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On the irregular singularities of
confluent hypergeometric D-modules

BROKKTFREBFRUEN  HB FA

(Hideyuki Majima, Ochanomizu University)

1 Intoduction

In this expository paper, I will explain the irregularity at a singular point of differential
equation. At first, I will give you areview of study on ordinary linear differential equations.
Secondly, I will talk about holonomic D-modules, especially, confluent hypergeometric
differential modules in two variables.

2 Index theorems of ordinary differential operator
and its irregularity.

Consider a linear ordinary differential operator with coefficients in holomorphic func-
tions at the origin in the Riemann Sphere:

Pu = (i a,(:L) (d/dz)")u.

L i=0

where a,, is supposed not to be identically zero. Let @ and O be the ring of convergent
power-series and the ring of formal power-series in z, respectively. Then, we see the
following isomorphism of linear spaces due to Deligne (cf. [24], etc.) :

HY(S,Ker(P : Ay)) ~ Ker(P;0/0),

where Ag is the sheaf of germs of functions asymptotically developable to the formal
power-series 0 on the circle S!, for, from the existence theorem of asymptotic solutions
due to Hukuhara ( cf. [27]) (and other many contributers), we have the short exact
sequence

0— ]CGT(P‘ Z’ .Ao) — .Ao —ﬁ-) AO - 0,
from which, we get the exact sequence, |

0 = HY(S', Ker(P: Ay)) = H'(S', Ao)(= O/0) L5 HY(S, Ay)(= O/O) = 0.
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The dimension is finite and is equal to

io(P) = sup{i—v(a;):i=0,..,m}—(m—v(an))

= (v(an) —m) —inf{v(e;) —i:9=0,...,m},

which is called the irregularity by Malgrange [17], [18], the invariant of Fuchs by Gérard-
Levelt [3], [4] or the irregular index by Komatsu (in a private communication), where,

v(a) = sup{p: 27 Pa(z) is holomorphic at the origin.}.

Remark 0: Let K, K and & be the ring of the ring of convergent Laurent series with
finite negative order terms, the ring of formal, the ring of formal Laurent series with finite
negative order terms and the ring of convergent Laurent series, respectively. Denote by F
one of 0, O, K, K and £. We consider P as an operator from F to itself. Then, Ker(P; F)
and Coker(P; F) are finite dimensional, and has a index x(P;F) = dim¢ Ker(P; F) —
dim¢ Coker(P; F) , which can be calculated as follows:

X(P;0) = m—v(an),

x(P;0) sup{i —v(a;) : i =1,...,m},

X(P;K) = m—v(ay) —sup{i —v(a;) : i =1,...,m},
X(P;K) = 0,

x(P;€) = 0.

The quantity io(P) is also equal to the followings [17],' [18] :

x(P; 0) — x(P; 0),
X(P;K) — x(K),
=x(P; K),
X(P;K/K),

X(P; &) — x(P; K),
X(P;E/K),
X(P;€/0) — x(P;
dim¢ Ker(P; O/ 0),
dim¢ Ker(P; K/K),
dim¢ Ker(P; £/K),
dim¢ Ker(P; (£/0)/(K/0O)).

/O)a
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Remark 1: If we consider a linear ordinary differential operator with coefficients in holo-
morphic functions at the infinity in the Riemann Sphere and we do not use the variable
t= % , the quantity is equal to

io(P) = sup{v'(a;)) —i:i=0,..,m} — (V"(an) —m)
= (m—9'(an)) —inf{i —v'(a;) : ¢ =0,...,m},
where
v'(a) =sup{p:27Pa(z) is holomorphic at the infinity.}.

