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A GENERALIZATION OF THE MORITA-MUMFORD CLASSES
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ABSTRACT. Lét X451 be an orientable compact surface of genus g with 1 boundary
component, and I'y; the mapping class group of 34,1. We define a bigraded series
of cohomology classes m; ; € H2+i=2(Py s NV HL(S9,132)), 2i4+5—22> 1,4, > 0.
When j = 0, the class m;41,0 is the i-th Morita-Mumford class [Mo][Mu]. It is proved
that H™(T4 1; A’ H1(24,1;Q)) is generated by m; ;’s for the case r 4+ s = 2 and the
case g > 5 and (r,s5) = (1,3). Especially the Johnson homomorphism extended to
the whole mapping class group by Morita [Mo3] has an implicit representation by
the classes mo 3 and mg ami 1 over Q.

INTRODUCTION

Let g > 2, r,n > 0 be integers. Let X7 . denote a 2-dimensional compact oriented
C* manifold (i.e., compact oriented surface) of genus g with r boundary compo-
nents and (ordered) n punctures. The group of path-components mo(Diff + (27 ,.))
is denoted by I'y . (or M7 ) and called the mapping class group of genus g with
r boundary components and (ordered) n punctures. Here Diff { (37 ) denotes the
topological group (endowed with C* topology) consisting of all orientation preserv-
ing diffeomorphisms of £7 . which fix the boundary components and the punctures
pointwise. When n = 0, we drop the indices: ¥, , = %% | T, . =T9 and similarl
Y, =%, T, =TI ’ ThrouI;hout this pa o dy:” tg’;) Hg’rZ‘" f

g 9,00 g 9,0° per we denote by Hi(Xy,) the first
integral singular homology of the space %7 ., on which the group I'(’, act in an
obvious way provided that s > r and m > n.

By the extended mapping class group we mean the semi-direct product
Fg,r = Hl(Z‘g,l) Dl FZV’"

The purpose of the present paper is to define a bigraded series m; ; of cohomology
classes of the extended group I":l, which is a generalization of the Morita-Mumford
cohomology classes of the group I'y, and to investigate the ones of lower degree.
In §1 we prepare a theory of cohomology of pairs of groups, which is essential to
the construction of the classes in the succeeding two sections. The Ej-term of the

1991 Mathematical Subject Classification. Primary 57R20. Secondary 14H15, 20J05,
57R32, 20F36.



NARIYA KAWAZUMI

Lyndon-Hochschild-Serre spectral sequence of the group f; with respect to the
normal subgroup Hq(Z, 1) is given by

q
EP? = HP(Tyu; [\ H'(Zy0)).

So the classes m; ; induce cohomology classes m; ; of the group I'y ; with values
in A\"HY(Z,1). When j = 0, the class m;y1,0 is the i-th Morita-Mumford class
[Mo][Mu]. In §4, in order to see the non-triviality, we evaluate the classes mq o,
m1,1 and mg 3 and prove that H"(T'y1; A°H1(Z,,1;Q)) is generated by m; ;’s for
the case r + s = 2 (Proposition 4.1, Theorem 4.3, Corollary 4.5) and the case ¢ > 5
and (r,s) = (1,3) (Theorem 4.4). Especially the Johnson homomorphism extended
to the whole mapping class group by Morita [Mo3| has an implicit representation
by the classes mg 3 and mg2m;,; over Q.

The author would like to express his gratitude to Prof. S. Momta and Prof. A.
~ Kohno for helpful discussions.
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1. Cohomology of Pairs of Groups.

In this section we define cohomology groups H*(G,H : M) of a pair of groups
(G, H) in the most naive sense. Denote by C*(G; M) the normalized cochain com-
plex of a group G with values in a G-module M. o

Let G be a group, H a subgroup of G, and M a G-module. We denote by
H*(G, H; M) the cohomology group of the kernel of the restriction map

es: C*(G; M) — C*(H; M)
and call it the cohomology group of the pair of groups (G,H) with values in the

G-module M. Since the restriction map res is surjective in the cochain level, we
have a cohomology exact sequence

(1.1) ---— H"YH;M)— HYG,H;M) - HY(G; M) —» HY(H; M) —
In a natural way the cup product |
U: H*(GM"YQ H*(G,H;M") — H*(G,H; M' @ M")

is defined.
Let K <4 G be a normal subgroup satisfying the condition

(1.2) HEK = G.

