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New Formulation of Quantum Dynamical Entropies
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Abstract

Classical dynamical entropy is an important tool to analyse the efficiency of infor-
mation transmission in communication processes.
Here we report new formulations of quantum dynamical entropy.

Introduction

Classical dynamical (or Kolmogorov - Sinai) entropy S(T') for a measure preserving
transformation T was defined on a message space through the measure of finite parti-
tions of a measurable space. The classical coding theorems are the important tools to
analyse communication processes, and they are formulated by the mean dynamical en-
tropy and the mean dynamical mutual entropy. The mean entropy exhibits the amount
of information per one letter for a signal sequence sending from the input source and the
mean mutual entropy does the amount of information per one letter for a signal sequence
trnsmitted from the input system to the output system.

Quantum dynamical entropy has been studied by Connes, Stormer [C.2], Emch [E.1],
CNT (Connes, Narnhofer, Thirring) [C.1] and others [B.1,0.7].

Recently, quantum dynamical entropy and mutual entropy were introduced by the
present author in terms of the complexity of information dynamics [O.8,M.1]. Further-
more, another formulation of the dynamical entropy through QMC was done in [A.4].

In §1, we review the formulation by CNT [C.1]. In §2, the formulation by the
complexity is presented. In §3, the formulation through quantum Markov chain (QMC)
[A.4] is discussed. In §4, we consider the relations among these formulations.

§1. CNT Formulation

Let (A,0.4,¢) be an initial C*-system. That is, A is a unital C*-algebra, 6,4 is an
automorphism of A, and ¢ is an invariant state over A with respect to 6.4; o004 = ¢. Let
N be a finite dimensional C* - subalgebra of .A. The CNT entropy [C.1] for a subalgebra
MNis

H, (N) =sup {Z MeS (we | N, @ [N = Z Apwy finite decomposition of (p} :
k k
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where ¢ | A is the restriction of a state ¢ to A and S(:, -) is the relative entropy for
C*-algebra [A.6,U.1,0.7].
The CNT dynamical entropy with respect to 84 and A is given by

1

NH(p(NvoNv---vaN—lN).

H,(0.4,N) = limsup
N—oo

The dynamical entropy for 0 4 is defined by

f:{(p(OA) = Sj\lfp I~{¢(9_A,N),

This dynamical entropy is sometimes called the maximal average information gain with
respect to 0 4. '

§2. Formulation by Complexity

In this section, we first review the concept of complexity, which are the key concepts
of Information Dynamics (ID for short) introduced in [0.6,0.8,0.9].

Let (A, S(A),a(G)) and (A, S(A4),a (G)) be an input (initial) and an output (final)
- C*-systems, respectively, where A (resp. .A) is a unital C*-algebra, G(A) (resp. &(A))
is the set of all states on A (resp. A) and a(G) (resp. @ (G)) is an automorphism of A
(resp. A) indexed by a group G (resp. G).

A channel [0.1,0.4,0.6] is a map A* from & (A) to G (A).

For a w*- compact convex subset S of G, there exists a measure g with the barycenter

@ such that
= / w dp
s

The compound state introduced in [0.2,0.3] exhibiting the correlation between an initial
state ¢ and its final state A*y is given by '

5*¢:/w®A*w du
s

This compound state corresponds with the joint measure in classical systems.

There are two complexities in ID. One is a complexity C$ () of a system itself and
another is a transmitted complexity T¢ ( ; A*) from an initial system to a final system.
These complexities should satisfy the following conditions:

(i) VpeSC6
C5(p) 20, T%(p;A*) >0,

(ii) If there exists a bijection j : ex& — ez, the set of all extreme points in &, then

Ci)(j(g)) = C5(p)
T9S) () ; A*) = T? (¢ ;A*)
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(i) Let U= o @Y € S;and 9 € S, ¥ € S. Then

CS(8) = C3(p) + C5(¥)

(iv) 0 < T%(p;A*) < C5(p)
(v) T? (¢ ;id) = C5(p)

Instead of (iii) above, when for € S; C 6; =6 ® G and ¢ = |4, ¥y = @|4
C%(2) < C%(p) + C°(3)

is satisfied, we call {C‘S TS} is a pair of strong complexities. These complexities gener-
alize several expressions of chaos [0.10].

