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General Properties between Canonical Correlation

and the Independent-Oscillator Model
on a Partial x-Algebra

BB (BL58UERT ZA5ERT5T)

1 K

The independent-oscillator (I0) model is the model of the quantum
particle surrounded by a large number of independent heat bath particles,
each attached to the quantum particle by a spring. The Hamiltonian of
the system is given by

Hlo(Ef-p— +Z

- w? (45— o). (1)

Here z and p are the coordinate and momentum operators of the quantum
particle of mass m, while ¢g; and p; are those of the jth heat bath particle

of mass m;. Of course, we have the usual commutation relations:

[:E’p] = th, [q]',pj'] = ih6jj;. (2)

V(z) is the potential energy of the external force on the quantum particle.
This model appeared in the literature [1, 2, 3, 4, 5]. Especially, Ford,
Lewis and O’Connell found the 10 model to be convenient since other
heat bath models can generally be related to the I0 model in Ref.[4].
They showed in §IV of Ref.[4] that from the IO model H;o we can derive
the generalized quantum Langevin equation:

9+ [ dontt- 9P 4 vie) = k0, ®)

which is the momentum operator version of (2.1) in Ref.[4], where the
prime denotes the derivative with respect to z. u(t) is the memory func-
tion given by

t) =) mjw? cos (w;t) O(t), (4)

=
where 6(t) is the Heaviside step function, and F (t)‘is an operator-valued
random force with mean zero, and a mean force characterized by a mem-
ory function p(t): The symmetrized correlation function of F(t) is given

by



3 < FOFG) + FOF(Q) >,
= % i—o: hmjw coth(hw;/2kT )cos [w; (t — s)], (5)

and the nonequal-time commutator of F(t) is

o0

[F(t),F(s)] = —1 Z hmjw?sin [wj (t—3)]. o (6)

J=1

Here, for operator O, < O >, means that < O >, def (Oe”HB/kT) Jtr (e_HB/kT),

1
where Hp df [
Zj: ij

T is absolute temperature. The Fourier-Laplace transform of the memory

1 .
p? + imjwjz-q;] , k is the Boltzmann constant, and
function is given as

[mwgﬁﬂM%ngimq[l + 1} ”)

Z - Wwj z + wj

for every Imz > 0.

Furthermore, Li, Ford and O’Connell investigated the symmetrized
correlation of the coordinate operator and the quantum random force of
the generalized quantum Langevin equation in Ref.[5]. A

Ford, Lewis and O’Connell showed that properties (5) and (6) are
characterization of the operator-valued random force F(t) by the mem-
ory function u(t) (see (2.2), (2.3), (4.13) and (4.14) in Ref.[4]). And
besides, in §3 in Ref.[1] Ford and Kac remarked that, in the general-
ized quantum Langevin equation, the correlation and commutator for the
operator-valued random force must have the forms (5) and (6). Then, in
this paper, we prove general properties including (5) and (6) between
canonical correlation and the I0 model on a partial *-algebra [6, 7, 8].
The partial *-algebra which we treat in this paper is given by a com-
pletion of a set of operators. The completion is done by the Bogoliubov
scalar product which gives the canonical correlation. In order that we
shall directly deal with bosonic operators which are unbounded, we will
choice the partial x-algebra, not C*-algebra, for unbounded operators.

We consider a quantum particle in thermal equilibrium with any quan-
tum system in a finite volume under conditions (A.1)-(A.4) below. From
now on, we set the Planck constant » = 1. Let H,,¢ be an arbitrary
total Hamiltonian which governs our system of the quantum particle
with the quantum system such that e #Hars is a trace class operator
(where 8 = 1/kT denotes the inverse temperature). H, . has the form
of Hyps = p*/2m~+V (z)+ Hys+ Hin, where H, , denotes the Hamiltonian
of a quantum system surrounding the quantum particle with (z,p), and
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H. is the interaction Hamiltonian between the quantum particle and the
quantum system. Here, of course, the form of Hys+ Hins 1s unknown now.
The canonical correlation function R,(t1,t;) for the momentum operator
p is defined by

Ry(t1,1s)
def 1
Btr (e=PHaps)

8 - . . :
/ dtr (e—(ﬁ"/\)Hq,p,s eHap st pe—lHq,p,stl e~ Map;s e’Hq,p,shpe—'Hq,p,sh) .
0