Then we have the following Lyndon-Hochshild-Serre (LHS) spectral sequence [HS].
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Proposition 1.3. There is a spectral sequence converging to H*(G, H; M) whose
E, term is given by

EPY = HY(G/K; HY(K,K N H;M)).

It should be remarked how the quotient group G/K acts on the cohomology
group H*(K,K N H; M). Since K is a normal subgroup of G, the group H acts on
the normalized complex C*(K, K N H; M) by

(h-c)(z1,...,2n) = h(c(h™ zih, ... ,h 2z, h)),

where h € H,c € C*(K,KNH;M)and z,,...,z, € K. For any element h € KNH
consider a homotopy map

®=9,:C"(K,KNH;M)— C"YK,KNH;M)

given by
n—1 )
(Pre)(zyy. .y Tpo1) = Z(——l)]c(xl, TN N ks FYRY SUURRY Sl Y 3 N
7=0

This map is well-defined and satisfies a homotopy equation
(d®h + @pd)c=h-c—c (Vc€ C*(K,KNH;M)).

Hence the subgroup KN H acts on the cohomology group H*(K, KNH; M) trivially.
From the condition (1.2) and the Second Isomorphism Theorem we have a natural
isomorphism ‘

G/K =H/KnH.

Thus the quotient group G/K acts on the cohomology group H*(K,K N H; M).
Let M, M; and M, be G/K-modules. Suppose

Z, if ¢ =n,

(14 HY(K,KNH;Z) =
(14) ( ) {0, if ¢ > n.

Then the spectral sequence (1.3) induces a homomorphism

(1.5) m: H?(G,H; M) — HP™"(G/K; M),

which is called the Gysin map or the fiber integral. As usual we have
(1.6) m(uUr*0) = (mu) Uv € HPTIY(G/K; My @ M>),

for u € H?(G,H; M;) and v € HY(G/K; M>).
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2. Mapping Class Groups.

From now on we consider mainly the mapping class groups I'; ; and T'. g,1- First we
remark that the surface 21 .1 is obtained by glueing the surfaces &, ; and 3} 0,2 along
the boundaries. So the dlffeomorphism of ¥, 1 is naturally extended to that of 2;,1
The infinite cyclic group Z acts on the surface 2(1,’2 by rotating the puncture and
fixing the boundaries pointwise. Similarly this action is extended to that on E;’l
in a natural way. Thus we obtain a natural homomorphism I'y ; x Z — T g,1> Which
is injective (see [I] §5). In the sequal we regard the group I'y; X Z as a subgroup
of I‘l 1 through the injection. Especially we may consider the cohomology group
H*(I‘g 1,Lg1 X Z; M) for an arbitrary F;,l-module M. By forgetting the puncture
we obtain an extension

(2.1) 1— m(Sg1) = Ty 5 Tyy — 1.

Next we prepare a cycle induced by the "fiber” m1(2,,1). Choose a usual sym-
plectic generator system of the fundamental group m1(X, 1):

ay1,0a,...,09,01,b2,...,b,.

The loop on the boundary induces an element of m1(Zg1)
w = Hj:l{aibi]’ [ai, b,] = aibiai—lbi_l.

We identify the group Z with the subgroup generated by w in 71(%2, 1), and consider
the cohomology group of the pair H*(71(Z,1),Z).

Following Meyer [Me], we construct a normalized bar 2-chain [Z, 1, 8] as follows
For 1 < j < 4g let w; = a;*1,b; *1 be the J-th generator in the element w, and
w; = wiwy - cwj =aby - wj. Let wg = 1. We define

(2.2) Yg,1,0 Z[wy 1|w;] - Z( aila; 7] + [bilbi 7)) € Cz(?fl( g1))-

Lemma 2.3. For any trivial ﬂl(Eg,i)—module M, we have

HeM, ifx=1,
H*(my(S,1),Z; M) = { M, ifx=2,

0, ‘otherwise,
where H = H1(X,,1;7Z) & Z*9. The evaluation
<, [Egyl,a] > Hz(wl(zg,l),Z; M) — M

is a well-defined isomorphism.

