_{V_{0}}-\Sigma_{0}$ .

Let
$\rho:\mathbb{C}[_{C_{1}}, ., . , c_{p}]arrow \mathbb{C}[c_{1}, \ldots, C_{n}]\otimes \mathbb{C}[_{C’}1’\ldots,q]c^{;}$

be the homomorphism which assigns, to $c_{i}$ , the i-th component of the element
$(1+c_{1}+\cdots+c_{n})(1+c_{1}’+\cdots+c_{q}’)-1$ (with the terms of sufficiently large degree
truncated). For a polynomial $\varphi\in \mathbb{C}[c_{1}, \ldots, c_{p}]$ , we may write $\varphi=\sum_{i}\varphi_{i}\varphi_{i}’$ with
$\varphi_{i}\in \mathbb{C}[c_{1}, \ldots, c_{n}]$ and $\varphi_{i}’\in \mathbb{C}[c_{1’ q}’\ldots, c’]$

Lemma 2. Let $\varphi$ be a polynomial in $\mathbb{C}[c_{1}, \ldots, c_{p}]$ homogeneous of degree $p$ . If we
define the residue ${\rm Res}_{\varphi}(TW|V, NV;\Sigma_{0})$ by

${\rm Res}_{\varphi}(TW|V, NV;\Sigma_{0})$

$= \sum_{i}(\int_{\mathcal{I}}\varphi_{i}(\nabla 0)\varphi i(’\nabla_{0}’)-\int_{\partial \mathcal{T}}(\varphi i(\nabla)\varphi i(\nabla’, \nabla’)0+\varphi_{i}(\nabla, \nabla_{0})’\varphi’i(\nabla’)0))$ ,
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then
(i) This number does not depend on the choices of $\tilde{\mathcal{T}}$ , $\nabla,$ $\nabla_{0},$ $\nabla’$ , and $\nabla_{0}’$ .
(ii) $Ass\mathrm{u}\mathrm{m}eV$ to be compact and let $(\Sigma_{\alpha})_{\alpha}$ be the partition of $\Sigma$ into connected
$co\mathrm{m}$ponents. Then, we $ha\mathrm{v}e$

$\sum_{\alpha}{\rm Res}_{\varphi}(TW|V, NV;\Sigma_{\alpha})=\int_{V}\varphi(TW|V-NV)$ .

Note that if $\Sigma_{0}$ is in the regular part of $V$ , the residue ${\rm Res}_{\varphi}(TW|V, NV;\Sigma 0)$

coincides with that of P. Baum and R. Bott $([\mathrm{B}\mathrm{B}1], [\mathrm{B}\mathrm{B}2])$ of $X$ for $\varphi$ at $\Sigma_{0}$ .
Now we suppose $\Sigma_{0}$ consists of an isolated point $P$ . In general, for an $r\cross r$

matrix $A$ , we define $c_{i}(A),$ $i=1,$ $\ldots,$
$r$ , by

$\det(I+t\frac{\sqrt{-1}}{2\pi}A)=1+t_{C_{1}}(A)+\cdots+t^{r}c_{r}(A)$ .

Thus, for a polynomial $\varphi$ in $\mathbb{C}[c_{1}, \ldots, c_{r}]$ , we may also define $\varphi(A)$ , which is a
holomorphic function, if $A$ is a matrix with holomorphic entries.

Theorem 2. If we talce a coordinate system $(z_{1}, \ldots, z_{n})$ as in Lemma 1, for a
$ho\mathrm{m}$ogeneous polynomial $\varphi$ of degree $p$ , we $h\mathrm{a}\mathrm{v}e$

${\rm Res}_{\varphi}(TW|V, N_{V;}P)= \sum i\int_{\Gamma}\frac{\varphi i(-J)\varphi i(\prime-c)dz1\wedge\cdots\wedge dZp}{a_{1}\cdots a_{p}}$,

where $\Gamma$ denotes the $p$-cycle as in Theorem 1.

Note that ${\rm Res}_{C_{P}}(TW|V, N_{V;)}P=\mathrm{I}\mathrm{n}\mathrm{d}_{V,P}(x)$ .

