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Non-vanishing Wronskian determinants
and Riemann Problem
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0. Introduction. According to M. Yoshida at Kyushu University,
hypergeometric functions (see [KF] for example) are very famous but
not so familiar. Therefore we begin with some elementary facts. It is

defined by Gauss’s hypergeometric series
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where (a,n) = a(a+1) - (a4+n—-1) = (_a+__nﬂ) It has an integral

representation and satisfies Euler’s differential equation
(0.1) 2(1—2)F" + [y —(a+ B+ 1)2]F' —afF = 0.

The solutions of (0.1) are locally holomorphic on the Riemann sphere
punctured at three regular singularities 0,1, 00, and those of the de-
termining equation at each point are

In 1880, Appel [A] generalized it to two variables and defined

four series
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Each of them satisfies a Pfaffian equation and has also integral repre-

sentations.

In 1893, G. Lauricella [L], generalizing them to n variables, de-
fined also four series Fy, I'g, Fo, Fp. The most interesting one among
them is
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It coincides with Fy(a, By, f2,v; 21, 22) if n.=2 and with F(e, 3,~;2 )
if n =1, and satisfies the Pfaffian differential equation,
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(2 = 25)0:0;,F' + (A = 1O F — (A —1)0;F" =0 (i # 7)

+ Aoi = 1+ (2 = doi — Aing1)

where Ay = 1~7—|—Zﬂi, Ai=1-0(1<1<n), \pp1 =7 — q,
i=1 .
0
)‘oo = q, /\,J = )\z -+ )\J' —1 and 81- = alt
In 1857, Riemann [R] gave  F(a,f3,7;2) a new point of view.
He studied the problem called after him and proved that the function

which has the same singularities as the hypergeometric function re-
duces to F(e,,v;x). His method was to construct the differential
equation (0.1) which F' satisfies. |

Generalizing his theory to n variable case, there arises the



Conjecture. If a function F' has the same singularities as I'p,

then F is equal to Fp, that is, F' satisfies the Pfaffian equation (0.2).

This is true. As for exact statements, see paragraph 3. The main
idea to prove is the following:
Let F' be any branch and fo, fi1,- -, f. be some linearly indepen-

dent branches. Then we have differential equations
VV(fo, flv te '7fm F; 17817 Ty a‘fw alaj) =0

for any 7,7 ; as to the notation W (- - - ), see (1.1). By the cofactor

development with respect to the last column, we have
(0.3) Aijol + A 1O F + - - - 4 AjjnOn I + AD:0;F = 0,

where the coefficients are determined explicitly by

A

Aij,k = I/V(fO)fly s '7fn; 17 a17' : ')aka T '7817.761'8_7')

and

A = W(fO?fla' ' '7fn; 1)817' ) 'aaﬂ)'

This conjecture was examined by Picard [P] for Appell’s F; in
1881 and Terada [T] for Lauricella’s Fp in 1973. In 1993, Kato [Ka]
proved it for Fy. '

But Deligne, in a letter to the author, pointed out the imcom-
pliteness of the proof: that is, in order to show the equation (0.3) is
not trivial, A # 0 must be demonstrated. Kato evitated it by stronger
assumptions. So we give here a proof of the non-trivialness of (0.3).
The essential tool is:

For a given finite dimensional vector space generated by germs of
holomorphic functions, there exists a regular Wronskian matrix which
is as simple as possible, and, by using it, one can construct a convenient

non-trivial system of partial differential equations.
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1. Preliminaries. At first basic definitions and notations are

collected.

Let M be the set of germs of meromorphic functions at the
origine of C"(zy, 29, -+ ,2,) and D be the set of differential opertors
of the form

T:=0m08 - .
And d(T') :=dy +dy + - -+ + d, will be called the degree of T'.

Vi means the set of (m+1)-dimensional vector space over C
which is generated by m + 1 elements of M and L(fo, f1,- - -, fu)

means the element of V,, having {fo, f1," - -, fm} as a base.

(1.1) Definition. Tor fo, fi, -+, fm € M and differential operators
T, Ty, -+, T, we will call '

Tofo Tofr -+ Tofm

T T oo T f
W(fO,fl, U 7fm;T0: T17 e 7Tm) = lfO ,l,f.‘l R lf
Tmfo Tmfl e Tnzfm

the Wronskian of fo, f1, -+ -, fn with respect to Ty, 1y, -+ -, T),.

And a sequence Ty, T4, - -,1; of differential operators will be
called regular with respect to L € V,, or L -regular if there exist
fo, f1, -+, fi € L such that

I/V(fmfl)' : '7fl;T07T1:' : ‘>Tl) # 0.

