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APPLICATIONS OF UNIT EQUATIONS

K. GYORY ( Debrecen, Hungary )
nv. '

INTRODUCTION

Unit equations have a lot of applications. The purpose
of this paper is to give a short overview of unit equations
and their applications. For more detailed surveys on the
subject, we refer to Shorey and Tijdeman (1986), Evertse,
Gy8ry, Stewart and Tijdeman (1988a) and Gydéry (1992).

In Sections I and IV, the most important results are
formulated for unit equations in k= 2 and L » 2
unknowns, respectively. Sections II and V are devoted to
some applications. Finally, in Section III some conjectures
and their implications are pfesented. At the end of the paper
only those references are listed which are not included in the

works mentioned above.

I. UNIT EQUATIONS IN TWO UNKNOWNS

First we introduce some notation which will be used
throughout the paper. Let K be an algebraic number field,
Okthe ring of integers of K B o: the unit group of Oy,
and S ={J°4)"')J°'$} (4= 0) a finite set of prime ideals
in Oy . Then

OS': {OLG K OY‘CL(P(&) 20 for all prime ideals ia¢$}

is a subring of K which is called the ring of § -integers.
It contains OK as a subring and, for A=z o© it is
just Oy . The unit group O;‘ of Qg is called the
group of S -units. As is known, it is finitely generated.

Let a,, Q2 be non-zero elements of K . The equation
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is called an Q§-unit eguation. If 4 =0O r we speak simply

about unit equation. Since O;‘ is finitely generated, ¢(4.4)

can be regarded as an exponential diophantine equation.

THEOREM A ( Siegel (1921), Mahler (1933) ). Equation (1. 4)

has only finitely many solutions.

This classical theorem was implicitly proved by Siegel for
ordinary units, and by Mahler for S -units. They used their
profound results on approximations of algebraic numbers.

The proof of Theorem A was ineffective, i.e. it did not
provide any algorithm for determining the solutions of (4.4).
Baker’s method concerning linear forms in logarithms of alge-
braic numbers and its P -adic version made it possible to
give an éffective proof for Theorem A. We present now an effec-
tive and quantitative version of Theorem A.

Let m =L K: @], let P be the maximum of the ration-
al primes in fo4,.-+) s (( with P= 32 if 4z o0 ), and
let Az max {HCa,),H(as),3} ( where M Ca ) denotes
the ordinary height of an algebraic number & , i.e. the
maximum of the absolute values of the coefficients of the
minimal defining polynomial of a over Z ).

THEOREM B ( Gydry (1979) ). Every solution of (4.4)
satisfies

- Cy (5+4) +1
(1.2> max H () <.exf’{(c,‘ Yk ® 'PmL dag A‘}

where ¢y =Cy (K) (<=4,2) depend only on K and can be
given explicitly. : .

This implies that, at least in principle, all solutions
of (4.4) can be determined. ‘

The bound in (4.2) is already best possible in terms
of A . In 1979, I gave the constants ¢,,C, explicitly.
Recently, these values of C4 and C, have been substantially
improved by Bugeaud and GyS&ry (199?).

EXAMPLE . When K = O and S:{p..,...a Ps} is a
finite set of primes, then Og¢= Z [ Cpa--- P's).d-]and
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equation (4. 4) takes the form

: % Xa e Ma .
(4.3) A,y P4 . Pa + Q3P4 e Pa” = 1 in X, o 2 e Z,
It follows from the recent explicit version of Theorem B that then

every solution of (4.13) satisfies

-
max {1x,;) ,1"3-{1} < (3¢s+1)) e+

P (£°%P)¢+4 Log A\

We note that recently Bombieri (1993) developed a new method
for deriving explicit bounds for the solutions of unit equations.
The above-mentioned bounds are, however, better than those
obtained by Bombieri's method.

The following theorem was proved by a combination of a

method of Mahler with hypergeometric functions.

THEOREM C ( Evertse (1984) ). Equation (4.4) has at

most 2, ;3"‘ +24 gsolutions.