Remark 2: We have also another important quantity associated with the linear ordinary
differential operator P = (¥, a;(z)(d/dz)). At the origin, we set

v(am) —m) — (v(a;) — 1)
m—1i '

k = sup{0, ( t=0,..,m—1},
and at the infinity, we set

k = sup{0, (m — v{an)) = (i = (@) :1=0,...,m—1},

m-—1

which is called the invariant of Katz by Gérard-Levelt [3], [4] or the order by Sibuya
[29], and k + 1 is called the irregularity by Komatsu [9], [10]. In order to understand the
importance of this quantity, see the above references and also Ramis [25], [26], Komatsu
[11], Malgrange [21]. In adding a word, |

iolP) 2 k> UL ks (P 2 k.

Consider for example the generalized confluent hypergeometric differential operator

d? A, d By | B

where Ag, A1, By, By and B, are complex numbers. The value of irregularity in the sense
of Malgrange may be equal to 0, 1 or 2 and the value of order may be equal to 0, -;— or 1.
Here, we give a list of irregularities, orders and bases of

HY(S', Ker(P : Ay)) ~ Ker(P;0/0),

for Kummer, Bessel and Airy differential equations.

2.1 Confluent Hypergeometric(Kummer) Equation.

Ag=-1, A1 =c¢, By = 0, By =—a, B, =0, kA= 1, ZOO(P) = 1.
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Denote by Go(z) the confluent hypergeometric function, namely,

— 2 F(’Y) 2(ra—l¢q —a-1
G?(z) - 1 — e2mi(v—0) I‘(a)F('y — a) Le CC (1 C)7 dC,

where, for —7 < 8 < m, and 3m — 6 < argz < 37 — 0, C = C(1;6) is the path of integral
on which arg(¢ — 1) is taken to be initially 6 and finally 8 + 27, and so Ga(z) is defined for
—%71’ <argz < —%n, in particular, for § = 0 and -é-ﬂ’ <argz < %7{, the path of integral is
as follows,

.

and

~ 2 I'(7)
Gs(z) = 1 — e2mi=2) T'(a)T(y — @)

/+°°(e1ri(7—a—1) _ e—fri('y-—a—l))ez((a—l(l _ <)7—a—1dC,
1

. _ B o 1‘!(7) +00 B . . o

— mi(y—a—1) 2(ra=1¢q _ a-1
Go(2) = —2e 0N e [T et - (e,

(04

‘ — _ 99— i —a—;l) F(7) ‘—oo_ :(1=¢) (1 _ a1 v—a—
Ga(z) = —2¢~™0 @G = | et - gt

L S —ri(y— I'(y) el 1 py-a-
_ 1'r1,( a) Z ) zQ, - « a .
Ga2) = —2¢770 ‘r(a)r‘(»y—‘af/o (1 - () 1o,

—ri(y—a) L) 9 e tracly—an
=9 mi(y—a) z a-—'y/ t(1 _ ya—liy—a ldt
Ga(2) e T(@)T(y = a)e z , € (1 z) t ,

by using the Newton’s binomial expansion

tiaol FNa-1) tn
(1:!:;) —gf(a—l—n)l‘(n+l)(iz) ’

or -
E (-1 (n+1—-a),,t

ot _ & Lty
0™ = L i et &2

The asymptotic behaviours at the infinity for 7 < argz < 3, is as follows (cf. [2]
etc.) :

~ —mi(y—a F(V) —(v—a s = F(’Il +7 - a)F(n +1- a) -n
Gal2) ~ —2¢™™ )F(a)F(’y—- a)” 7 exp(—( Z))nz:% Tl-a)l(n+1)

Therefore, we can choose a basis of H'(S!,Ker(P : Ap)) in the following way: Put
Ui={2€C: |z| >R, F<arg 2< 3n},and U, = {z € C: |2| > R, =} < arg z < ¥}
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for a positive real number R. Then, {U;, U} forms an open sectorial covering at z = oo
and put
1 , 3 3 )
u12(2) = u(z) (§7r <arg z< §7r), u12(2) =0 (§7r <arg z< §7r)
In this situation, the cohomology classes of {u;5} forms a basis of H!(S!, Ker(P : Ap)).
By the original vanishing theorem due to [17] in asymptotic analysis, we have 0-cochains
{u1, ua} such that
UIQ(Z) = 'LLQ(Z) -_ ul(z),~
where u;(z) are deﬁned in U; for j = 1, 2 and asymptotically developable to a formal
power-series 4 = E,__O u,z~" at the first. ‘The coefﬁment u, is given by the following:

", = ;_T;/O’w 1Gy(2)dz
Sl gy e o
LoE r<a)1;(<§)— ST /1+°° i - cv>?-a-?d'<, 'V
PSSy )
e 1)rr<r>(—1)*f“‘1r(r}(Ztgi(z)_a)’
zh:ilNﬂFw—7+1%_DT&)

7iL(@)D(r — a+ 1)

By the vanishing theorem in asymptotic analysis with Gevrey estimates due to [24],
we can assert secondly that @ and ¢ are formal power-series with Gevrey order ¢ = 1. Our
new theorem [16] claims thirdly that we can have asymptotic estimates for the coefficients
of i, more precise than Gevrey estimates: for any sufficiently large number r,

(eni)s—r+(7—f’)F(r—8— (’Y. - 0‘))

Uy =

e~ mir—a) L(y MIT(s+y—a)l(s+1—a)
m I(a)I( g 'l—o)T'(s+1)
+O{T(r— M —R(y — 2))}

_1T(0), M D4y~ a)l(s 41— )T — s — (v — a)
R AP Ty = (= )T 1)

(=1)°
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+O{T'(r— M —R(y— a))}

provided 1 < M < r.
In the intersection Uy N U,, Puy(z) = Pus(z), which define holomorphic functions f
at the infinity, and P = f, so the equivalence class of 4, forms a basis of Ker(P; (’3/ 0).
Of course, in this case, we can compute a basis of Ker(P;® /O) directly: for example,
as a formal solution of the inhomogeneous linear ordinary differential equation P = 12;{1,
we have

& DD 1= —a) _,
“TZ_%( b 'l—yIl(r+1-a)

and the equivalence class of W as a basis of Ker(P; (’3/ O), of which coefficients admit
asymptotic estimates by the result on I'-function. '
By a little more calculation, we find that @ is equivalent to

—1T(y)I(1—-v) . —lsinma,
7t T(a)[(1 — a)w " mi sin 7r'yw

modulo O.

2.2 Bessel Equations.

Ao=0,A1=1,By=1,B,=0,By= 1% k=1, i,(P) =2.
Denote by H{!)(z) and H®(z) the Hankel functions, namely,

H(z) = \/l—“_‘ei(h%w%”)/ et 75 (1 + lt)"‘%dt
v mz T(w+3) Jo 2z ’

2 e—i(z-—%uﬂ'—ir) it
(2) —_ e —-t V—— _ y—_
HP(2) = || = oE |7 e - Sy,

we know the asymptotic behaviours at the infinity (cf. [2] etc.)

]2 & Tw+nts 1)ilz=gv-m)n=})
HWY (2 _ ‘ )
7rz V_7l+2)F(’Il+]_)(2g)n (—7 < arg z < 2m),
H®( / ' T(v+n+3)e —i(z=g(v=n)m—im)
-2 ; .
2 To—nt Drr @y (or<ue <)

by using the Newton’s bmomlal expansion

it INUESY) it .,
(li ) z=: u—n+-21-)f“(n+l)(i2_)'

Therefore, we can choose a basis of H'(S',Ker(P : Ap)) in the following way: Put
Ui={2€C: |z|>R,—-n<arg z<7n}andUs = {2 € C: |z2| > R, -2 < arg z < 0}
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for a positive real number R. Then, {U;, Uy} forms an open sectorial covering at z = oo
and put

wa(z) = HV(2) (0<arg z<7m), up(z)=0 (-7 <arg z<0),

and
vi2(2) =0 (0<arg z<7), wpa(z)=H?(z) (-7<arg z2<0).

