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Abstract

For stratified subsets or stratified maps, the local topological triviality has
been studied by a number of people and it is generally known that if the strat-
ification satisfies the “Whitney condition” or the “Thom condition”, then we
have the local topological triviality along each stratum (the Isotopy Lemmas of
Thom). We consider here this type of local (analytical and topological) triviality
for the case of a complex analytic singular foliation.

First we introduce the fundamental “Tangency Lemma” for a complex ana-
lytic singular foliation (Theorem (2.7)), which says that every vector field defin-
ing the foliation is “tangential” to the singular set. Next we discuss and summa-
rize some implications of this lemma, which include the $\mathrm{e}d\backslash ^{r}\mathrm{i}\llcorner \mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of the integral
submanifold (leaf) through each point (even on the singular set) and the local
analytical triviality of the foliation along each leaf.

As another application of the Tangency Lemma, we study the local topolog-
ical triviality along each stratum of a stratification of the singular set as given
in (3.3). This kind of triviality argument can be applied to the case where a
stratum consists of (infinitely) many leaves. A.Kabila studied this problem for
the case where the codimension of the foliation is one and the singular set is
non-singular submanifold $([\mathrm{K}’])$ . We generalize his result in this talk.

In the process of this work, I received many helpful suggestions and advices,
especially from T.Suwa. I would like to thank him for answering my questions
and for supporting me in various ways.

1 Complex analytic singular foliations
$\Gamma$ irst of all, we recall some general facts about singular foliations on complex mani-

folds and fix tbe notation used in this talk. For further details, see [BB] and [Suw].
Let $l\mathcal{V}I$ be a (connected) complex manifold of (complex) dimension $7\not\supset$ , and let $O_{\Lambda I}$,

and $_{\mathrm{A}I}$ be, respectively, the sheaf of germs of holomorphic functions on $\Lambda/I$ and the
holomorphic tangent sheaf.
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Now, let $E$ be a coherent subsheaf of $_{M}$ . Note that, in this case, $E$ is coherent if
and only if $E$ is locally finitely generated, $\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\ominus_{M}$ is locally free. Then the singular
set of $E$ is defined by

$S(E)=$ {$p\in M|(\Theta_{M}/E)_{p}$ is not $(\mathcal{O}_{M})_{p}$ -free},

and each point in $S(E)$ is called a singular point of $E$ . Restricting $E$ to a sufficiently
small coordinate neighborhood $U$ with $\mathrm{c}\mathrm{o}\mathrm{o},\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{S}$ $(z_{1}, z_{2}, \ldots , z_{n}).$’ we can express $E$

on $U$ explicitly as follows:

(1.1) $E=(v_{1}, v_{2}, \ldots , v_{r})$ $($ $v_{i}= \sum_{j=1}^{n}f_{i}j(Z)\frac{\partial}{\partial z_{j}}$ $(1\leq i\leq r)$ $)$ ,

where $f_{ij}(z)$ are holomorphic functions defined on $U$ , and $r$ is a non-negative integer.
Then the singular set $S(E)$ is paraphrased on $U$ as

$S(E)\cap U=$ { $p\in U|\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(f_{i}j(p))$ is not maxinual}.

Next, let us introduce the integrability condition. A coherent subsheaf $E$ $\mathrm{o}\mathrm{f}\ominus_{\mathit{4}}\backslash f$ is
said to be integrable (or involutive) if for every point $p$ on $M-S(E)$ ,

(1.2) $[E_{p}, E_{p}]\subset Ep$

holds ([ , ] means the Lie bracket of smooth vector fields). Moreover, we define
the rank (we sometimes call it dimension) of $E$ to be the rank of locally free sheaf
$E|_{I}\nu I-^{s(E})$ , and denote it rankE.

Definition 1.3 $A$ singular foliation on $l\mathcal{V}I$ is an integrable coherent subsheaf $E$ of
$\ominus_{\mathrm{A}\mathrm{I}}$ .

