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Introduction.

"

The purpose of this note is to clarify the notion of "innovation”
for a stochastic process X(t), having been suggested by P. Lévy’s
idea of stochastic infinitesimal equation. Then, we proceed to the
case of a random field X(C) depending on a manifold C, where we also
see the role of the innovation for the study of X(C) in gquestion.

Let X(t), t € R, be a stochastic process. We are interested in
the case where the variation 8X(t) over an infinitesimal interval
[t, t+dt) can be expressed in the form

(1) | 8X(t) = #(X(s), s < t, Y(t), t, dt).
This is the so-called Lévy’s stochastic infinitesimal equation (see
[1]). In the above expression ¢ is a non-random function and the Y(t)
is the innovation which is a random variable independent of the X(s),
s < t, namely Y(t) stands for the new information gained by X(t) in
the time interval [t. t+dt).

Although the equation (1) has only formal significance, it can
well describes the probabilistic structure of the process X(t). The
randomness that is contained in the {X(t)} is entirely involved in the
system {Y(t)}, which is a system of elementary random variables.
Having been motivated by the idea that comes from equation (1) above,
we are naturally led to a stochastic analysis for X(t) based on the
innovation; in particular, we are led to white noise analysis, where

the Y(t) is taken to be white noise B(t).
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Before we come to a setup of our analysis, we have to mention an
important remark. The innovation should not be understood as a system
of continuously many independent random variables, but the Y(t)’'s are
independent random variables, each of which is to be associated to an
infinitesimal time intervals with length d¢. Thus, their sum or the

t . .
integral like I Y(s)J/ds = Z(t) gives an additive process. The choice

of /ds in the integral is easily acceptable if one thinks of /n -law
for the sum of independent identically distributed random variables.
It is noted that the given X(t)band the Z(t) defined above have the

same innovation Y(t) at any infinitesimal intefval [t, t+dt). The

elementary random variable, which is idealized, may be either dZ(t) =

Y(t)/dt or Z(t) = Q%él) = Xé%l
' Jdt

Now recall the Lévy—ItS decomposition of an additive process, in
fact, that of Lévy process that satisfies some additional assumptions
involving stationary increments property. The decomposition theorem
says that Z(t) is a sum of a non-random term m-¢ and two independent
processes oB(t) and P(t):

(2) Z(t) = m-t + o-B(t) + P(t),
where B(t) is a Brownian motion and where P(t) is a compound Poisson
process.

We are particularly interested in the Gaussian part, and by
taking ¢ = 1 in (2), we shall form a Gaussian system of idealized
etementary random variabies {B(t)} with B(t) = Qgéll. Such a choice
of the system makes a milestone of our stochastic analysis. More
precisely, we take the B = {B(t)} to be a system of variables of a

random function ¢(B) and we shall carry on stochastic analysis,
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namely differential and integral calculus in the variables B(t)’s.
The calculus, called the white noise analysis, has extensively been
developed so far in this line.

We shall then propose a next step, namely white noise analysis
of random fields X(C) depending on a manifold C by introducing the
innovation. For this purpose we generalize the Léevy’s stochastic
infinitesimal equation (1). Namely, we propose an equation

(3) 8X(C) = #(X(C’), C’c C, Y(s), s € C, C, &8C),
which still has only formal significance, but it does suggest our
approach. The equation (3) may be called a stochastic variational
equation. The analysis that will be developed can still be in our

calculus by taking the innovation to be white noise.

§1. Background and representation of Gaussian processes.

Since we shall discuss in line with white noise analysis, every
random phenomenon is assumed to be expressed as a generalized white
noise functional.

. . . * . d . *

Start with a white noise (E , u) with R -parameter (i.e. E 1is

*
an extension of LZ(Rd) ), and let (S) be the space of generalized
*
white noise functionals. The infinite dimensional rotation group Ow

* % * . . » . .
= Ow(E ) acts on E and keeps the white noise measure p invariant.

One of the motivations of our approach is the canonical repre-

sentation theory for Gaussian processedthat is originated by P. Lévy
(see e.g. [2]). Given a Gaussian process X(t) with E{(X(t)) = 0. If

X(t) is expressed in the form

t
(4) X(t) = j F(t,u) B(u)du,
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then it is called a representation of X(t) in terms of white noise
B(u). Or we may write (4) in the form
t
(47) x(t) = [ F(t,u) x(u)du,
where x € E* is a sample function of B(u) and X(t) itself is often
written as X(t,x). Note that there d is taken to be 1.
Among various representations is a canonicai! representation that

satisfies the relation : for any t and s with t > s the equality
s
E(X(t)/Bg (X)) = [ F(t,u) B(u)du,
holds, where BS(X) is the smallest o-field generated by the random

variables X(u), u < s.

For a canonical representation one can prove

(5) Bt(X) = Bt(B), for every t.

In addition, the kernel F(t,u), being viewed as an integral operator,
defines its inverse F(u,t)_l which plays a role of the whitening,
since F(t.u) is surjective operator acting on the space spanned by
the X(t)’s. Through sﬁch properties we understand the role of innova-
tion. With this spirit we can consider innovation for some general
stochastic processes without the assumption that X(t) is Gaussian.

We further expect such a relation between process and innovation
for the case of random fields. This will be discussed in the next

section.

§2. Innovation for Gaussian random fields.

*
Let X(C) be a Gaussian random field which lives in (S) , and be

indexed by a contour C c RZ. Now suppose it is expressed in the form
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(8) X(C) = J’(C)F(c,u)x(u) du, x e EF,

(C) : the domain enclosed by C,

where 7 is a sample function of Rz—parameter white noise and F(C,u)
is a non-random kernel function.

Obviously X(C) is a Gaussian random variable with E(X(C)) = 0O
and Var(X(C)) = f(C)F(C,u)zdu. Assume thaﬁ C runs through a certain
class of contours, say C € € = {C ; C is diffeomorphic to Sl}. Then
we are given a Gaussian random field indexed by C and X(C) may be
viewed as a generalization of a Gaussian process with parameter t € R.

Now we come to the stochastic variational equation (3) for X(C)
and can discuss its innovation. The variation 8X(C) has already been

1 and

i

discussed in [4) formula (4.3). It is known that, by taking n
by taking C + 8C outside of C, 8C being represented by 8n(s), we have
(7) §X(C) = I{F(C,s)x(s) + J’ SF(C,u) (s)x(u)du}sn(s)ds
C (C)
and that the two terms of the righthand side can be discriminated.
Also it is known that x(s) is obtained from the first term. In fact,
the proof needs the help by the rotation group O_; good reference [6].
Wwhat we claim now in this note is that {x(s), s € C} is defined
to be the innovation and we understand that it is associated with the
infinitesimai domain between C and C + 8C. If one is permitted to use
a formal expression, then the accumulated innovation is
(8) Z(C) = J’ x(s)sn(s)ds,
(C)
and it has the same innovation as X(C). {x(s), s € C} is a sample of
the elementary random variables. Thus, a good interpretation is given

to the reason why white noise is useful for calculus of random fields.
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§3. Concluding remarks.

1) Innovation for non Gaussian random fields.
We follow the results in t4] to discuss the case where X(C) is not a
Gaussian variable but a generalized white noise functional, and it is
easy to come to the notion of innovation to discuss its roles.

2) The case of a random field X(t), t € Rd.

As is seen in [7], normal derivatives along a curve or a surface may
not be a generalized stochastic process. In order to form innovation-
like process, the calculus is not always straight forward, in reality

some regularization is necessary.
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