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TRANSFORMATIONS APPROXIMATING A GROUP
GENERATED BY THE LEVY LAPLACIAN
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1. Introduction

Since T. Hida [6] applied the Lévy Laplacian, which was introduced by P. Lévy
[25], to his theory of generalized white noise functionals, this Laplacian has been
studied within the framework of white noise calculus ([8,10,11,17,23,27,30,31], etc.).
On the other hand, L. Accardi et al. [1] obtained a nice relation between the Lapla-
cian and the Yang-Mills equation. It seems an interest to consider a relation to
their results [1,2].

By H.-H. Kuo [16], an infinite dimensional Fourier-Mehler transform acting on
the space (S)* of generalized white noise functionals was introduced and he showed
a relation between the transform and the Lévy Laplacian (see [19]). There are
several Laplacian operators acting on (S)*.

In this paper we discuss integral expressions of those Laplacians and groups
generated by the Laplacians. In addition, we show a transform acting on (S)*
approximating a group generated by the Lévy Laplacian.

The paper is organized as follows. In Section 2 we assemble some basic nota-
tions of white noise calculus. In Section 3 we explain the definitions of Laplacian
operators acting on Hida distributions, and give a limiting integral expression of
the Lévy Laplacian with an integral expression of the Gross Laplacian. In Section
4 we define groups generated by the Laplacian operators acting on the Hida distri-
butions and show that Kuo’s Fourier-Mehler transform is given by a composition of
groups generated by the number operator and the Gross Laplacian. In addition, we
give a result that the group generated by the Lévy Laplacian is approximated by
groups generated by the Gross Laplacian. Finally, in the last section we introduce a
transform approximating a group generated by the Lévy Laplacian. This transform '
includes the adjoint operator of Kuo’s Fourier-Mehler transform.

2. Preliminaries

In this section, we explain some basic notations of white noise analysis following
[10,15,27,29]. We begin with a Gel'fand triple S C L*(R) C §*, where S = S(R) is
the Schwartz space consisting of rapidly decreasing C*°-functions on R and §* =
S*(R) is its dual space. An operator A = —(d/du)? +u® 4 1 is a densely defined
self-adjoint operator on L?(R). There exists an orthonormal basis {e,;v > 0} for
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L*(R) such that Ae, = 2(v + 1)e,. We define the norm |- |, by |f|, = |APf|o for
f € S and p € Z, where | - |o is the L2(R)-norm, and let' S, be the completion of
S with respect to the norm | - |,. Then the dual space S, of S, is the same as S_,
(see [13]). . ,

The Bochner-Minlos theorem admits the existence of a probablhty measure g on

S* such that
C©) = [ _explife,)} du(a) = exp{3l¢l3}, £ €.

The space (L?) = L*(S8*, p) of complex-valued square-integrable functionals defined
on 8* admits the well-known Wiener-I1té6 decomposition:

[e o]

(L2) = @ H,,

n=0

where H,, is the space of multiple Wiener integrals of order n € N and Hy = C.
This decomposition theorem says that each ¢ € (L?) is uniquely represented as

Y= ZIn(fn), Jn € L%:(R)@m?
n=0

where I,(f,) € H, and L2 2. (R)®" denotes the n-th symmetrlc tensor product of
the complexification of L? (R)
For each p € Z, we define the norm ||¢||, of ¢ = Zn-—O n(fn) by -

o 1/2
leelly = (Z n!IntZ,n) , In € S},

n=0

where | - |p,n is the norm of S& ®" and S ®’; is the n-th symmetric tensor product of
the complexification of Sp. The norm || - ||o is nothing but the (L?)-norm. We put

(p) = {p € (1%); [l¢ll, < o0}

for p € Z,p > 0. Let (Sp)* be the dual space of (Sp). Then (S,) and (Sp)* are
Hilbert spaces with the norm || - ||, and the dual norm of || - ||, respectively. We
define the space (S,) for p < 0 by the completion of (L?) with respect to || - |[|,.
Then (S,),p < 0, is a Hilbert space with the norm || - ||,. It is easy to see that for
p > 0, the dual space (Sp)* of (S ( Sp) is given by (S—p). Moreover, we see that for any

pER,
(SP) = @ H’S"p),
where HF is the completion of {L,(f); f € S”Cén} with respect to || - ||p.