It is clear that a singular foliation $E$ induces a non-singular foliation on $M-S(E)$ .

Definition 1.4 Let $E$ be a singular foliation on M. We say that $E$ is reduced if
$\Gamma(U, \ominus_{\mathit{1}\backslash f},)\cap\Gamma(U-S(E), E)=\Gamma(U, E)$

holds for every open set $U$ in $fl/[$ .

Remark 1.5 We can check the following facts about reduced foliations:

(i) If a singular foliation $E$ is locally free,

$E$ is reduced $\Leftrightarrow$ $\mathrm{c}\mathrm{o}\dim S(E)\geq‘ 2$ .
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(ii) If $E$ is reduced, then the “integrability condition” holds not only on $M-S(E)$
but on $S(E)$ , i.e., (1.2) holds for every point $p\in M$ .

It is generally known that we can also define singular foliations from the viewpoint
of holomorphic 1-forms, but in this talk we do not mention this way of definition in
detail. The two definitions are related by taking their “annihilator” each other, and it
is also a general fact that if we consider only reduced foliations then the two definitions
of singular foliation stated above are equivalent.

2 Singular set of a singular foliation

Next, let us recall some basic properties of the singular set of a singular foliation, and
summarize the “tangency lemma” and its consequences which have been studied by
P.Baum, D.Cerveau, Y.Mitera, T.Suwa and, for the real case, by T.Nagano, P.Stefan,
H.Sussmann, et al. Hereafter, we assume $E(\subset\ominus_{M})$ to be a singular foliation on a
complex manifold $M$ and set $r=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}E$ .

Definition 2.1 For each point $p$ in $l\mathcal{V}I$ , we set

$E(p)=\{v(p)|v\in E_{p}\}$ ,

where $v(p)$ denotes the evaluation of the vector field germ $v$ at $p$ . Note that $E(p)$ is a
sub-vector space of the tangent space $T_{p}\mathit{1}\backslash /I$ .

Definition 2.2 For an integer $k$ with $0\leq k\leq r_{l}$ we set

$L^{(k)}=\{p\in M|\dim_{\mathrm{C}}E(p)=k\}$ ,

$S^{(k)}=\{p\in M|\dim_{\mathrm{C}}E(p)\leq k\}$ ,

and set $L^{(-1)}=S^{(-1)}=\emptyset$ for convenience. Clea $7’ ly$ we have

$L^{(k)}=S^{(k)}-S(k.-1)$ , $S^{(k)}=\cup i=0kL^{(}i)$

for $k=0,1,2,$ $\ldots,$
$r$ .

Remark 2.3 $L^{(k)}$ and $S^{(k)}$ are analytic sets for $eve\tau\cdot y$ integer $k$ with $0\leq k\leq 7^{\cdot}$ .
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By the remark stated above, we have the following natural filtration which consists
of analytic sets:

$S^{(r)}\supset s^{(r-1})\supset S^{(r-2\rangle}\supset\cdots\cdots\supset S^{(1)}\supset S^{(0)}\supset S^{(-1)}$ .
(2.4)

$\mathit{1}\mathcal{V}I||$ $S(E)||$ $\emptyset||$

This filtration seems to give us information only about the “dimension” of the space
$E(p)$ at $p$ . In fact, however, if $E$ is integrable at every point $p\in M$ then all $S^{(k)}$

appearing in (2.4) controll the “direction” of $E(p)$ at each point $p\in S^{(k)}$ . Let us give
an example here to grasp the meaning of this claim.