The first half of the lemma follows form the exact sequence (1.1), and the second
from straightforward calculations.
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Now let M be a I'y ;-module. The condition (1.2) is satisfied for our case G =
T} 1, H=T41 xZand K = m1(2,1). It follws from Proposition 1.3 there exists a
spectral sequence converging to

H* (I‘;I,Fg,l X Z; M),
whose E; term is given by
H?(T'y; H® M), if x =1,
HP(Ty1; HY(m1(Xg1),Z; M)) = 8 HP(Ty1; M), if *x =2

0, otherwise.
Hence it induces a Gysin exact sequence
o= Hq_l(I‘gyl;M) — Hq+1(Fg 1, H® M)
— Hq+2(Fg 5 Tga X Z; M) 5 HY(Ty 15 M) —

Here the homomorphism m is the fiber integral introduced in (1.5).

The Gysin sequence splits as follows. The identity map 1z : Z — Z generates the
cohomology group H'(Z) = Z. Regard 1z as an element of H(T'y; X Z) through
the natural projection I'y; X Z — Z and denote by § the image of 1z under the
connecting homomorphism 6*:

0:= 8(12) € H(T}, Ty B 2).
S;inceb < 6,[X4,1,0] >=—1, we have |
(24) ' y 7r!9‘: ~-le HO(Fg’l;Z).

Thus, from the property (1.6) of the fiber integral i, the sequence splits. Conse-
quently we have

Proposition 2.5. For any Iy ;-module M, we have an exact sequence
0— H"Y T, ; HQ M) — Hq+2(Pg 1091 X Z; M) it Hq(I‘g,l;M)“——> 0,
which splits as follows:
Hq+2(I‘g Llg1 XLy M) = H"YT, ; HOM)H0UHYT, ; M).

On the other hand, taking the semi-direct product of the extension (2.1) and the
I’y 1-module H1(X1;7Z), we have an extension of groups

(2.6) 1o m(Z51)— I"E; 5 1:;: — 1.
In a similar way to the fiber integral 7 we obtain the fiber integral

: HY (Pgl’ g,1 XZ Z)—)Hq 2(F91,Z)
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3. Construction of Cohomology Classes.

For the rest we often abbreviate
H:= Hl(Eg,l; Z) = Hl(Zg,l;Z).

The isomorphism on the right-hand side is the Poincaré duality, which is Ty ;-
equivariant. We remark this H plays a different role in the sequal from the subgroup
H in the preceeding sections.

Denote by - the intersection form on H = Hy(X,; Z).

Choose a simple curve [ on E 1 connecting the puncture to a point on the

boundary. Define a 2-cochain w; € CZ(I‘g 1;Z) by

(3.1) 1y, uzy2) =12l = 1) - uy, wuy,up € H, 71,72 € Ty 4,
and a 1-cochain w; € CY(T; ;; H) by

(32) wl(P)/) 71 -le H oS Pg 1

where we remark v,/ — [ can be regarded as a closed curve on £,;. A straight-
forward computation shows the cochains &; and w; are cocycles. On the other hand,
if v € T'y1 x Z, the curve vl — [ is homotopic to a curve in the boundary 9%,
Hence vl — 1 =0 € H. Thus we have

(3.3) Sy € 228,01 X Z;Z) and wi€ 23T, Ty, x Z; H).

To study the dependence of the cohomology classes [&;] and |[w;] on the choice of
the curve [, choose another simple curve I' on 21 .1 connecting the puncture to the

boundary. The cycle v := ' — [ on 1 g,1 May be regarded as an element in H So
we have

(34) wy —wy = dv € CYTy ; H).
When we define a 1-cochain ¢, € Cl(F 1) by

co(wy) = () u, ueH,yell,,
we have
(3.5) Wy — @ = dcy.
Let e € H*(T';Z) be the Euler class of the central extension

1—>Z——>I‘g,1—>f‘;——>1.

The class e may be regarded as a cohomology class in H? (I‘g 10, 1 X Z;7Z) in an
obvious way. From (3.4) and (3.5), if ¢ + j > 2, the products

e'l5)? e H2‘+2J(I‘g 1 Tg1 X Z; Z) and

e'lwil’ € (T} 1,Ty, ><Z;/\ H)

33
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are independent of the choice of the curve I. We denote them by €'’ and e'w’
respectively.

Recall H?(T'; ;; A" H) is the EJ*?-term of the LHS spectral sequence of I’S,(l with
respect to the normal subgroup H. Since we have

Or(ur, ugyz) = wi(y2) - wa

for Vui,us € H and v, € T'} 5, the class [w] € H' (T 1,01 X Z; H) is equal to that

induced by w; € H Q(I‘;’l,f‘_;; X Z;Z). Now we can define the cohomology classes
m; ; and m; ;. Consider two extensions of groups

(2.1) 1-om(E51) — I’;’l — F;’l —1
(2.6) 1—>7r1(2g,1)—>1:£; if‘g’; — 1
We define

mi,j == m(elw?) € H2i+j—2(r‘gy1; /\JH)

(3.6) - e
my; = m(e'@’) € H*Y 4T, 1;Z)
for 7,5 € N. Here m and T are the fiber integrals introduced in the previous section.