(1.2) Definition. A base of L € V,, defines an analytic mapping
from a Zarisky open set of a neighborhood of the origine to the m -
dimensional projective space. The rank of this mapping is well-defined,
which will be called the rank of L and expressed by r = r(L).

(1.3) Definition. For two elements 7' = 9% 9% ... g4 T' = §419% . ..
9% € D, we will say T < T" if one of the following conditions (1),(2)
holds.
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(1) d(T) < d(1")
(2) d(T) = d(T") and, by the lexicographical order for the se-
quences of exponents, (dy,dy, - d,) < (di,dy,- - -d;) holds.
Thus D can be regarded as a totally ordered set.

(1.4) Definition. A finite set O = {Ty, Ty, -+, T} of elements of D
is said an order ideal, if 7€ O and T > T" € D imply 7" € O.

2. Regular order ideal and differential equations. Here it
will be shown that every element of L € V,, satisfies some differen-
tial equations which will be used to solve the Riemann problem for
hypergeometric function of Lauricella and will be also useful for simi-
lar problems for other functions and for general theories of holonomic

systems of partial differential equations.

(2.1) Lemma. Let a sequence To, Ty, -+ - ,71-1 € D be regular
with respect to L € V, (I < m), then there exists 7} := 0T, € D
(1 <i<n, 0<j<1—1)such that the sequence To, Ty, -+, T is also

L-regular.

Proof. By the assumption there exist linearly independent el-
ements fO)flv U afl e M such that ‘/V(anfh E '7fl—1;T0~7 7‘17 T
-, T1-1) # 0. And let

V{/(f(hfla T )fl;T07T17 T 7Tl—laaiiTj) =0 (l)

holds for any 7 and j (1 <¢<n, 0 <j<il=-1).
Let Co,Cy,- - -, Ci—1 € M be the solution of the simultaneous

equations

Tofi = CoTofo + CiTofr + -+ CimaTofia
Tifi=CoTifo+ CiThfr 4+ - -+ Cioa Ty fia

...............

Tiafi=Colisafo+ CiTioifi+- -+ Cradi-1 fi-a
(2)
As W(fo, f1, =+ 5 fiers To, Thy oo Tiea) # 0, G are uniquely

determined. In fact, by the formula of Cramer, we have
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Cr = M/(f())' ’ ')fk—l7fl7flc+17 v '7fl—l;T07' : ')Tl—l)
’ W(fo,- frosi Toy- -+ Tra)

By (1) and (2), the following equations are also true for any ¢ (1
<1< n).

0;To fi = CoOiTofo+ C1OTof1 + - - - + Cio10:T0 f1-1
011 fi = Co0/Th fo + C1OT1 fi + - - - + C1-10:11 fia

...............

0111 fi = CoOTioafo + CrOTia fr + -+ - + Cra 01121 fia .
Operate 0; on each equation of (2) and compare with (3). Then

we have

(0:Co)1ofo + (0:C1)Tofr+ -+ (0:C1=1)Tofi-1 =0
(0:Co)T1fo+ (0:C)TV fr+ -+ (0:Cie1)Tr fio1 =0

...............

(0:;Co)Ti—1fo+ (O:C)Tifi + - -+ (0:Ci1) L1 fi-1 = 0
As W(fo, fi, - fie1; To, Ty, -+, Ti—1) # 0, we have 9;C) = 0 for any ¢

and k . Therefore all C} are constant, which contradicts to the linear
independence of fy, fi,- - - fi.

The following theorem is due to Noumi ([N],Theorem 1.1). But,
as his proof is not so easy to understand, we will prove it again ele-

mentarily.

(2.4) Theorem. For L € V,,, there exist an order ideal {Ty, T}, -

-, Tm} which is regular with respect to L.

Proof. Put 7, = identity, and, after the L-regular order ideal
O = {To,T1,--+,T—1} is determined, we can, by lemma (2.1), choose as
T; the minimal element of the form 9,7} € D such that O = {T},---,T}}
is L-regular. Put 7} = 8;T;. If O is not an order ideal, there exist b and
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k such that ¢ # b, T; = 0,1} and 6,1 & O'. Because T} = 0,01}, >

0,1y, & O, there exist fo, f1,- - -, fi such that W(fo, f1,- -, fiz1; 14, -

T-1) #0and W(fo, fry-oy fim1; 11, -3 1121, 0. T%) = 0. Therefore, for
-1

-1
some A, € M, O;T;, ~ Z A.T, holds, which means ;T f = Z AT, f
a=0 a=0

for any f € L.
(=1
Now as 1} = 0,01} ~ Z(@b )T, + Z A.(0,T,), there exists

a=0

p(=0,1,---,{ — 1) such that To,fll,- - 111, 0T, 1s regular. By the
minimality of Ty, 0,1, > 0,0;Ty = T; and therefore T, > 0;T} holds.
But, as 0,7} ¢ O’ implies the regularity of To, 11, - -, Tp_1, 0Tk, it
contradicts to the minimality of T}, which completes the proof.