Example 2.5 Let $v_{1},$ $v_{2},$ $v_{3}$ be holomorphic vector fields on $M=\mathrm{C}^{3}=\{(x, y, z)\}$

defined by

(2.6) $\{$

$v_{1}--$
$3y^{2} \frac{\partial}{\partial x}$ $+2x \frac{\partial}{\partial y}$

$v_{2}=$ $(x^{2}-y^{3}) \frac{\partial}{\partial y}+3yz\frac{\partial}{\partial z}2$

$v_{3}=(x^{2}-y^{3}) \frac{\partial}{\partial x}$ $-2xz \frac{\partial}{\partial z}$

Let $E(\subset\ominus_{M})$ be the coherent subsheaf generated by $v_{1},$ $v_{2},$ $v_{3}$ . We can easily check
that $E$ is integrable (at every point of $\mathrm{C}^{3}$ ), so $E$ defines a singular foliation on $\mathrm{C}^{3}$ .
Since the rank of $E$ is two, all $S^{(k)}$ appearing in (2.4) are given by $S(E)=S^{(1)}=$

$\{xz=yz=x^{2}-y^{3}=0\}=\{x=y=0\}\cup\{z=x^{2}-y^{3}=0\}$ and $S^{(0)}=\{x=y=0\}$ .

$S^{(1)}=L^{(0)}\cup L\mathrm{t}1)$

$S^{(0)}=L^{(0)}$

Now let us observe the analytic set $S^{\langle 1)}$ in this example. If a point $p$ belongs to
$S^{(1)}$ , the dimension of the space $E(p)$ should be less than one by the definition of $S^{(1)}$ .
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However we can obtain more information about $E(p)$ from just looking at the local
structure of $S^{(1)}$ . In fact, the direction of $E(p)$ is always “tangential” to $S^{(1)}$ , in other
words, $E(p)$ is always contained in the tangent cone of $S^{(1)}$ at $p$ . This property can
be stated precisely as follows.

Theorem 2.7 (TANGENCY LEMMA) Suppose $E(\subset\ominus_{M})$ is integrable on the whole
M. Let $k$ be an integer with $0\leq k\leq r$ and $p$ a point in $S^{(k)}$ . Then we have

$E(p)\subset cpS^{(}k)$ ,

where $c_{\mathrm{p}}s^{(k}$ ) denotes the tangent cone of $S^{(k)}$ at $p$ .

Remark 2.8 The assumption of theorem (2.7) cannot be dropped. As a counterex-
ample, you may consider the singular foliation on $\mathrm{C}^{2}=\{(x, y)\}$ generated by $v_{1}= \frac{\partial}{\partial x}$

and $v_{2}=x \frac{\partial}{\partial y}$ .

Theorem (2.7) can be showed as a corollary of an important theorem by D.Cerveau
$([\mathrm{C}])$ , but under a little stronger assumption we can draw a stronger result directly.
The proof of the following proposition is originally due to T.Suwa.

Proposition 2.9 ( $(\mathrm{s}_{\mathrm{T}\mathrm{R}\mathrm{O}}\mathrm{N}\mathrm{c})$ TANGENCY LEMMA) Suppose $E(\subset\ominus_{M})$ is reduced
(see remark (1.5) $(\mathrm{i}\mathrm{i})$ ) and $p$ is a point in M. Let $v$ be a germ in $E_{p}$ and let $\{\varphi_{t}=$

$\exp tv\}$ be the local 1-parameter group of $transf_{\mathit{0}\Gamma}mation\mathit{8}$ induced by $v$ . For all $t$

sufficiently close to $\mathit{0}$, we have

$(\varphi_{t})_{*}E_{\rho}=E_{\varphi_{t(\rho}})$ ,

where $(\varphi_{f})_{*}$ denotes the differential map of $\varphi_{t}$ .

Remark 2.10 Theorem (2.7) was proved by P.Baum under the hypotheses that $E$

is reduced, $k=1$ and $p$ is a non-singular point of $S^{(1)}$ (see [B]). $\Gamma^{\mathrm{t}}\mathrm{o}\mathrm{r}$ the case of real
singular foliations, see [N], [St] and [Sus].

Using theorem (2.7) we can prove the following results for a singular foliation $E$ of
dimension 7’ on $\lrcorner \mathcal{V}I$ . $\Gamma^{1}\mathrm{o}\mathrm{r}$ details, we refer to [M].