As we have seen in the above theorems, we encounter integrals of the form

$\int_{\Gamma}\frac{h(z)dz_{1}\wedge dz_{2}.\wedge\cdots\wedge dZp}{a_{1}a_{2}\cdot\cdot a_{p}}$ ,

where $\Gamma$ denotes a $p$-cycle as in Theorem 1. We give a formula for this integral in
the case $V$ is a hypersurface and the system $(a_{1}, \ldots, a_{p})$ is “non-degenerate” in the
following sense. We denote by $\mathcal{O}_{n}$ the ring of germs of holomorphic functions at
the origin $0$ in $\mathbb{C}^{n}$ and let $(z_{1}, \ldots, z_{n})$ be a coordinate system near $0$ in $\mathbb{C}^{n}$ . Also,
let $a_{1},$ $\ldots,$ $a_{n-1}$ be germs in $\mathcal{O}_{n}$ vanishing at $0$ and $V$ a germ of hypersurface with
isolated singularity at $0$ in $\mathbb{C}^{n}$ with defining function $f$ . We further assume:

(i) $\det(\frac{\partial(a_{1},...’ a_{n-1})}{\partial(z_{1},.z_{n-1})},)(0)\neq 0$ , thus $(a_{1}, \ldots , a_{n-1}, z_{n})$ form a coordinate system.

(ii) Each $a_{i},$ $i=1,$ $\ldots,$ $n-1$ , depends only on $z_{1},$ $\ldots$ , $z_{n-1}$ .
(iii) In the coordinate system $(a_{1}, \ldots, a_{n-}1, z)n’ f$ is regular in $z_{n}$ . We denote by $p$

the order of $f$ in $z_{n}$ .
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Note that the condition (iii) implies that $(a_{1}, \ldots, a_{n-1}, f)$ is a regular se-
quence. Denoting by $\Gamma$ the $(n-1)- \mathrm{c}\mathrm{y}\iota$cle in $V$ given by

$\mathrm{r}=\{_{Z}\in V||a_{1}(z)|=\cdots=|a_{n}-1(z)|=\epsilon\}$ ,

for a small positive number $\epsilon$ , which is oriented so that $d\theta_{1}\mathrm{A}\cdots\wedge d\theta_{n-1}$ is positive,
$\theta_{i}=\arg a_{i}$ , we have the following formula.

Proposition. In the above situation, we have, for a holomorphic function $h$ near
$0$ ,

$( \frac{1}{2\pi\sqrt{-1}})^{n-1}\int_{\Gamma}\frac{h(z)dz_{1}\wedge d\mathcal{Z}_{2^{\wedge}}.\cdots\wedge dzn-1}{a_{1}a_{2}\cdot\cdot a_{n-1}}=\frac{l\cdot,.h(0)}{\det(\frac{\partial(a_{1},..\cdot,a_{n-1})}{\partial(z_{1}.,z_{n-1})})(0)}.\cdot$

The above formula is proved in [LS2] under a weaker condition.
Let $W,$ $V,$ $X$ and $\Sigma$ be as before. Here we assume that $V$ is a hypersurface.

For an isolated point $P$ in $\Sigma$ , under the additional conditions above, we may compute
the residues in Theorem 2, by the formula in the above Proposition.

Let $V$ be defined by $f$ near $P$ and $(z_{1}, \ldots, z_{n})$ a coordinate system about
$P$ . We write $X= \sum_{i=1}^{n}a_{i}\frac{\partial}{\partial z_{i}}$ and assume that the conditions (i), (ii) and (iii)

are satisfied. Note that the eigenvalues of $\frac{\partial(a_{1},...’ a_{n-1})}{\partial(z_{1},.z_{n-1})},(0)$ are part of those of
$J( \mathrm{O})=\frac{\partial(a_{1},..\cdot,a_{n})}{\partial(z_{1},z_{n})}.,(0)$ . So let $\lambda_{1},$

$\ldots$ , $\lambda_{n-1}$ and $\lambda_{1},$

$\ldots,$
$\lambda_{n-1},$ $\lambda_{n}$ be the ones for

these matrices. By (i), $\lambda_{1},$

$\ldots,$
$\lambda_{n-1}$ are all non-zero, while $\lambda_{n}$ may be zero. Since

$q=1$ in this case, $C$ is a 1 $\cross 1$ matrix. We set $\gamma=C(\mathrm{O})$ .
In what follows, for complex numbers $\lambda_{1},$ . .. , $\lambda_{r}$ , we define $c_{i}(\lambda_{1}, \ldots, \lambda_{r})$ ,