It is interesting to observe that this bound is independent
of the coefficients Q,,a, . Erdds, Stewart and Tijdeman.
(1988) showed that the above bound is not far from being best
possible. Namely, they proved that if K=QqQ , Q= A, =1,

P; denotes the 4th prime and 4 is large enough then (1.4)
has more than QXP{C‘>/’£¢3¢ )4/9‘} solutions.

Equation (4.4) and equation

) ) '
a, 4 +a) 4; =1 in am; e O

A
are called S -equivalent if Qg /a; € O: for v=4,2,
For given S , there are infinitely many S -equivalence
classes of S -unit equations in two unknowns. & -equivalent

equations have obviously the same number of solutions.

THEOREM D ( Evertse, Gy8ry, Stewart and Tijdeman (1988b) ).
Apart from finitely many S -equivalence classes, equation (4.4)

has at mQSt 2 solutions.

This bound is already sharp in the sense that if A>©O then
there are infinitely many S -equivalence classes with 2
solutions.

The above Theorems A, C and D were generalized ( by Lang,

Evertse, GyS8ry, Stewart, Tijdeman and others ) to the case
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X
when CDS is replaced by an arbitrary finitely generated
subgroup or a subgroup of finite rank of G:*', the multiplicative
group of non-zero complex numbers.

Some analogue results have also been established ( by Gydry,

Mason, Evertse, Silverman and others ) over function fields.

II. APPLICATIONS

Applications of S -unit equations in two unknowns led
to the resolution of several open problems. We present some

of these applications.

1. Polynomials diophantine equations

Let F € OgLX,Y] be a binary form of degree d > 3
with distinct linear factors over € , and let b e Q¢\{o}.

Consider the equation ‘
(2.4) Fdx,4)Y= b in x,4 €Og.

For C)S = Z r Thue (1909) proved, in an ineffective way, that
the number of solutions of (2.4) is finite. Hence (2.4)

is called a Thue-equation. The first effective proof for this

theorem was given by Baker (1968). In the proof he used his
deep method concerning linear forms in logarithms of algebraic
numbers. The results of Thue and Baker were generalized by
several people.

The use of unit equations made it possible to generalize
these results to equations in an arbitrary number of unknowns.
We may assume without loss of generality that K is the
splitting field of F . This can be achieved by a suitable
extension of tﬂe ground field. Denote by F{b the height of b
and by ¥4F the maximum of the heights of the coefficients
of F . Using Theorem B, I proved in 1981 the following result
as a spacial case of a more general theorem. If F has K

as its splitting field, then for every solution of (2.4)
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6 CalA+4) m+4
(2.2 max{HG, HGp} < expi{d (c,3445%™ 7 P Log(HH Y}

where the constants €; = C; (R) (i=4, 2) depend only on K

and can be given explicitly.

This bound is already sharp in terms of Hg and Hyp .
In 1981, I expressed Cy and C, explicitly. Recently,
this bound has been considerably improved in Gydry (199?) in
terms of <l and the parameters of WK involved in €4 and C, .
Using his Theorem C on unit equations, Evertse (1984)

3
proved thatequation (2.4) has at most :{.’L (Bt 24)

solutions. We note that other upper bounds have also been obtained
by Silverman (1983), Bombieri (1994) and Fujimori (1994) without
using unit equations. Bombieri’s bound is of the form (420(.)42(4”4'?)

The above-presented quantitative result concerning Thue
equations was proved in a more general form, for decomposable
form equations ( including norm form equations, discriminant
form equations and index form equations ). For further effective
results concerning these equations we refer to the papers of
Gydry, Gydry and Papp, Trelina, Kotov, Evertse and Gydéry, and
Evertse, respectively, quoted in Gydry (198o), Evertse, Gydry,
Stewart and Tijdeman (1988a) and Evertse andva6ry (1988a).

The above-mentioned results concerning polynomial equations
have various further applications to superelliptic equations,
algebraic number theory, irreducible polynomials, finite

arithmetic progressions and so on.