In this situation, the pair of cohomology classes of {ui2} and {vj2} forms a basis of
H'(S!,Ker(P : Ap)). By the original vanishing theorem due to [17] in asymptotic analy-
sis, we have O-cochains {u, u2} and {v;, va} such that

u12(2) = up(2) —w1(2), vi2(2) = v2(z) — v1(2),

where u;(z) and v;(z) are defined in U; for j = 1, 2 and asymptotic developable to
formal power-series 4 = 3372, u,27" and ¥ = Y22, v.27", respectively, at the first. By
the vanishing theorem in asymptotic analysis with Gevrey estimates due to [24], we can
assert secondly that & and ¢ are formal power-series with Gevrey order ¢ = 1. Our new
theorem [16] claims thirdly that we can have asymptotic estimates for the coefficients of
% and © more precise than Gevrey estimates: for any sufficiently large number 7,

M-1 1 y+s+ ) i(—%(ufs)n—v%W) . ) .
\/7 8+2)F(3+1)(2)s ( Z) +3 F(1—S—§)+O{I‘(T_M_§)}

MIT(y 454 Yemitomonin) 1 1
\$—1r 3 — I __M*_
[ Tv—s+ D@y 0 Tr—s—35)+0{Tk )}

provided 1 < M <r.
In the intersection Uy N Us, Puy(z) = Pus(z) and Pv,(z) = Puvy(z), which define
holomorphic functions f and g at the infinity, and P4 = f, P9 = g, so the pair of
equivalence classes of @ and 9 forms a basis of Ker(P; ) /O). Therefore, if % is a formal
solution to an inhomogeneous equation P = h € O, we assert that W = Y2, w,2™"
should have the same kind of asymptotic estimates for coefficients.

Of course, in this case, we can compute a basis of Ker(P; ® /O) directly: for example

as a formal solution of the inhomogeneous linear ordinary differential equation Pj; = 274,
we have )
i LLT(n+ L) I'(n + %)Z_zn_j
0 L) T(HY)

for j =1, 2 and the pair of equivalence classes of wj; and i, as a basis of Ker(P; O /O),
of which coefficients admit asymptotic estimates by the result on I'-function.
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2.3 Airy Equation.
The Airy equation is of the form

1d%v

e —v=0,

Do . . . 1
which is transformed into the Bessel equation with the parameter v = 3 by the transfor-

mation
v(2) = (27)5w(5iz7).

Denote by Ai(z) the Airy function, namely,

1 i 48
Ai(z) = 5 /-ioo» exp(zt — g)clt,

The asymptotic behaviours at the infinity is as follows (cf. [2] etc.) @

1

» 2 3. XTBn+1i) i T
A N —2 3 —_——22 2 , 2n < -

Therefore, we can choose a basis of H'(S', Ker(P : Ao)) in the following way: Put

1
Uy = {#:€C: |z| >R, -1 < arg z<§‘7r},_

Uy {zeC: |z| >R, -—%ﬂ‘ <arg z <7},
1 )
U3 = {2€C: |z| >R, 3T <arg z < —§7r}

for a positiVe real number R. Then, {Uy, U,, Us} forms an open sectori‘al. covering at
z = 0o and put '

v 1 1
ua(z) = Ai(z) (—-—3- <arg z < §7r),

1
u93(2) 0 (—3-7r <arg z<m),
uz(z) = 0 (m<arg z< gﬂ'),

1 1
vi2(z) = 0 (—§ <arg 2z < =),

3
2 1
ve3(2) = Ai(exp(——gm')z) (§7r < arg z < m),
)
vg1(2) = 0 (—7m<arg z< z7),

3



101

1 1
wia(z) = 0 (—§<arg z<§7r),'