Theorem 2.11 Let $k$ be an integer with $0\leq k\leq 7^{\cdot}$ and $S^{(k)}=\{\lambda_{\alpha}’\}_{\alpha\in P\mathrm{t}}$ the $nat\mathrm{c}\iota\gamma\cdot al$

Whitney stratification of the analytic set $S^{(k)}$ . Then for any $\alpha\in A$ and $p\in X_{\alpha J}$ we
have $E(p)\subset T_{\rho}\lambda_{\alpha}’$ . Moreover, $E$ induces a non-singula 7 foliation of $dimen\mathit{8}io7lk$ on
$X_{\alpha}-S^{(k1}-)$ .
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Theorem 2.12 (EXISTENCE OF INTEGRAL SUBMANIFOLDS) There exist integral
submanifolds (whose dimensions are lower than $r$) also on $S(E)$ . To be more precise,
there is a family $\mathcal{L}$ of submanifolds of $M$ such that $i \vee I=\bigcup_{L\in^{c}}L$ is a disjoint union
and that any $L\in \mathcal{L}$ and $p\in L_{f}$ we have $E(p)=T_{p}L$ .

Each element $L$ in $\mathcal{L}$ is often called a leaf of $E$ .

Theorem 2.13 (LOCAL ANALYTICAL TRIVIALITY) Let $k$ be an integer with $0\leq$

$k\leq r$ and $p$ a point in $L^{(k)}(=S^{(k)}-S^{(k1}-))$ . Then there exist a small polydisk $D$

of dimension $n-k$ transversal to $E(p)$ in $T_{p}M_{f}$ a $\mathit{8}ingular$ foliation $E’$ on $D$ with
$E’(p)=\{0\}$ , a neighborhood $U$ of $p$ in $M$ and a $submer\mathit{8}ion\pi:Uarrow D$ such that

$E|_{U}\simeq(\pi^{*}(E^{\prime^{a}}))a$

Theorem (2.13) says that the structure of a singular foliation $E$ is locally analyt-
ically trivial along the leaf through each point $p$ in $M$ . Therefore, in the situation
of example (2.5), if a point $p$ belongs to $L^{(1)}$ then the singular foliation $E$ is locally
analytically trivial at $p$ along $L^{(1)}$ , since the leaf through $p$ is $L^{(1)}$ . If $p$ belongs to $L^{(0)}$ ,
however, theorem (2.13) does not say anything since the leaf through $p$ consists of one
point $p$ . So the triviality along this type of singular set (along $z$ -axis in example (2.5))
is another interesting topic. In fact, in order to obtain some triviality along $z$-axis in
example (2.5), we must separate the origin from $z$ -axis. In the following section we
consider a stratification of the singular set $S(E)$ which gives a local triviality of $E$

along each stratum.

3 Stratification and local topological triviality

Let $E$ be a singular foliation on $l\mathcal{V}I$ . Since the singular set $S(E)$ is analytic, we
can construct the $‘(\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{l}$ Whitney stratification” of $S(E)$ (see [W]), but this is not
enough to achieve our purpose because the dimension of the leaf of $E$ is not always
constant on each stratum.

Example 3.1 Let $v_{1},$ $v_{2},$ $v_{3}$ be holomorphic vector fields on $M=\mathrm{C}^{3}=\{(x, y, \approx)\}$

defined by

(3.2) $\{$

$v_{1}=y(3y+^{\underline{0}}z^{2}) \frac{\partial}{\partial x}+2x\frac{\partial}{\partial y}$

$v_{2}=$ $2yz \frac{\partial}{\partial\tau/}-(3y+9.7)\sim\frac{\partial}{\partial_{\sim}7}2$