2. Algebraic number theory

Unit equations have many applications to algebraic number
theory. It was an old problem going back to Dedekind and

Kronecker to determine power integral bases in Qg . An inte-

gral basis for Oy is called a power integral basis if

it takes the form

My, ™ M e O, = Z L] 4> Dy)g @) =Dr (2 €Ok )

where 'DK denotes the discriminant of K . If K is
quadratic or cyclotomic then O contains a power integral
basis. However, as was showed by Dedekind, this is not the case

in general. Several people, including Dedekind, Kronecker, Hensel,
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Hasse and Nagell studied the question of existence and determi-
nation of power integral bases. If O, = Z [«] then OK-_:Z[a-l-q.j
for all aa € Z . Using a version of Theorem B, I proved in

1976 in a quantitative form that up to translation by elements

of Z , _there are only finitely many & € Oyg with Oy =Z[«]
and all these can be effectively determined.

I generalized this to the case when the ground ring is an
arbitrary finitely generated integral domain over Z and
proved also several related theorems. These results led to the
resolution of some problems of Nagell, Narkiewicz, and Delone
and Faddeev, respectively, on algebraic integers and polynomials
of given discriminant ( for references, cf. Gydry (1980, 1984) ).

Using Theorem C on unit equations, we proved with Evertse
(1985) that up to translation by elements of Z , the number
of & €Oy with O, =Z[«] is at most (4« 33" )™-2

3. Binary forms with given discriminant

The binary forms F, G € ZZ [ X ,Y]:Zf,z_(} are called
equivalent if F(X)=G (U X)) for some U e SL, (Z).
In this case they have the same discriminant. It is a classical
theorem that for m > 2 and D #o r there are only finitely
many equivalence classes of binary forms F € ZZ [}_('1 with

degree mw and discriminant D .

This theorem was proved

for m =2 by Lagrange (1773) in an effective way,

for am =172 by Hermite (1851) in an effective way,

for m 2 4 by Birch and Merriman (1972) in an ineffective way,
for m 2 Y and for the monic case ( when F(4,0) = 4 ) by

Gy8ry (1973) in an effective way.
Further, I proved in 1974 that if m =degq F and D=D(F)#£o
then

2,
3 Log ID
mEsT Xog3 °3 l

and this is already sharp.

Using Theorem B on unit equations, Evertse and myself (1991)
proved that there are only finitely many equivalence classes of
binary forms ¥ ¢ Z [?_(_ J with discriminant D # o and
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all them can be effectively determined.

We proved this in a quantitative and more general form, over
OS instead of Z . In 1992, we generalized our result for
decomposable forms over OS . These results were applied by
Evertse and Gydry (1991, 1992) to the geometry of numbers and
algebraic number theory, and by Brindza, Evertse and Gyd&ry (1991)
and Thunder (1994) to diophantine equations.

‘4, Prime factors of sums of integers

Denote by A the cardinality of a finite set A , and
by w Ca) the number of distinct prime factors of a positive
integer a .. Let A, B be finite subsets of IN ; the set
of positive integers. It was conjectured by Erd8s and Turdn in
the thirties that if kR =1A] =IB[| =2 2 then

w( AN Cﬁ-+‘b)) ~—> oo as Kk —>eo,
a€cA ,bel

They confirmed their conjecture for A =8 |

Using Theorem C, Gydry, Stewart and Tijdeman (1986) proved
the conjecture in a more general and more precise form by showing
that if k=lAl =2 1Bl =2 2 then

w( JA (q+\o)>>c£ogk
°-eA ] b € R
with an effectlvely computable absolute constant C€C>0O .,

As was proved by Erdds, Stewart and Tijdeman (1988), this lower
bound is not far from the best possible.

Recently, Gydry, Sarkdzy and Stewart (199?) have proved an
analogue of the above result. They showed that if k = A= IB|=2
then

w( TV (ab+1)) >c'fogk
QGA)bG&

where ¢'so is an effectively computable absolute constant.

Further, they obtained a common generalization of the above
results concerning numbers of the form a+b and ab +1 '

respectively.
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5. Arihmetic graphs

Using Theorems B, C and D, Gy8ry (1980, 1990, 1992) proved
finiteness theorems for some arithmetic graphs which led to
further applications to algebraic number theory and irreducible
polynomials. It should also be mentioned the results of
Leutbecher and Niklasch(1989) on these graphs and their

applications to Euclidean number fields.