(2.5) Corollary.  Let L=L(fo, fir» fu) € Vo, {Te} CD (0 <
k < m) be the L-regular order ideal just constructed above and 7' be
any element of D. Then any I’ € L satisfies the following differential
equation with A # 0

AoF + AATVF + -+ AT F + ATF = 0, (4)

where Ak‘ Wf(f()) fl) ' )f’m;T07' ’ 'aTk—lyTnz7Tk+l7' : aTm) (O S k S
m) ‘

Azﬂ/(fo,fl," fn11f07T17" ij)

and
Moreover, if r is the rank of £ and 7' is of degree 1, we have

A'r+1 = AT-{—? = = Am = 0.

Therefore (4) is a partial differential equation of first order, and the
coeflicients can be calculated explicitly by means of T} and fi(0 < & <
m).

Proof. For any F' € L, m + 2 elements of L being linearly

dependent, we have

I/V(f(hfla o fm;F, 1,T1, . Tm,71) = 0. (5)
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As the regularity of 74,7y, - -, T,, means A # 0, the statements
follow imediately by the cofactor development of the left side of (5) with
respect to the last column. The second part is evident by the definition
of the rank and by the fact that W(fo, fi, -, frx1;1,74,---, 15, T) =0
holds for any r + 2 elements fy, f1,- - -, fry1 of L.

3. The Wronskian of the hypergeometric function Fp . Let X
be the product of n Riemann spheres with inhomogeneous coordinates

Ty, To, -+, T, and
D:.=X — U Sij

0<i<j<o0

be a domain on X, where 29 =0, 2,41 = 1, 2, = 00 and
Sij = {a’? = :L‘j} (7’7.7 - 0717' N + 1,00,i # .7)

And, in the sequal, let F be a locally constant sheaf on D, whose
stalk at © € D is a vector space F, over C generated by n + 1 lin-
early independent germs of holomorphic functions, and fo, fi1,- - -, f.
be linearly independent sections of F on a simply connected domain

Dy made of D by means of slitting.
(3.1) Definition. We will say that a sheaf F on D is of exponent

(I,n; A, p) on Sy, if, for every generic point € € S;;, there exist a
neighbourhood U of ¢, a defining function z;; of .S;; on U and holo-
morphic functions g, g1, - -, ¢, such that, at every point z of U — 5,

F 1s generated by following functions

A N o oy
590, L5915 Tij925° 05 TG0 A—néZ),
A e A H N
,Ezygologlbj + g1, Tii9oy, Ti592,° 5 T;jGn (0 > A— 2 _E Z):
e . A N M N
lijgologlij + 27591, Tii90, T892, TG O<A—pe Z)-_

(3.2) Definition. We will say that F is of rank r if the rank
of the stalk F, at a point 2 is r, and that a sequence of differential
operators is regular with respect to F if it is so with respect to F,.

Not depending on z, they are well defined.



(3.3) Theorem. Assume that a sheaf F is of exponent (1,n;;;,0) (0 <
i<j<n41)onS; and (1,n; 00,1 — ;) on Siee(l <2 < n) where
Aij =M+ A —Land Ag, Ay, 0, Angrs Aso are complex constants with
i)‘i =n+1and \; € Z. Then the sequence 1,9, - -, 0, is regular
i;ioth respect to F.

Before demonstrating, we prepare some propositions and defini-

tions.

(3.4) Definition. A rational function will be said of order d on

S;; if = is holomorphic at generic points, and of strict order d if it 1s
24

of orde;‘Jd but not of order d + 1.

(3.5) Proposition. Let fy, fi,- -, fu be linearly independent sections
of F on Dy and T} := 8{‘“85‘“ oo 9% (0 < k < n) be differential

operators, then

I/V(foafla'"afn;TOJTlv"'aTn)' H (‘(I"i"'fvj)_/\i)

0<i<y<n+1

is a rational function and is of order —max{dy; + do; | 1 < a < n}
e

on S;; (1 <i<n0<j<n+41l,i%#j) and of order n + Zdai on
' a=1
Proof. Generally, if F is of exponent (1,n;X,0) on S;; (i,) #
o), then T} F is also a locally constant sheaf of exponent (1,n;A —
di; — di;,0) on S;; and if F is of exponent (1,7; A, 1) on S, (¢ # 00),
then TpF is of exponent (1,n; A + dyi, gt + dii) on Sico.