For any p and H,,, satisfying (A.1)-(A.4), we prove that, on a partial
x-algebra X (Hqyp,s) which is called the Liouville space, the Heisenberg
operator p(t) o eHarstpe~iHarst satisfies a quantum Langevin equation
with a quantum fluctuation I(t), which has the similar form to (3) (see
(17) in the main theorem). Here we note that we can not apply theories
in Ref.[9] nor Ref.[10] to the momentum operator because of a condition.
We show that the memory function x(t) for the IO model character-
izes a fluctuation-dissipation relation in our Langevin equation and the
canonical correlation function R,(t;,¢;) (see (19) and (20) in the main
theorem), which means that Hiy is characterized by [u] (). Furthermore
the symmetrized autocorrelation and nonequal-time commutator of I(t)
have the similar representation to (5) and (6), which are implied by our
fluctuation-dissipation relation (see (21) and (22) in the main theorem).
They are general results for p and Hgp s in mathematics, so they give one
more mathematical evidence that the 10 model represents the system
of the quantum particle with the most general quantum system, which
was indicated by Ford, Lewis and O’Connell in Ref.[4]. It is a symmetry
with respect to the canonical correlation that derives the close relations
between the canonical correlation and the distribution of the memory
function of the 10 model.

As mentioned above, some properties of the IO model was studied in
Refs.[1, 2, 3, 4, 5]. Especially Ford and Kac say on p.808 in Ref.[1]: “since
we have derived the quantum Langevin equation only for very special os-
cillator models (i.e. the 10 model), one might wonder to what extent
we have demonstrated the universality of the equation. The answer, of
course, is that we have not. Rather, the logic is reversed: if there is a
universal description, then it must be of the form we have obtained.” And,
Ford, Lewis and O’Connell showed in Ref.[4] that a number of other heat-
bath models within the framework of the general macroscopic description
of the quantum Langevin equation are reduced to the I0 model by phys-
ically adequate reasons. In this paper, for the momentum operator of
our system we shall derive a quantum Langevin equation by the general
theory by Mori[l1, 12], and show general properties between canonical
correlation and the I0 model. The author thinks that our argument is



valid over not only the momentum operator of our system but also ob-
servables which are realized as self-adjoint operators in some class, which
gives a physical and mathematical proof for Ford and Kac’s remark above.

2 EEH

In this section, in order to introduce canonical correlation functions
defined by the Bogoliubov scalar product, the Liouville space and explam
‘our main theorem, we set up a general framework. ‘

"We consider a quantum particle in thermial equilibrium with any quan-
tum system in the finite volume. So, we give a state space for our system
by a sépaxjable infinite-dimensional Hilbert space, which is denoted by
simp}y Faps- ‘And we denote the inner product of Fy s by ( ; aps-

 Let z and p be the coordinate and momentum operators of the quan-
tum particle of mass m, and V(z) is' the potential energy of the external
force on the quantum particle. Let V(z) be a potential energy of the
external force on the quantum particle. o o

For our system, there exists a Hamiltonian H, ;s whose form is given
by Hyps = p*/2m+V (z)+ Hys+ Hine, where Hy s denotes the Hamiltonian
of the quantum system surrounding the quantum particle with (z, p), and
H;, is-the interaction Hamiltonian between the quantum particle and the
quantum system. Here, of course, the form of Hs+ Hiy is unknown now.
So Hyps may be non-quadratic, but must be realized as a self-adjoint
operator acting in the Hilbert space F . Since we are now considering
the thermal equilibrium quantum system, H, ;s is a self-adjoint operator
acting in Fyps, and

(A.1) - e "Hars is a trace class operator on Fy, ¢ for every 7 €
(0,81, | ~

* where 8 = 1/kT is the inverse temperature. This condition implies that

the spectra of H, , ; are purely discrete and the eigenvectors {¢, |n € N*}

of Hyps form a complete orthonormal system of F,,s, where IN* o
{0,1,---}. We count the eigenvalues X,, (n € N*) of H,, in such a way
that Hypspn = Anpn and 0 < Ag <Ay <o <A, S A1 002/ o0,

For the Hamiltonian H; s, we can construct a Liouville space X.(H,
which is a set of adequate operators acting in Fy s [9, 13]. We denote the
linear hull of {¢, |n € N*} by Dy s, i€, Dgps ' Lh. [{¢.|n € N*}].
From here on, we denote the linear hull of a set S by L.h.[S]. Obviously
D, is dense in F,, . Further, we denote by B(Dgp s, Fops) the space
of bounded linear operators from Dy, to Fyps. Every element A in
B(Dgyps, Fops) has a unique extension to an element in B(F,,), the
space of bounded linear operators on Fy,s. We denote the extension of
Aby A, and A*[Dgs by A, which means that the domain of operator
A* is restricted to Dy . :

q,p,s)a
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We first define a class T(Hgyp,s) of operators, which is a set of op-

erators A satisfying the following conditions: (T.1) the domain of each .
operator is equal to Dgyps, and the domain of the adjoint operator of -