6. Polynomials of given number of terms

Using Theorems C and D, Gydry and Schinzel (1994) solved
a problem of Posner and Rumsey (1965) on polynomials of given

number of terms.

7. Finitely generated groups

Finally, we mention an interesting result of Chaltin (1992)
on finitely generated groups in the proof of which Theorem B

was utilized on unit equations.

III. CONDITIONAL RESULTS

In the special case K= @ , a,=za, =4 , unit

equation (4.4) can be written in the form

A+B = (C where A B, C are positive integers

composed of primes Pay---) Pa-e

The Oesterlé-Masser or ABC conjecture asserts that for any

given & >0 , there is an effectively computable ¢ =< C&)

such that
14-&

C LC—CP"“'PQ) -
A similar conjecture has been formulated by Vojta (1987) over
number fields. This suggests that the bound in Theorem B is
still far from the best possible.
The ABC conjecture and its analogue over number fields

have profound implications:




1. Fermat)s conjecture

Suppose that there exist positive integers X, 4, Z and

~ = 4 such that
"

X%-i— A-a:n: z

Then, by the ABC conjecture, we have

znee ( TV P)'H-L:C(—n-. P)4+£<

70

PIxT g™ am Plxay -
31+ €
¢ c(xyr)ttcecz ) |
whence .E--v\-—3(4+£5 < C . This implies that if & is small
then X ,x~, % and ™™ are bounded and they can be effectively
determined.

2. Faltings’ theorem ( Mordell’s conjecture )

Elkies (1991) deduced from the ABC conjecture over number
fields Faltings’ finiteness theorem on rational points of curves

of genus >4 .

3.Roth’ s approximation theorem

Recently Bombieri and Langevin showed independently of
each other that the ABC conjecture over number fields implies
an effective version of Roth’s theorem on approximation of alge-

braic numbers.

4. "siegel zeros" of L-functions

Using the ABC conjecture over number fields, Granville
and Stark (199?) have recently proved that there are no "Siegel
zeros" for any L-functions of characters associated to imaginary

quadratic number fields.
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IV. UNIT EQUATIONS IN k=2 UNKNOWNS

Let Q,4,..., be non-zero elements of K , and

consider the following generalization of equation C4.4) :
. *
CH-A) 0..‘&\4 & & e + Qkuk: 4 in ‘L‘-4’---’ Mk G Os .

This equation is called an § -unit ( unit ) equation in K

unknowns. The solution Alyyeney My is called degenerate
if the left hand side of (4.4) has a vanishing subsum Z«:eI Qe ez0
for some T < {4,..., k} . In this case there exist infinitely
many degenerate solutions ( provided that CD;' is infinite ).

Van der Poorten and Schlickewei and, independently, Evertse
proved the following.

THEOREM E ( van der Poorten and Schlickewei (1982), Evertse

(1984) ). Equation (4. A4) has only finitely many non-degenerate
solutions.

For k = 2. r this gives Theorem A. In the proof, the
authors used the deep Thue-Siegel-Roth-Schmidt method, more
precisely an appropriate version of the Subspace Theorem.

Bounds for the number of non-degenerate solutions which
are independent of a,4,..., Q| . were obtained by Evertse and
Gy8ry (1988) and Schlickewei (1990). The best known bound is
due to Evertse.

THEOREM F ( Evertse (199?) ). Equation (4.4) has at
most

Y
k7(m+4)
n*yo T

{Z%L'Ck-» (m=[K:@1, a=151)

non-degenerate solutions.

This implies a weaker version of Theorem C.
For given Kk , equivalence of equations of the form (4.4)

can be defined in the same way as in the case Kk = 2 .

THEOREM G ( Evertse and Gy8ry (1988) ). Let k = 2..

Apart from finitely many equivalence classes of equations Cuh.4),

the solutions of (M.4) are contained in the union of fewer
(k +4)!

than 2 (‘g-d) -dimensional linear subspaces of k(k:
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k4+4)!
Evertse (1992) improved the bound 2,< +432 to Ck!)2k+2:

For k=2 , these results give Theorem D in a weaker form.