Let us explain the formulation of three types of entropic complexity 1ntroduced in

[0.2]. L

Let (A, 6(A), a(G)), (A4, 6(4), @(G)) and S as before. Let M,(S) be the set
of all maximal measures p on S with the fixed barycenter ¢ and let F,(S) be the set of

all measures of finite support with the fixed barycenter ¢. Then we have three pairs of
complexities such as

T3 (e ;A*)E_vsup{/s.S(A*w,A*go)dp‘; peM, (3)} |

C2(p) =T% (¢ ; id) |

I (p;A%) = Sup{S (/Sw®A*wdu, <P®A*90); pe M, (3)} |
05 () = I (¢ id)

J® (¢ ; A*) = sup {[SS(A*w>A*w) dug; ps € Fy (8)}

C3 (p) = J° (¢ id).

Based on the above complexities, we can formulate the quantum dynamical entropy
[0.2,0.8,0.9]: Let 64 (resp. 0g) be a stationary (invariant) automorphism of A (resp.
B); poba=p,obp =1, and A* be a covariant channel (i.e., Ao = 050 A) from
S(A) to G(A). Ay (resp. Bg) is a finite subalgebra of A (resp. B). Moreover, let o

(resp. Bx) be a completely positive unital map from Ay (resp. By) to A (resp. B) and
M and BY be
aM = (ala Qg, 7aM)7

ﬂf\v:(AOﬂl,AOﬁz, ,AoﬂN)

Two compound states for o™ and BY with respect to u € M,(S) are defined as

M
@f (™) :/s ® oy wdp,

m=1

M N
<I>§ (e™u ,B}xv) = / ®1 o w ®1 Br A*wdp.
S m= n=
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By using these compound states, we define three transmitted complexities [0.8]: -
TS (™, BY)
M N
= sup( [ S( 8 ot 8 Bk, 85(aM) @ 8Bk 1 € Mo(5)}
I (aM, BY) = sup{S(2;i(aM U BY), (™) ® 23(BY)); 1 € My(S)}
Jo (™, BY) |

M N 7
= sup{ L S( @ amw © BrAw, ®(a™) @ B(BY))dus; 1y € Fu(S)}

When Ay = Ay = B, A = B, 04 =05 =0, a,=0"10a= L, the mean transmitted
complexity is ‘ : :

5 X ' 1
T(f (0,a, A*) = limsup —]—V—Tg (aN, ,Biv)

N—oo

Tf (0, A*) = sup Tg (0,a, A*)

Same for fg , jg . These quantities have the similar properties as the CNT entropy [O.8,

§3. Formulation by QMC

Another formulation of the dynamical entropy is due to quantum Markov chain
[A.4]. : '
Let A be a von Neumann algebra acting on a Hilbert space H, ¢ be a stationary
faithful normal state on A and 4¢ = My (d X d matrix algebra). Take the transition
expectation &, : Ag ® A — A of Accardi [A.1,A.2] such that

Ey(A) = Z YiAiiYi

where A = Y€ ®Ay € Ap® Aand v - {7;} is a finite partition of unity I € A. For
a state ¢ on A, the quantum Markov chain ¢ = {¢, &, ¢} € G(???AO) is defined by

P(j1(A1) -+~ Jn(An))
0(E4,0(A1 @E1 (A2 Q- @ Ap_1E0(An QI)--+)))

1

for each n € N and each Ay, -, A, € Ag, where £, 9 = 00&,, 0 € Aut(A), | (%)Ao = 1,

and jj is the embeding from A4, to 813?.,40 such as jx(A)=IQ® ---®I® A QI---. For
k-th
our &, 9, ¥ is written as