$v_{3}=$
$y^{2}z \frac{\partial}{\partial x}$ $+x \frac{\partial}{\partial_{\sim}^{\gamma}}$
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Let $E(\subset\ominus_{M})$ be the coherent subsheaf generated by $v_{1},$ $v_{2},$ $v_{3}$ . We can easily check
that $E$ is integrable, so $E$ defines a singular foliation on $\mathrm{C}^{3}$ . $E$ is reduced, and
rankE $=2$ . By (3.2), $S(E)=S^{(1)}=\{x=yz=y(3y+2z^{2})=0\}=\{x=y=$
$0\}=$ { $z$ -axis} and $S^{(0)}=\{(0,0,0)\}$ . Since $S(E)$ is non-singular, $S(E)=$ { $z$-axis} is
the only stratum of the natural Whitney stratification of $S(E)$ , but $\dim E(p)$ is not
constant on the stratum.

In the above example, in order to get a Whitney stratification such that the leaf
dimension is constant on each stratum, we may separate the bad point $(0,0, \mathrm{o})$ from
the $z$-axis. Generalizing this argument, it turns out that we must take a “good”
stratification of $S(E)$ such that $\dim E(p)$ is constant on each stratum.

Definition 3.3 Let $E(\subset\ominus_{M})$ be a singular foliation of dimension $r$ on $M$ , and let
$S$ be a stratification of M. We say that $S$ is adapted to $Ewhen_{l}$ for any stratum
$X\in S$ , there is an integer $i$ with $0\leq i\leq r$ such that $X\subset L^{(i)},$ $i.e.$ , the leaf dimension

of $E$ is constant on each stratum $X\in S$ .

Proposition 3.4 There exists at least one Whitney stratification $S$ of NI which is
adapted to $E$ .

In the case of example (2.5), a stratification satisfying the condition in proposi-
tion (3.4) is given by

$\{M-S(E),$ $L^{(1)},$ $L^{(0)}-\{0\},$ $\{0\}\}$ .

Now let us introduce a regularity condition for stratifications which is adapted to
$E$ .

Definition 3.5 Let $E$ be a singular foliation on $i\mathcal{V}I$ and let $X$ be a submanifold in
$l\mathcal{V}I$ such that $X\subset L^{(k)},$ $i.e_{f}$. the leaf $dimen\mathit{8}i_{on}$ of $E$ is constant on X. Let $p$ be a point
in X. We say that $X$ satisfies the foliated Verdier condition for $E$ at $pwhe7l$ there
exist a tubular neighborhood $(T, \pi, \rho)$ of $X$ , a neighborhood $U_{\mathrm{p}}$ around $p$ contained in
$T$ , and a real numbe7 $\lambda>0$ such that the following inequality $hold_{\mathit{8}}$ for all $y\in U_{\rho}-X$ :

6 $(E(y), T_{\mathrm{p}}X)\leq\lambda\cdot\rho(y)$ ,

where $\delta( , )$ denotes the angle between two vector $sub_{\mathit{8}}paCe\mathit{8}$ . If $XsatiS[lCs$ the

foliated Verdier condition for $E$ at every point $p\in X$ , then we say $\mathit{8}im\mathcal{P}^{l}y$ that $X$

satisfies the foliated Verdier condition for E. Moreover, a stratification $S$ adapted to
$E’$ is called foliated Verdier stratification for $E$ if every $st\tau\cdot atumx\in Ssati_{\mathit{8}}f\iota es$ the

foliated Verdier condition for $E$ .
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Then we have the following “isotopy lemma” for singular foliations, which corre-
sponds to the isotopy lemmas of Thom.

Theorem 3.6 Let $E$ be a singular foliation on $M$ and suppose $S$ is a foliated
Verdier stratification for $E$ (Note that this assumption includes that $S$ is adapted to
$E)$ . Then the structure of $E$ is topologically locally trivial along each stratum $X\in S$ .

For a proof of this theorem, the precise definition of the local topological triviality
for singular foliations and further details about this isotopy lemma, we refer to [Y].
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