Theorems E, F ( with other bounds ) and G were generalized

( by van der Poorten and Schlickewei, Laurent, Evertse and Gydry,
Gy8ry, Schlickewei and others ) to the case when CD; is
replaced by an arbitrary finitely generated subgroup or a
subgroup of finite rank of dl*'. Analogue results have also been
established ( by Mason, Brownawell and Masser, Voloch, Noguchi

and others ) over function fields.

V. APPLICATIONS

In what follows, we present some applications of Theorems E,
F and G. '

1. Decomposable form equations

Let FeZLX, .., Xam J be a deéomposable form, i.e.
a homogeneous polynomial which is a product of linear forms

with algebraic coefficients. The equation

(5.4 FCX,;,.--,XM): b in x4,..., X €Z
is called a decomposable form equation.
When A = , i.e. F is a binary form, (5. 1) is
just a Thue equation.
When a2 2 and F = Ng/a (KaXq+--+ed X, )is a
norm form where eg4).--) are given elements of K ,

(5. 4 is called a norm form equation. In this case Schmidt
(1971,1972) proved a finiteness criterion for (5.4) and
gave a description of the set of solutions. In fact he showed
that all solutions are contained in finitely many so-called
families of solutions. Later Schlickewei and Laurent extended
this to the case of more general ground rings. They deduced
their results from the Subspace Theorem, and did not use unit
equations.

The use of unit equations made it possible to obtain
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finiteness results on decomposable form equations in full general-
ity and over more general ground rings. Using Theorem E, we gave

with Evertse (1988b) a general finiteness criterion. Further,

we proved that unit equations and decomposable fbrm equations

are equivalent in the sense that any unit equation can be reduced

to finitely many decomposable form equations and conversely, any
decomposable form equation can be reduced to finitely many unit
equations over an appropriate extension of the ground ring.

In Gydry (1993a) I showed in full generality that the set

of solutions of a decomposable form equation is the union of

finitely many families of solutions. Further, using an earlier

version of Theorem F, I gave an explicit upper bound for the

number of families of solutions which is independent of the

coefficients of F . In case of finitely many solutions, this
provided an explicit upper bound for the number of solutions

as well. These implied all former ( ineffective ) finiteness
results on decomposable form equations and led to sevefal further
applications.

Recently Evertse (199?) proved that if the number of

solutions of (5.4) is finite, then this number is at most

3
34 2 i
(2 ol_ )M C +4)

where ol = cl.ea F and t denotes the number of distinct

prime factors of b .

With the help of Theorem F we have recently derived with

Evertse (199?) improved bounds for the number of families of

solutions of decomposable form equations over CDS . This

enabled us to prove that if (5. 4) has infinitely many solu--

tions then the number of solutions with max [x.] £ N is
1

cfog"N + O ((LogN)'™")  (c>o)

where A denotes the maximum of the ranks of the families of

solutions. This gives as a special case some results of Pethd

and myself (1977) on norm form equations.

2. Resultant equations ( with one unknown polynomial )

Let P € Og LX) be a polynomial of degree wm =2

without multiple zero and consider the resultant equation
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(s.2) TRes (P,A) € O in Q@ € OgIX],

If Q is a solution then so is & Q for every & € O;.
The solutions Q , &€ Q are called proportional.

In the case when K = AR , Wirsing, Fujiwara, Schmidt
and Schlickewei obtained finiteness results on resultant equations,
In their proofs, they used various versions of the Subspace
Th eorem. ‘

In Gydry (1993b), a more general finiteness theorem was
established for equation (§.2) whose proof depends on
Theorem E on unit equations. In Gydry (1994) I proved the follow-

ing quantitative version of this theorem. Let Kk be a positive

integer with 2k < am . Then up to a proportional factor from
Og , the number of solutions Q (X) of (s5.2) with
degree le is at most V

3
3y 2 kT(mn+A)D
(2> n ( m=LK:@1, s=1S1),
Further, in case of solutions Q@ (X) with leading coefficients
in Os* , the assumption 2K < m can be replaced by 2k £ .,
The assumptions concerning P and k are necessary.