Clearly m;41,0 and Mit10 are equal to (the image of) the i-th Morita-Mumford
(tautological) class e;(= «;) € H*(I'g; Z) [Mo}[Mul:

(3.7) Mit1,0 = @fo =€ € H2i(rg,1§ Z).

Remark 3.8. Let F;_; be the dressed moduli of pairs of compact Riemann surfaces
of genus g and holomorphic line bundles of degree g — 1 on the surfaces. The
space F,_1 is aspherical and its 7y is equal to I'y ;. As is known, the Lie algebra
of holomorphic differential operators "near S'” has an infinitesimal and transitive
action on the dressed moduli ,_; [ADKP]. The m;;’s have their origins in the
equivariant cohomology of F,_; under this action [Kal].
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4. Evaluations.

The purpose of this section is to evaluate the classes msy o, my,; and mg 3 and to
prove that H™(Ty1; A°Hi(Z,,1;Q)) is generated by m; ;’s for the case r +s = 2
and the case ¢ > 5 and (r,s) =(1,3).

Denote by €2 the symplectic form on H induced by the cup product:

g
Qizzai®bi_bi®ai E/\zH,
i=1

where {a;, b;;1 <1 < g} is (the homology classes induced by) a symplectic generator
system of the fundamental group (2, 1) as in §2.

Proposition 4.1.
2
mo,2 = m(w?) =20 € H'(Ty,1; /\ H).

Proof. Tt suffices to show that
<w?,[Z,1,0] >=2Q.

Here [¥, 1, 0] is a 2-chain introduced in (2.2). Since w(wy;) = 0, we have
4g g ‘
< w27 [29,17 a] >= sz(’l;j\—/l’wj) - Z(wz(ai’ ai—l) + wz(bi’ bi-l))
J=1 1=1
g
:Zai/\b,-—(ai+bi)/\a,-—(ai+b,~—ai)/\b,-—i—az-/\ai—l-bi/\bi
=1
g
:Zai Ab; — b; A a; = 29,
=1

as was to be shown. [

Next we study the classes my ; and mg 3. In [Mol] and [Mo2] Morita proved
' 3
(4.2) H'(Ty1;H) =2, and H'(Tyu; /\ H) =12

where we denote H = H1(X,,1;Z) as before. Our results are

Theorem 4.3. The class my ;1 generates the group H'(Ty1; H).

Theorem 4.4. If g > 5, the classes mg 2m1,; and my 3 generate the group Hl(l"g,l;
AN H®Q).

The rest of this section is devoted to the proof of the theorems. As was shown
by Harer [H], if ¢ > 3, we have H%(T', 1;Q) = Q and the class ms o = e; generates
it. Hence in the case r +s = 2 the groups H"(T'y 1; \° H ® Q) are generated by the
classes m; ;’s. Consequently
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Corollary 4.5. If g > 3, the group HQ(I‘:;;Q) is isomorphic to Q® and the classes
mg 2, M1, and mg o form its free basis.

The first half of the corollary has been already shown by Arbarello et. al.([ADKP]
85).

To prove the theorems we endow the surface ¥, with a Riemannian metric. Fix
a sufficiently small positive real €. Let @w : STY; — ¥, be the unit tangent bundle
of the surface ¥;. Denote by D? the unit disk in C: D? := {2z € C;|z| < 1}. We
define a disk bundle D, over ST, by

Dy :={(v1,22) € ST, x g dist(w(v1),z2) < €},

The first projection induces its projection p; : Dy — ST%,. The disk bundle is
trivial through the projection

STS, x D* = Dy, (v,2) — (v, Expgy(y)(€2v)).

Here we use the (almost) complex structure induced by the given Riemannian
metric.
Consider a ¥41-bundle

p1: Y, (:=8STE, x ¥y —int Dy) — ST,

induced by the first projection. The fundamental group m;(STZ,) is embedded
into the group I'y ; through the classifying map ¢ of the bundle p; : Y, — ST3,,
and is identified with the kernel of the forgetting map I'y ; — I'y:

1 — m(STE,) = Iy1 =Ty -1

Since the spaces ¥4, STY,, Dy and Y, are all aspherical, we drop the notations
71(+) in the cohomology groups.
The identity map 1y € Hom(H, H) induces a cohomology class

lg € HY(S,; H) = Hom(H, H).