Denote the projective limit space of the (Sp),p € Z,p > 0, and the inductive
limit space of the (S,)*,p € Z,p > 0, by (S) and (S)*, respectively. Then (S) is
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a nuclear space and (S)* is nothing but the dual space of (S). The space (S)* is
called the space of Hida distributions or generalized white noise functionals.
Since exp < -, & >€ (S), the S-transform is defined on (8)* by

S[8)(€) = C(€) < @,exp < £ >, £ €5,

where < -,- 3> is the canonical pairing of (8)* and (S). In [10], we can see the
following fundamental properties:

i) if S[®](£) = S[W](€) for all £ € S, then & = U.

i) if ® =Y P, € (S)*, then there exist an integer p and distributions f, €

8&%, n=0,1,2,..., such that 352y n!| ful? , < 0o and
S[B)(6) = D (€%, fa)
n=0
for all £ € S.

We denote the above Hida distribution @, in ii) by the same notation I,(f,) for

3. Laplacian operators acting on Hida distributions

We introduce the definitions of Laplacian operators following [10] (see also [20]).
Let F be a Fréchet differentiable function defined on S, i.e. we assume that there
exists a map F’ from S to &* such that

F(E+n)=F(&)+ F'(€)(n) +o(n),n €S,

where o(n) means that there exists p € Z, p > 0, depending on ¢ such that
o(n)/|nlp — 0 as |n|, — 0. If the first variation is expressed in the form

F(£)(n) = fR (& u)(u) du

for every n. € S by using the generalized function F'(¢;-), we define the Hida
derivative 0;® of ® to be the generalized white noise functional whose S-transform
is given by F'(¢;t). The differentiation 8; is continuous from (S) into itself. Its
adjoint operator 8; is continuous from (8)* into itself.

Let (H,B) be an abstract Wiener space. Suppose ¥ is a real-valued twice H-
differentiable function on B such that the second H-derivative D%*3y(z) at = is a
trace class operator of H. Then the Gross Laplacian Ag ([4,5]) is defined by

Agtp(z) = Trace D*y(z).

The Laplacian Ag has the expression Ag® = [g 07®dt on (S) (see [17]). The
Gross Laplacian is a continuous linear operator from (S) into itself.
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~Forany @ =3 o (I.(fn) € (S)*, the number operator N is defined by

N® = f: nL(fa).

n=0

The number operator is a continuous linear operator from (S)* into itself. The
operator N has the expression N® = [, 8;8;®dt on (S) (see [17)).

A Hida distribution @ is called an L-functional if for each ¢ € S, there ex-
ist (S[®])'(&;-) € Li,(R) N S*,(S[@]);(&;7) € Li(R) N S* and (S[@])(&;,-) €
L} (R?)NS*(R?) such that the first and second variations are uniquely expressed

loc
in the forms:

(st € = [ (STo Esunte)

and

(S[2])"(€)(m, ¢) = L (S[@))" (& wn(u) () du
+ [ (SI8D2E o)) dudo,
R2

for each 7,{ € S, respectively and for any finite interval T, [+(S[®]))(;;u) du is
in S[(S)*]. For any L-functional ® € Dy, and any finite interval T in R, the Lévy
Laplacian A is defined by

ATG = - [ﬁ /; (ST (5) du] .

This Laplacian has the following interesting properties.

1) AT =0 on (L?) (see [7,26]).
2) AT is a derivation under the Wick product (see [23]).

A Hida distribution @ is called to be normal if its S-transform S[®] is given by
a finite linear combination of

/k Flug, . oo ue)é(ur)Pt - - €E(ugk)?* duy - - - dug, (3.1)
T .

where T is a finite interval in R, f € L(T*) and py,... ,pr, € NU {0},k € N.
For any p > 1, the normal functional with the S-transform given as in (3.1) is in

DT N (8-p), because the kernel

kf(ula )uk)éf?f’l@@(s?fk duy -+ - dug

is in S®(p 1++Pk) This functional plays the role of the polynomial in the infinite
dimensional analys1s Let N7 denote the set of all normal functionals in DT, For
p>1and ® € DT, we define a (—p)-norm ||| - |||, by

ellZ, ZII (AT)*®]%, (€ [0, c0))
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and denote the completion of N7 with respect to the norm ||| - |||=p by D—_p. Then
D_, is the Hilbert space with the norm ||| - |||, and AT is a bounded linear
operator from D_,, into itself satisfying |||AT®|||_, < |||®]||-p for ® € D_.p We
put D = |J° p=1 D—p With the inductive limit topology. Then the Laplacian A7 is a
continuous linear operator on D.