Recently, Hirata-Kohno generalized Schmidt’s Subspace
Theorem in a quantitative'form. From this one can deduce bounds

for the number of solutions of resultant inequalities as well.

3. Resultant equations ( with two unknown polynomials )

Using Theorems E and F, Gy8ry and Evertse and Gydry have
obtained general finiteness results for (5. 2) in the case
when both P and Q are unknowns, but their splitting
field is fixed. For references, cf. Gy8ry (1993c).

4. Irreducible polynomials of the form P(X)+bhb

Many people ( including Pélya, Tatuzawa, A.Brauer, Ore,
Weisner, Seres and Gyd8ry ) published irreducibility results of
Schur’s type which assert that if P € Z LX) with "many"
distinct integer zeros and b € Z with "small" absolute
value then P(X)+b is irreducible.
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In the general case when P e Z[X] is arbitrary,
Hilbert's irreducibility theorem implies the irreducibility of
P(x)+b for infinitely many b € 2ZZ .

Szegedy (1984) proposed the following problem. Does there

exist a constant ¢ = ¢ (m.) ( depending only on av ) such
that for any Pe Z [X] of degree m , P(X)+b is
irreducible over @ for some b e Z with lbl g ¢ ?

With the help of my above-stated quantitative result on
resultant equations I proved in Gy8ry (1994) the following.
Let P € ZZ[X]be a polynomial of degree am and let w

denote the number of distinct prime factors of the leading

coefficient of P . There is a b c 2 with absolute value
at most

3
exp {Cuo+ ) (27 )T }

such that P(X) +b  is irreducible over @ .

For monic polynomials T (X) r this gives an affirmative

answer to Szegedy’s problem. It would be interesting to remove
here the dependence on w» and obtain a bound which is poly-

nomial in terms of a .

5. Irreducible polynomials of the form %( £CX))

Using Theorems B, C and E, I established irreducibility _
theorems of Schur’s type for polynomials of the form g(:{- (X))
where 9 is a given irreducible polynomial and the poly-
nomials o (X) possess a fixed splitting field. These general-
ized several earlier results on the subject. For references,

we refer to Gydry (1992).

6. Sums of products of given primes

Denote by w (m) the number of solutions of the equation
X A} T v
m =2 -3°4+ 2 4+ 3 in non-negative integers Xy, 2,V.

By means of Theorem E Evertse, Gydry, Stewart and Tijdeman (1988a)
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proved that w (m.) is bounded. This confirmed a conjecture
of D. Newman. In fact we proved this in a more general form,
when 2 and 2 are replaced by finitely many given primes.
Further, Tijdeman and L. Wang showed that for sufficiently largem

we have w(m )< 4 and this bound is already sharp.

7. Transcendehtal number theory

02 k? v —_
Let £ (z) = Zu=4 2°° . It is known that if o € @

with O <latl < 4 then £ (&) 1is transcendental. Using.
Theorem E, Nishioka (1986) proved the following theorem. Suppose
that ef4,..., o, €@) With 0<legl<4 (4124¢m) and that no

Al /. (424242 m ) is a root of unity. Then the numbers

,_c(z) Caty) (A2 m L >0) are algebraically independent.

This confirmed a conjecture of Masser. Later Nishioka (1987,
...) proved some generalizations, p -adic analogues and several

related results as well.

8. Recurrence sequences

The use of Theorems E, F and G enabled van der Poorten,
Evertse, Gydry, Stewart, Tijdeman, Laurent, Schlickewei and

Schmidt to get some general theorems on recurrence sequences.

9., Linear equations in integers with bounded sums of digits

Using some versions of Theorems E and F, Schlickewei,
Pethd and Tichy obtained finiteness results for linear equa-

tions in integers with bounded sums of digits.

lo. Modular forms

With the help of Theorem E Odoni (1988) gave an affirm-

ative answer to a question of Serre concerning modular forms.
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11.Finitely generated and finitely presented groups

By means of Theorem E Evertse, Gydry, Stewart and Tijdeman
(1988a) solved a problem of Rhemtulla and Sidki on fintely
generated groups. In this direction, further applications of

unit equations were given by Tijdeman and L. wang, and Wilson.
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