By abuse of notation we denote also by 1y the pull-back w*(1g) through the
projection @ : STY, — X,

lg = w*(lg) € H(STZ,; H) = Hom(H, H).

In [Mol] Morita proved the following theorem (see also [Mo2] p.81 1.4 ff).

Theorem 4.6 (Morita).
HYT,1;H) = Z.
Furthermore a crossed homomorphism k : 'y ; — H represents a generator of the
group HY(STZ,; H) if and only if the restriction of k to m(STE,) is equal to
+(2—-2¢)1p:
(k) = +(2—2¢)1g € H'(STS,; H).

As for A\°H = A\® Hi(Z,,1; H) he proved the following ([Mo3] Theorem 5.1, see
also the proof of Corollary 5.7). Let ko be a generator of the group H' (T, 1; H).
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Theorem 4.7 (Morita). If g > 3,
3
H\(T,1;/\ H) =282

The class Q A ko and a class he named 2k form its free basis. Furtheremore their
restriction to m1(STX,) are given by

3
(A ko) = +(2-29)Q A 1y € H'(STE,; \ H),
- 3
*(2k) =20 A1y € HY(STS,; \ H).
Therefore our theorems are reduced to
Assertion 4.8.
(1) H(myg) =—(2-29)1g € H'(STS,; H)

2) *(moz) = —6Q A1y € HY(STE,; \ H)

| In fact, (1) implies Theorem 4.3 by Theorem 4.6. So we have mj omy; = £2Q A
ko. From Theorem 4.7 the class mg 3 has a representation mg3 = a2 A ko + b(27€)
for some integers a and b. Since H'(STZ,; A\°H) = H @ \*H is Z-free, we have

~6 = 4a(2 — 2g) + 20,

and so b = —3 mod (g — 1), while g — 1 > 4. Thus we have b # 0.
This completes the proof of Theorems 4.3 and 4.4 modulo Assertion 4.8.
Let M be a m;(STX,)-module. By excision we may consider the map

3 HY(Y,,0Yy; M) = H*(STS, x X4,Dg; M) — H*(STS, x L,; M).
The fiber integral py, : H*(Y,,0Yy; M) — H*2(STZ,; M) decomposes itself into

H*(Y,,0Y,; M) 5 H*(STS, x %,,D,: M) ™% H*%(ST%,; M).

Here the latter fiber integral p;, is the usual one induced by the first projecion
p1:S5TYy x Xy — STX,. Thus we have

myg = prit(ew) and  Fmog = prgt(w?).
Now we have

i*(e) = p2*e’ € H*(STL,; x £,;7Z)
¥ (w) =p2*ly — pi*lyg € H(STE, x X,; H),

where py : ST, x £; — X, is the second projection and

e' = ¢(TZ,) € H*(Z,; Z).
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Since e'ly € H3(Z,; H) = 0, we have
'may = p1yj*(ew) = pr(p2e’)(p2"1u — p1"1n)
= —(pup2"e')lm = —(2 — 2¢)1n.

On the other hand, since (15)* € H3(S,; A’ H) = 0 and pyypo*1y € H-(STE,;
H) =0, we have

¥ (w®) = (p2* 1y — p1*1u)® = =3(p2*(1e)*)p1* 1 + 3(p2* 11 )p1*(1m)?
and

P *(w?®) = =3(p1p2* (1)) 1m + 3(p1p2*1w)(1u)* = =3 < (1w)%,[Z,] > 1w,

where we denote by [£,] € Hy(Z4;Z) the fundamental class. From a similar calcu-
lation to Proposition 4.1 follows < (1g)?,[E,] >= 2Q. Therefore

L*mo’g = pllj*(w*) = —6Q A 1H
This completes the proof of Assertion 4.8 and so those of Theorems 4.3 and 4.4.

Remark 4.9. The crossed homomorphism k& = %212 :Tg1 — %/\BH in (4.7) is
the Johnson homomorphism extended to the whole mapping class group by Morita
[Mo3]. Hence Theorem 4.4 implies the Johnson homomorphism k is represented
by mg3 and mgmy 1 over Q. The author, however, doesn’t know the explicit
representation of k by mo,3 and mg 2my 1.
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