Let DT denote the set of all L-functionals ® satisfying S[®](n) = 0 for n with
supp(n) C T°. In [22], Kuo obtained the following result.

Theorem 3.1. Suppose {j¢; € > 0} is a family of continuous linear operators from
S* into S satisfying the following conditions:
(a) j¥ -1 strongly on L?(R) as € — 0.

(b) lime_o |jelzslitiel s = 0.
(c) There ezists a uniformly bounded orthonormal basis {ex; k > 0} for L%(T)

such that as ¢ — 0,
g = 1
|]€‘H?S‘ Z(]eek)(t — m m Lz(T)
Then for any ® in DI,

SIAT8)(€) = lim |1l 7451865 (S[8] 0 jo))(6)

If ¢ € (S), the functional S[p]"(£)(n,{), n,{ € S has an extension S[p]" (£)(z,y),
z,y € S*, such that S[p]"(¢)(z, ) is in (S).
The chaos expansions of Agyp and S[¢]”(€)(z,z) for ¢ = Y oo (I.(frn) in (S)

are given by
Agyp = ZI ((n+2) n+1) / frya (-t t)dt)
and \ "
Slel"(€)(w, @) = Y n(n—1) /Rn Fr(w)(ur) - - §(tn—2)2(un-1)z(un) du,

respectively. Hence the expectation of S[¢]”(£)(:,-) is given by

/5* Sle"(€) (@) du(z) = 3 n(n — 1) / fa(¥, 4, €80 (v) dva.

n=0

Thus we come to get Lemma 3.2.

Lemma 3.2. For any ¢ € (S), we have

Slaeel(©) = [ Slel"©)(@9) dute).
We introduce an operator J. on (S)* into (S) by
S[Je](€) = S[®](5<(£)), @ € (5)".

Using the operator J, we can obtain the following result.



Theorem 3.3. Let T be a finite interval in R and ® an L-functional in Dg. Then
we have

SIATaI(E) = im0 [ S (©)(a,2) du(o)

where 0. = |j| 75

4. Groups generated by infinite dimensional Laplacians

We now introduce an operator e*2¢, z € C by

for ® € (S). This operator satisfies the following properties.

Theorem 4.1 [32]. The e*2A¢ is a continuous linear operator from (S) into itself
given by

86 = 3 L (la(®;2)), La(B;2) = 3 L2t 2m)

n=0 m=

ZmTT®m * fn+2'rn (41)

n!m!

for & =377 o In(fn) € (S).

Theorem 4.2 [32]. For any ® € (S), we have
Sleteal(e) = [ S(@)¢+vEe) duo)

where the integral is defined independent of choices of the branch of \/Z since p is
symmetric. : , _

An infinite dimensional Fourier-Mehler transform Fy, 6 € R,von (8)* was defined
by H.-H. Kuo [19] as follows. The transform Fg®, 6 € R of ® € (§)* is defined by
the unique Hida distribution with the S-transform _ ‘ ‘ ‘

SIE0B(6) = S[8)(c€)exp | e sindleh) € 5.

Moreover, the adjoint operator Fj of Fg is given by
F30 = Y00 o L(hn(®;0)) for @ = Y32, L(f2) € (S),

where

‘ X (n+2m) i :
hn(®: 0) = E T2V (2 sin @) me(mAn) O @m oy £
(®;0) 2 i (2 sin §)™e O™ % friom;
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Tr = / 5, ® 6,dt.
R

This operator F} is a continuous linear operator on (S). (For details, see [19] and

also [9].) The operator e?" is called the Fourier-Wiener transform, which is given
by

ei@N@ — Z einOQn

' =0
for & = 300 (@, € (S) (see [9]). The families {e*A<;0 € R}, {€*";0 € R} and

{F};0 € R} are groups generated by iAg, iN and iN + £ Ag, respectively (see [9]).
Take & =Y o0 I.(fs) € (S). From (4.1), we see that

2(e'0 51n9)AG@ Zln(z 2€ Sln 0))

n=0

Hence,

ei()N(e%(e“’sin(?)AGq)) ZI (€™, ( —e 9 sin ).

n=0

Since ei"?4,,(®; %ew sin §) = h,(®;0), we obtain the following relation.

Theorem 4.3 [31].

F* 0N

r=e o e%(ew sin 0)Ag

Remark: Details of Lie algebras containing Ag and N are discussed in [28].