$\dot{i}=1,$ $.$ . $,$

$r$ , by

$i=1\square (1+.t\lambda_{i})=1+tC1(\lambda 1, \ldots, \lambda r)+.\cdots+.t^{r_{C}}r(\lambda_{1}, \ldots, \lambda r)r.\prime 1^{\cdot}$

Thus for a polynomial $\varphi$ in $\mathbb{C}[c_{1}, \ldots, C_{r}]$ , we may define $\varphi(\lambda_{1}, \ldots, \lambda_{r})$ .
By the above proposition, for a polynomial $\varphi$ in $\mathbb{C}[c_{1}, \ldots , c_{n-1}]$ homoge-

neous of degree $n-1$ , the residue in Theorem 2 is given by

${\rm Res}_{\varphi}(TW|V, N_{V};P)=p. \sum_{i=0}n-1\frac{\varphi_{i}(\lambda_{1}.\cdot.,\lambda_{n})\gamma^{i}}{\lambda_{1}\cdot\lambda_{n-1}},.\cdot$ ,

where, for each $\dot{i}=0,$
$\ldots,$ $n-1,$ $\varphi_{i}$ is a polynomial in $\mathbb{C}[c_{1}, \ldots, c_{n}]$ , homogeneous of

degree $n-\dot{i}-1$ , determined by $\rho(\varphi)=\sum_{i=0^{1}}^{n-}\varphi_{i}\cdot(c_{1}’)^{i}$ . In particular, for $\varphi=c_{n-1}$ ,
we have

$\mathrm{I}\mathrm{n}\mathrm{d}_{VP}’(x)=\ell\cdot\frac{\lambda_{1}\cdots\lambda_{n}-(\lambda 1.-\gamma)\cdots(\lambda n-\gamma)}{\lambda_{1}\cdot\lambda_{n-1}\gamma}..\cdot$

If $\gamma=0$ , the right hand side in the above is understood to be the limit as $\gamma$

approaches $0$ .
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Example. Let $V$ be a hypersurface in $\mathbb{C}^{n}=\{(z_{1}, \ldots, Z_{n})\}$ defined by a weighted
homogeneous polynomial $f$ of type $(d_{1}, \ldots, d_{n})$ with isolated singularity at the origin
$0$ . For the holomorphic vector field $X= \sum_{i=1^{\bigwedge_{\frac{\partial}{\partial z_{i}}}}}^{nz}d_{i}$

’ we have $X(f)=f$ and
thus $V$ is invariant by $X$ . We asssume that $f$ is regular in $z_{n}$ . This implies that
$d_{n}$ is a positive integer and $f$ is regular in $z_{n}$ of order $d_{n}$ . If we let $a_{i}=arrow d_{i}z\cdot$ ,
$\dot{i}=1,$ $\ldots$ , $n,$ $(a_{1}, \ldots, a_{n-1}, f)$ is a regular sequence and the conditions (i), (ii) and
(iii) are satisfied. We have $\ell=d_{n},$ $\lambda_{i}=\frac{1}{d_{i}}$ and $\gamma=1$ . Hence we have

${\rm Res}_{\varphi}(TW|_{V,V}N;P)= \sum_{i=0}\varphi n-1i(\frac{1}{d_{1}},$
$\ldots,$

$\frac{1}{d_{n}})d_{1}\cdots dn$
’

where, for each $\dot{i}=0,$
$\ldots,$ $n-1,$ $\varphi_{i}$ is a polynomial in $\mathbb{C}[c_{1}, \ldots, c_{n}]$ , homogeneous of

degree $n-i-1$ , determined by $\rho(\varphi)=\sum_{i=}^{n-1}0\varphi i$ . $(C_{1}’)^{i}$ . In particular, for $\varphi=c_{n-1}$ ,
we have

$\mathrm{I}\mathrm{n}\mathrm{d}_{V’}p(x)=1+(-1)^{n-1}(d_{1}-1)(d2-1)\cdots(d_{n}-1)$ .

Note that, since $X$ is transversal to the boundary of the Milnor fiber of
$f,$ $\mathrm{I}\mathrm{n}\mathrm{d}_{V,P}(X)$ is also equal to the Euler number $1+(-1)^{n}-1\mu$ of the Milnor fiber,
where $\mu$ denotes the Milnor number of $f$ at $0$ . Thus we reprove the formula

$\mu=(d_{1^{-}}1)(d_{2}-1)\cdots(d_{n}-1)$

for the Milnor number ([MO] Theorem 1).
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