1
waz(z) = 0 (§7r < arg z <),
2 )
Cws(z) = Ai(exp(gwi)z) (-m<arg z< §7r),
In this situation, the pair of cohomology classes of {u;;}, {vi;} and {w;;} forms a basis of

H(S',Ker(P : Ap)). By the original vanishing theorem due to [17] in asymptotic analysis,
we have 0-cochains {uy, us, us}, {vl,vg,p;;} and {w;, ws, w3} such that

uje(2) = we(2) — uj(z), | .
’ch(z) = ’Ug(Z) - vj(z)’ ((]76) = (172)’ (2v3)5 (3a 1))
wie(z) = we(z) — w;(z),

where u;(z), v;(2) and w;(2) are defined in Uj for j - 1, 2, 3and as‘ymptotically developable
to formal power-series &4 = 322 u,2™", U = Zr 0 UrZ”" and W = Y72, w277, respectively,
at the first. By the vanishing theorem in asymptotic analysxs with Gevrey estimates due
to [24], we can assert secondly that @& and ¥ are formal power-series with Gevrey order
o= % Our new theorem [16] claims thirdly that we can have asymptotic estimates for
the coefficients of @, ¥ and @ more precise than Gevrey estimates: for any sufficiently large:

number 7,
1 = TBs+3) 4.y, 3 1 e
e D T ()*T(r = 55— 2) + O{T(r - M = )}

provided 1< M <. : ‘ :

In the intersection U; N Uy, Pu]( z) = Puy(z) and Pv;(z) = Pv(z), which define holo-
morphic functions f, g and h at the infinity, and P = f, P = g, Pw = h, so the triple of
equivalence classes of @, # and w forms a basis of Ker(P; O / 0).

Of course, in this case, we can compute a basis of Ker(P; O / (’)) dnectly for example, as
a formal solution of the 1nhomogeneous linear ordinary dlﬁ'ele11t1al equatlon Py = —z7,

we have
= T(3n+j)T(5F)

Wi = ,,2:‘1) 3+ (n+1+ lg-l—)

for 7 = 2, 3, 4 and the pair of equivalence classes of ), W, and 3 as a basis of Ker(P; 9] /O),
of which coefficients admit asymptotic estimates by the result on I'-function.
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3 Indices of holonomic D-modules and their irregu-
larities

Let D, be the stalk of germs of linear ordinary differential operators with holomorphic
coefficients, and put Mg = Dy/DoP . Then, M has a projective resolution

0 « Mg « Dy ¢— Dy « 0,

from which, by operating the functor Homp, (-, Fp), we have the solution complex with
values in F at the origin,

Sol(Mo, Fo) : Fo = Fo = 0.

We have the isomorphism:
Ext®(M,, Fo) =~ Ker(Fo; P), Ext'(Mo, Fo) = Coker(Fo; P).
Therefore, the index as D-module at the origin,
x(M; F)o = dimg Ext® (Mg, Fo) — dime Ext' (Mo, Fo),

is equal to the index x(P; F), and the irregularity as D-module at the origin,
Irr(M)o = x(Mo; O) — x(Mq; 0),
is equal to the irregularity Irr(P)y and

Irr(M)o = x(Mo; K) — x(Mg; K),

Irr(M)o = x(Mo; E) — x(Mo; K),
Irr(M)o = x(Mg; £/0) — x(Mo; K/O).

Let D be the sheaf of germs of linear partial differential operetors with coefficients of
holomorphic functions on a manifold M and let M be a holonomic D-module. The module
M has a projective resolution

P P , P Pan_
06 M Do L pm Jpm B Respman

from which, by operating the functor Homp(-,F) , we have the solution complex with
values in F ,

4 ! P} _
SO[(M,]:) : Fmo _P‘_’_) Fm i) Lo 2ngt pmaa )

For a point p, the index of holonomic D-module Mwith values in F is defined by
2n

XM F)p = Zdimc(—l)"gmt"(]\/{,f)p'

=0
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For the point p, the irregularity of holonomic D-module Mis defined by

Irr(M), = X(M; Opqg))p = X(M; Omtia)p,
where O is the sheaf of germs of holomorphic functions on M , H is the set of singuldr
points of M, Oy is the zero-extension of the restriction of O on H and O MiH is the
Zariski completion of O along H.