(3.6) Proposition. Suppose that the equation (3.7) below has, at

a generic point of Sy;, a solution of the form

(20 — ;)" f(2) (V¢ Z)
(00— ) F(@)log(en —2) + i) (AEZ, A2 0)
fi(x)log(z, — ;) + (2, — :L'j)’\f(:L') (AeZ, A<0)
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where fi(z) and f(z) are holomorphic at this point and f(a) does
not vanish identically on S,;. And assume that the order of every
A;(0 €17 < r)on S,; is not less than the strict order of A, on S,,
then A; has the same strict order as A,. Therefore A, # 0 implies
A; #0.

Proof. In (3.7), replace F' with one of these solutions, and

a contradicton comes out if this proposition is not true.

Proof of (3.3) . It is sufficient to show the rank r is equal
to n. So suppose r < n.

Choose the order ideal {1, Ty, o, -, T,} regular with respect to
F which was constructed in (2.4). If the rank of F is r, then we can
suppose Ty, = 0y, (1 < k < r) without reducing the generality. If r # n,

then, for any section F' € F on Dy, we have a differential equation.
(37 ALl +AOGF A+ + A+ A =0,
where

A= A" :I/V(f(),][}, "'afn;TOaTla "77Tn)' H ; (:Ca'_,,wﬂ)—v/\aﬁ 7/: O>

0<a<f<n+1

and, for other 1,

89

Ai = W(fO)flyv"'7fn;T07T17"'7I‘i—178n;Ti+lz"‘,an)‘ H (l‘a—wﬁ)—'\"‘ﬁ_

0<a<f<n+1
Since T; = 0419%2 . .. 9%~ the order of A is
n ‘ on Spee
| —max{dy; |0 < a <n} - on Sy (i #ny00)

. r k 7 :
Put z Z max{d,; | 0 < a <k} =-—my and let T, = 0;7;,. Then
=1 a=0
it is evident that my = my_y + 1 or my = my_; and the former case

never occurs if J;, is not a component of 7 . As my = 0, we have

m, < n. Because the order of A 1s n on S, and A has, regarded as
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function of z,, poles only on S,; (1 < i < r), the equality m, = n
must hold. This means that m; = my_y + 1 is true for every &, which

takes place if and only if T} are, up to the suffices,
(38) 17alaaf7 T '70?118‘27' ' '7agza st ')87'7 s 'aa?r

and

ny+ng+--n,.=n
holds .

Therefore we have the following table of orders

‘S"I:TL S_yn Snoo
A, -n;, -1 n+1.
A, —n; 0 n

where k #n, 1 <:<r, j=0,r+1,--n—1,n+1. SoAkH(xn;

a=1
2,)" are of order 0 on S,; (0 < ¢ < r)and A, [[(zn — z4)™ is of
a=1
strict order 0 on S;,. By (3.6), none of A; (: = 0,1, - -r) vanish, for
A, is of strict order —n; on S,;.
If ny > 1, operate 97* "' on the equation (3.7), then we can easily
see that there exist «(=2,---,r,n) and m € Z(0 <m < n; — 1) such

that the sequence
2 -1 gu-l-ma. : :
17alaala"'70?1 >a{L1 ma’iaa‘b" " ‘3127' ",07-,"',0,,’.1'

is regular. By (3.8), ¢ must be equal to n.

With this sequence, we can construct a new differential equation
Byl + Byl +---4+ B.0.F + B0, I" =0, (6)

which is essentially the same as (3.7), otherwise, by eliminating the
term of J, F, we see r(F) < r.



Ifr<n—1,let p=n—1. Then the orders Bi(k # n) are as
below, where 2 <i: <rand j=0,r+1,--- . n—1,n+1.

Spl Spi Spj Sp'n SPOO
l-ny, —n; 0 -1 n ~

so By(z, — z,)(x, — ay)™! H(%n — x;)™ are constant in a,, which

contradicts to (3.6) and that 2.‘7_:2 is of exponent (1,7;A,,,0) on .S,,.
Therefore » = n — 1, and we have again the equation (6) by

means of 1,9;,0,, -+, 0,-1,010,, for example. Each B, (k # n,1,0)

is of order —1 on S (§ # k,0,n + 1) and n on Ske, so By = 0

(k # n,1,0) and therefore, by (3.6), n = 2 must hold. :
Consequently by means of 1,0,, 0y, 0,02, we have

B()F + BlalF + BzagF = O

By the following table of orders on each singularities,

Sor Sz Sis S0 S Six S0
By -1 -2 -1 -1 -1 4 4
B, -1 -2 -1 -1 -1 3 4
B -1 -2 -1 -1 -1 4 3
we can consider, by multiplying some factor, By = ¢, By = az1+b, By =
cty + d, where a,b,¢,d, e are constant. By the situation of F on Sy,
and Si3, we see ¢« = b = 0 ; similarly ¢ = d = 0, which completes the

proof.
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