A (Cp)-group {G:,t € R} is given by
G, = lim zn: 2
t — k— k

as an operator on D. The group G; has naturally an analytic extension G,, z € C.
It is easily checked that for any ® € D and t € R there exists p > 1 such that
1G-2ll|—p < ]| 2]]|p.

An characterization of Hida distributions was obtained by J. Potthoff and L.
Streit [29]. They say that for any F' in S[(S)*] and &, 5 in S, the function F(§ +
An), A € R, extends to an entire function F(§+ zn), 2 € C. We define an operator
g., z € C, acting on a Hida distribution & by

Slg:2)(¢§) = lim S[e*(*)"4< 7.](¢)

if the limit exists in S[(S)*]. For ® € Nr and z € C, we have g,® € Nr. For p > 1,
let £_, denote the collection of Hida distributions & = Y ) &, in (S§_;) such that
&, e NpNHSP, n=0,1,2,..., and Y02 [[|@all|—p < 00. Set £ =, £p. Tt is
clear that £_, C D_, for p > 1 and £ C D. By calculations of g.® and G,® for ®
whose S-transform S® is given as in (3.1), we get g, = G, on N for z € C. The
continuity of G, implies the following result.
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Theorem 4.4. If® =37 &, isin&_, forp>1, then 300 9. %, € D_, and
G.®=3 > ,9.Pn for z € C. Moreover if

ZSUP/ |S[Jc®n)(€ + V220.z)| dp(z) < oo
n=0 ¢ S
holds for any z € C and { € S, then g,® exists in D_, and g,% = G, 3.

5. A generalization

For any ¢ € (), £ € S and z1, 2 € C, the functional S[p](21£+22m), 7 € S, can

be extended to a functional S[cp](zlﬁ + 229), y € 8*, in (S) (cf. [15]). We denote
this functional by the same symbol S[¢](21¢ + 239). Thus we can define an operator
Go, from (8S) into itself by

S1G01(6) = [ Slel(at +62) du(e). (5.1)

Here we note that the right hand side of (5.1) is in S[(S)]. f @ =1 or —1, G, 8 is
equal to Lee’s transform L, g ([24]) given by

Ea,ﬁw(af) = /S _plaz +By) du(y), ¢ € (S).

The transform L, is applied to the heat equation associated with the operator
(aAg +bN)*, k > 1, a,b € C with Reb* < 0. (For details, see [3] and [14].) By
the proof analogous to that of Theorem 3.2 in [32], we can obtain the followmg
Lemma.

Lemma 5.1. If a Hida distribution & is in Ny, then

lim sw B](ac(2)€ + Be(2)z)du(z) = S[g.®](¢)

e—0

holds for any £ € S, where a(z) and Bc(z) are complez-valued functions of z € C
depending € > 0 such that a.(z) — 1 and B(z)/0 — +/2it as € — 0.

Proof. The proof comes from Theorem 4.4 and the following formula:
2
/ Sle)(at + Bz) du(z) = S[eMN e e%AGgo](é"), v €(S),a,BeC.
S*
O

By Lemma 5.1, we have the following result which is a generalization of Theorem
4.7 in [32].
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Theorem 5.2. Let ® be a Hida distribution in € satisfying the condition

Zsup/ S[Je®n](e(2)€ + Be(2)x)| dp(z) < o0. |

Then
lim S[Ga. (10,0 JeB)(€) = S[G.8)(6), z € C,¢ €. (5.2)

Proof. From the assumption and the Lebesgue convergence theorem, we can calcu-
late as follows:

lim S[Ga, (2),8.(2) Jc®](€) = limy . S[Je®)(e(2)€ + Be(2)z)dp(z)

=Yt [ S (et + Ble)du(e).
n=0 "
Consequently, by Lemma 5.1, we obtain (5.2). O

Theorem 4.3 admits an integral expression of the adjoint operator of Kuo’s
Fourier-Mehler transform:

SIF;0l(6) = / Sll(e% + VieTsin b z) du(a), ¢ € (S).

Hence Theorem 5.2 implies the following

Corollary 5.3. Let ® be a Hida distribution in € satisfying the condition in The-
orem 5.2 with .
ac(it) = e¥™0)" and B.(it) = /ie2it(%)* sin(2t(0,)?).

Then
li_l’)l(l] S| ;t(oE)Z']e@](E) = S[Gi®](§), te R, £ € S.
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