4 Holonomic D-module defined by confluent hyper-
geometric partial differential equations ®;

In the sequel, we consider the solution complexes of holonomic D-module defined by
confluent hypergeometric partial differential equations ®3 and give the calculation of the

cohomology groups.
The system of confluent hypergeometric partial dlffelentlal equations ®3 [2] is as fol-

lows:

( 82u 0%u Ju
gzx_ + y@ 28 + (c— 1)5; —bu=0 (denoted by Lyu = 0)
a au . '
P;: — —u= o =
3 yaayQ 4z %ray +acay u=0 (denoted by Ly u = 0)
u u '
Bzay o + 3y 0 (denoted by Lz u = 0)

where b, ¢ are not non-negative integers.
We consider the D-module M3 defined by ®3, namely we put

My =D/(DL, + DLy).
We have a projective resolution
0¢— Mz —D+—D*¢—D?* 0
and we have the solution complex Sol(M3, F) with values in F
F Yo, 73 Iy 7240,

where
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by using Takayama’s Kan [30] and we have the same result as ® in H = {(c0,y);y € P¢}

[5] [6].

Theorem 1 . Let M = P} x PL, H = {(c0,y);y € PL}, p € H\(00,00) be as above.
The dimensions of chohomology groups of the solution complezes for the D-module defined
by ®3 are as folow:

(1) If1<s<2,

for F = O oy Oititrsae Ottt s,a4) Citiins
) . 0, (j =0, 2)
dim¢ Ext’ ((M3),, Fp) = { ,
(2) Ifs>2,
for F =0 0 Ostiireaz Ot sty O’

dimC EXt]((M3)P’ ) - 0 (] = 0» 15 2)

(3) In the case of s = 2,
Q) fA>1,

for F = OMlH 2,A-" OA7|71,(2,A+) J

dime Ext’ ((M3),, Fp) =0, (7 =0,1,2).

(i) f0< A <1,

for F = O 54— Ottt 2,44)’
, . 0, (j=0,2
dim¢ Ext’ ((M3),, Fp) = { ) 8 _ 1) )
(i) if A=1,
o 0, ~0,2
dime Ext! (Ma)y, (O35, )p) = { 1 8 ~1) )

dim¢ Ext? ((M3),, (01\71]?1,(2,1+))” .

(iv) dimg Ext?(Ms)p, (O175; 5))p)

—
o
o
S,
I
<o
N
N

dimC Eth((M3)P’( M|H f))P) 07 (] - 0 1 2)

(4) dim¢ Ext? ((M3),, O =0, (1=0,1,2).



Corollary 1 . The indezes of D-module defined by ®3 are as follow:
(1) Ifl1<s<2
for F=0—

it () it e Ot s,a4) O i s

X((Mﬁl)p’fp) =-1

(2) If s > 2,

for F= oMlH (s)’ OA?EJ s, A" OM[H (sas) Oifiie

((M3)p’fp) =0.

(3) In the case of s = 2
() if A> 1,

for F = OMlH 2.4- OM|H,(2,A+)’

X{(Ms)y, ) = 0.

(ii) if0< A<,

for]—' OM[H?A ’OMlH(2A+)’
| XMy Fy) = 1.
(i) f A=1,
A((Ma)p: Osfpg, ) = —1
‘X((M3> I O ) =0,
(iv) Z((Ma)py (O 1)) =
| ((MS)p7 (OM[H Q)p) =0.

(4) X((Ms), (Og)y) = 0.

Corollary 2 . The irregularity Irr((Ms),) =
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