each operator includes Dy, (i.e., D(A) = Dgps and D(A*) O Dgps,

where D(B) denotes the domain of each operator B); (T.2) for all 7 in

(0, B] operators e "Hars A and Ae~"Hars are in B(Dgps, Fqps), further-
more, (e""Hars A)~ and (Ae~"Hars)~ are Hilbert-Schmidt operators on
Faps We must now turn our attention to the unboundedness of opéra-
tors because it is known that limits on the precision of the measurement
of observables for bounded operators (e.g., fermion) and unbounded o.per—
ators (e.g., boson) are different[14, 15, 16]. For unbounded operators, the
problem of their domains is delicdte, so we provide condition (T.1). Con-
dition (T.2) addresses convergency with respect to the Bogoliubov scalar
product[9, 13, 17]. We note here that T(Hyp) is a linear space. We can
then introduce the Bogoliubov (Kubo-Mori) scalar product < ; > as

o |
<A B >E s [ dhn(e e 47 (o BY),

for A,B € T(H,ps), where Z(3) 4 tr(e=PHars). It can be easily proven
that < ; > is an inner product of T(Hgps) (see Ref.[13]). The inner
product introduces a norm: ||Allg,,, < A; A >'/2. We can therefore
obtain the Liouville space' X.(Hyps) defined by a Hilbert space which
is the completion of T(H,,s) with respect to the norm || ||g,,,. It is
interesting to note that X.(H,,s) is a partial *-algebra with a unit (see
Proposition 3.14 in Ref.[13]). The definition of partial *-algebras is given
in Refs.[6, 7, 8]. We also note here that an element in X (Hqyp,s) is not
always an operator acting in Fy,s. It is noteworthy that Naudts et al.
attempted to argue in general about linear response theory on the Hilbert
space which is constructed by a completion of a von Neumann algebra
with KMS-state[18]. Roughly speaking, the von Neumann algebra with
KMS-state can be regarded as a set of operators which can be taken a
statistical average with the KMS-condition, however the operators are
bounded. So, for our purpose we do use the partial *-algebra instead of
the von Neumann algebra because the operators we treat are unbounded.
And we deal with Mori’s theory on X.(Hgyps), Which is just the partial *-

algebra constructed by the completion concerning the Bogoliubov scalar-

product.

In order to introduce the Heisenberg operator p(t) of the momentum

operator, we define here the Liouville operator £, s determined by the
Hamiltonian Hqps. ,

We can define, for adequate operators A, the Liouville operator L
by ﬁq,p,SA.d:if [Hyps, Al = HypsA— AHqps (see Lemma 3.8 in Ref.[13]).

The domain D(L, ) of the Liouville operator L4 then contains a dense.

86



subspace Dqp,s of all elements A € T(H,p;) satisfying that Hy,.A and
AHyps[Dgps arein T(Hgyps); furthermore, Az, Atz, Hyp Az, Hyp At

9

AHqp sz, and AYHy, x are in Dqy for all 2 in Dyp.. Actually, the
subspace Dy, is a core for L.

: For every A € X (Hq,p, ), we denote the Helsenberg opera,tor of A by
A(t) in the Liouville space X (qup,s) ie.,

A(t) & eilanst g,
And we define the canonical autocorrelation function of A by
Ra(t) ¥ R4(0,1) =< A(0); A(t) > .

Remark 2.1: The time evolution A(t) coincides with the Heisenberg
picture e'farst Ae=Harst for every operator A in Dy, and t € R (see
Proposition 3.13 in Ref.[13]).

So, we denote the canonical autocorrelation function of the momen-
tum operator p by R,(t). We define here a function [R,}(z) (2 € C with
Imz > 0) by the Fourier-Laplace transform as

(B, () % [ deRy().

Here, we have the properties concerning poles of [R,](z):
The spectra of £, ¢ is given by the closure of the set of all \,,, — \,’s:

O-(Eqvpys) = {/\ /\ |m n € N*}"loﬁure | (8)

which is proved in Lemma 3.1 in [19].
There exist non-negative constants A,, , (m,n € N*) such that

Rt)= ¥ Am’neit(km;,\n)’ » (9)
m,neN* . . IR .

whose proof is given by Lemma 3.2 in [19]. St
We denote the set of all positive poles of [R,] (z) by P%, and the set

of all negative poles of [R,](z) by PZ. Then, by (9) and the following

assumption, each poles of [R,] (2) agree with differences of two A, ’s.
(A.2) For PE = {Sk | k= 0, 1, e '}, kielll\?' (Ek-{—i - Ek) > 0.

Moreover, for PR = {n; |k = 0,1,---}, kierié* (M6 — Mes1) > 0.

We set the last two conditions: Because we consider a system governed
by the Hamiltonian Hyps = p?/2m + V() + Hys + Hiye with (A 1), the
condition that p € T(Hgp,s) is natural assumptlon

(A.3) peT(Hysp)- Furthermgte Z (hm l(z — &) [Ry) (2 )) £} < oo,

Z—>EL Z

k=0
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e o] ,. 1 ) .
and 3 (Jim 5 (2 = me) [Ry] () (= me)” < oo.
k=0 2Nk . .
(A.4) (l)i.nelc+ z[R,](z) =0, where ct¥ {z e C|Imz > 0}.