PY(51(A1) - Jn(An)) = Yo, (A1 ® - ® A ®I)
= ";bn(Al ®---® An),



190

where (o, and 9, are the faithful normal states on (%)AO ® A and é Ao, respectively.
1

When ¢ is defined by a trace class operator p such that ¢( - ) = trp - , the density
operators pjg ] and &, of Yo ) and 9P, are given by

p[O’"] = z T Zeilil ® T ® e":nin ® 0n(7’n) o "7i1p7i1 the 0n(7’in)

11 n
En =D D a0 (Vin) Vi PYiy 07 (Vi))einiy, ® - @ €,
in

1

Take
Pipociy = a0 (i) - - Vi pYir -+ 07 (i)
The mean dynamical entropy [A.4] through QMC is
S,(0;7) = L 15( 9)
e\ Y) = nl—{lgo n n\7
1
= — lim —tré,logé,
n—oo N

Z Pin"-i; 10g Pin---il,

15" stn

. 1
= — lim —
n—oo N

1

When P;_...;, satisfies the Markov property, the above equation becomes

5p(8;7) = = Y P(islir)P(i1) log P(inlis).

i17i2
The dynamical entropy through QMC with respect to 6 and a subalgebra A; of A is

S, (0; A;) = sup{S,(8;7);7 C A1 }.

§4. Relations Among Three Formulations

In tis section, we discuss the relations among the above three formulations. The &
- mixing entropy in GQS (general quantum systems) introduced in [O.5] is

S5 (p) =inf {H (n) ; p € M, (S)},

where H (p) is given by

H(p)=sup{ — > p(Ax)logp(4x) : A€ P(S)
Ar€A

where P(S) is the set of all partitions of S.
The following theorem [0.8,M.1] shows the relation between the CNT formulation
and the formulation by complexity.
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Theorem 4.1 Under the above settings, we have the following relations:
(1) 0< I8 (95 A*) ST9 (93 A%) < T (9 ;A7)

(2) CP(9) = CF () = CF (0) = 5% () = H, (A)

(3) A=A = B(H), for any density operator p

0 <I%(p;A*) =T (p;A*) < T (p;A%)
Since there exists a model showing $¥(®)(¢) > H,(Aq), S°(¢) distinguishes states more
sharply than H (M), where A, = {4 € A; a(A) = A}.

Moreover we have [0.9].

(1) When A,, A are the abelian C*-algebras and oy, is an embedding map, then

M
TG (u; aM) — Szlassical ( \/ Am)

m=1
M N
.[6(/1,; aM,ﬁN) — Izlassmal (\/ An7 v Bn)
n=1 n=1

are satisfied for any finite partitions A, B,, on the probability space (Q = spec(A), F, u).
(2) When A is the restriction of A to a subalgebra M of A ; A = |M and

N C Aoy A= 8 Ao,0 € Aut(A);
oV =(,00a,-- ;0N oa);
a = f3; Ag — A embedding;
Ny = %N’,
we have
Hy(M) = J®(p; | M) = I (id; [ M),

- - . 1
Hy(;N) = JZ(;N) = hllvnjrop —]\_TJE(QN; IVN).

We show the relation between the formulation by complexity and the formulation

by QMC. . ‘
When ¢ is defined by a trace class operator p such that o(-)=trp -, we define a

map £, from &(A4) to 6(((% Ag) ® A) by

Elny(@)(A) = trz o Zeilil ® @ einiy ®0™(Vin)  VirPYir 0" (%) A

i in
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for any A € (%) Ao) ® A. Take a map E(,) from 6((%) Ag) ® A) to G(%) Ap) such that
(Bw)(@) =w(@®1), VQe A
Then a channel 'Y, from &(A) to 6(&119.40) is given by
Llny = Em) 0 )

so that I‘E‘n)(go)(A) = tré, A for any A € %Ao and

_ 1 . -
Sp(057) = lim —~CT (T{nye) = Ci(y; 6,7)-

In any case, the formulation by the entropic complexities contains other formulations,
moreover it opens other possibility to classify the dynamical systems more fine [A.5].
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