Here we introduce the symmetrized autocorrelation function S,(t) by
using well-known relation in Theorem 3 in Ref.[20]. For R4(t) (A €

X (Hqps)), since R4(t) is continuous and positive-definite, there exists a

unique measure AY" such that
S
Ralt) = [ eagn(de)

according to Bochner’s theorem. Then, we define the symmetrized auto-
correlation function S4(t) for A € X (Hqps) by

Sa(t) % / B B () A% (dw), (10)

—00 ) .

where Ej(w) is the average energy of the harmonic oscillator with the
frequency w at temperature T = 1/kf3,

ho . ph
Bp(w) = “eotn®H. | (11)
2 2
(We note here that we set A =1 in this paper.)
For A € X (Hyp,s), we define the response function P4(t) by

Pa(t) ¥ —ﬁ% < A; A(t) > . (12)

We have another Liouville space Xg(H,ps) by completion of T(Hgps)
by the following inner product[21]: For A, B € T(H,ps), we set

< A|B > Z(8)'tr ({(Ae“ﬁHq'P'S/2)_}* {(Be‘ﬁHq’P’s/z)_}) . (13)

Then, we can define the Liouville operator £L¥P* with certain dense do-
main in Xg(Hyps) (see §II and §III in Ref.[21]) in the same way as Lgp.
So we can get the Heisenberg operator /"""t A for A € X43(H,,,s), which
denotes »

Alt] ¥ 57 A € Xp(Hp,) | (14)

in order to distinguish it from A(t) € X.(Hyps)-
We denote Z(8) 'tr (Oe‘ﬁH‘*'P'S) by < O >. Then, of course, the well-
known relation (see Theorem 3 in Ref.[20]) means the following propo-

sition in our Liouville’s spaces: If A is a symmetric operator acting in

Faps With A € X (Hyps) and A € Xp(Hgyps), then

Sa(t) = % < AA[+A[A> . (15)
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We will prove this relation in Proposition 3.3 in [19]. ,
Furthermore, concerning the response function, of course a well-known
fact in our version holds: If A is a symmetric operator acting in Fy s

with A € X (Hyps) and A € Xg(Hyps), then
Py(t)=—i<[A, Alt]]>, (16)

where, of course, [A, A[t] ] = AA[t] — A[t] A. We will also prove this
relation in Proposition 3.4 in [19].

Now, we can state our main theorem:

Theorem: Suppose that total Hamiltonian Hyy s of the system of the
quantum particle with the quantum system, (_znd the momentum operator
p of the quantum particle, satisfy assumptions (A.1), (A.2), (A.3) and

(A.4). Then the function [R,](z) can be extended to a meromorphic .

function on the complex plane, and the set {w;}52, of all positive zero
points of [R,] is counted in such a way that

. Wy IS (Sj_l,Sj), ‘ with € > 0, ] S N
Give the mass m; of the particle of the quantumis,‘yst"em by

2mR,(0)

W, where [Ry) (2) = d[R,] (2)/dz=.

my; =
Let u(t) be the memory function of HIO‘with frequency w; and mass m;
above, i.e.,

o0

w(t) Zm]w2 cos (wjt) 0(2).
i 3= . .

Then, there exist-a memory function k,(t) and quantum fluctuation I(t)

such that the Heisenberg operator p(t) = efarstp of the momentum oper-

ator satisfies the following quantum Langevin equation :

jt (1) +hm/ dsr, (t s)% =1t | ()
on the Liouville space X (Hyps) with
lim k(1) = W), >0, (18)
a fluctuation-dissipation relation :
RPT@-M(t) =< 1(0); I(t) >, t>0, | (19)

with

<p; I(t)>=0, teR,
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and _
| 1
5O e

Furthermore, the fluctuation-dissipation relation (19) implies that the

(R () =

symmetrized autocorrelation function Si(t) of I(t) is
—_ S 3
Si(t) = SHT Y mjwicoth ( kT) cos (wjt), (21)
and response function PI(t)

Py(t) =

ka wrsin (w;t) . (22)

(We note here we set h =1 now.)

Remark 2.2: I(t) may be decomposed into a summation of V'(z)

and a certain quantum force F'(t). However, information in the theorem
is not enough to decompose I(t) in such a way. As a matter of fact, the
fluctuation I(t) is Mori’s fluctuation on the Liouville space X (Hq,p,s), and
then u(t) agrees with Mori’s memory function multiplied by the mass m
for t > 0.

The proof of our theorem is in [19].
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