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A GENERALIZATION OF THE SIZES OF DIFFERENTIAL
EQUATIONS AND ITS APPLICATIONS TO G-FUNCTION THEORY

MAkoTO NaGATA (< &8¢ FrLse)

Department of Mathematics, Tokyo Institute of Technology

This is a summary about “a generalization of the sizes of differential equations and its
applications to G-function theory” [5].

Let K be an algebraic number field of a finite degree. We consider a linear differential
equation:

(1) | Edgy =4y, (A€ Mn(K(x))).

Let us define the sizes and the global radii regardmg differential equation (1).
For a place v of K we put

{ |ply = p%i'“ if v|p (p: prime),
Elo == 1€]F  if v]oo (€€ K),

where d = [K : Q] and d,, = [K,, : Q,)].
We define a pseudo valuation on My, n, (K): for M = (m; ;)27 ™ € My, n, (K),

. ]=1,...,TL2
|Mlv = max |mi’j|v.
i=1,...,n1
j=1,....,n2

For Y; € My, ;n,(K), we consider the Laurent series Y = 300\ ;2 € My, »,(K((2)))
with N € NU {0}.

We write log™ a := logmax(1,a) (a € R). André’s syrhbol h...(*) in [1] is defined by
hyo(Y) := max log™ |Y;lo,

1
hv,m(Y) = 'T;I;IéaXlog IYlv (m # 0).
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Definition 2. (Cf. [1]) We define the size of Y € My, n,(K((z))) as
oY) := Eothv,m(Y)

and the global radii of Y as
p(Y):= Z m@oo hv,m(Y)a

where Y, means that v ranges over all places of K.
The following definition coincides with the one in [6] in the case of Y € K[[z]].

Definition 3. We call Y € M, »,(K((z))) with o(Y) < oo a matriz of G-functions.

For f = f(z) = va o fiz" € K|z] and for every place v of K, the Gauss absolute value

is defined by |f|v := maxi=o,... N | filv-
For every place v with v { oo and for f,g € K[z] with g # 0, the Gauss absolute value

is extended to K(z) by

i _ Il
| =] := .
9 l9lv
We also define a pseudo valuation on M, (K (z)): for M = (m; ;)i j=1,...n € Mp(K(z)),
| M, — _Jmlax Imi -
Suppose that A € M, (K(z)). A sequence {FE;}i=o,1,... C Mn(K(z)) is defined by
Eo =1

and recursively for i =1,2,...,
1 ,d
Ei 1 :=——(—E; JA).
i+l .+1(d$Ez+EA)

For this sequence {E;}i=o.1,... C M,(K(z)) and for every place v { oo, we put

hyo({E;}) :=log™ |Eglv,
_ 1 + . _
hym({E:i}) == —T;L-Iil—lge:%clog |Eily, (m=1,2,...).

Definition 4. We define the size of A as
o(4) = Tm > hvm({Ei})

v{oo

and the global radii of A as
p(A) : Z lim_ho,m({E:}),

vtoo

where joo DEANS that v ranges over all finite places of K.



95

Definition 5. We call % — A with 0(A4) < oo G-operator and % — A with p(A4) < oc
the Arithmetic type.

According to these notations, we state known results:

Theorem 6. (Cf. [1], [2], [3]) Suppose that A € M, (K (x)) and suppose that A has at
most the simple pole at x = 0. For a solution, y, of differential equation (1), let y belong to
K{[z]] and its entries be linear independent over K (z). Then the following five assertions
are equivalent:

(6.1) o(y) < oo,
(6.2) o(A) < oo,
(6.3) o(A*) < 0,
(6.4) p(A) < oo,
(6.5) p(A*) < 00

where A* = —*A. Moreover they imply

(6.6) p(y) < oo

Theorem 6 is the main theorem in [1]. Before stating André results, we need a definition.

After a transformation of differential equation (1), there exists the unique matrix so-
lution of differential equation (1), Yz with Y € GI,,(K[[z]]), Y|z=0 = I. where C is the
residue of A at z = 0. This Y € Gl,(K[[z]]) is called the normalized uniform part of the
solution of differential equation (1). ‘

He proved Theorem 6 by using the following:

Theorem 7. (Cf. [1]) Suppose that A € M,(K(z)) and suppose that A has at most
the simple pole at z = 0. let Y € Gl,(K[[z]]) be the normalized uniform part of differential
equation (1). Let differential equation (1) be Fuchsian and let all eigenvalues of the residue
matrix of A at x = 0 be rational numbers. Then

(7.1) o(A) < oo if and only if p(A) < oo,
(7.2) p(A) < oo implies p(Y) < oo,

(7.3) p(Y) < oo implies o(Y) < oc.

ie.,

o(A) < oo implies o(Y) < oo.

Now for a differential equation

(8) %X = AX —~XB, (4B e My(K(z)))

bl
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we introduce.its new size o(A, B) of differential equation (8).
Let us define another sequence {F;}i—01,... C M,(K(z)) as

F() =1
and recursively for ¢ =1,2,...,
1 ,d
Fiiq:= +1(d F; — AF; + F;B).

Definition 9. We define the size of A and B as
o(A,B) := Tim Zhvm (F})

v{oo

and the global radii of A and B as

vfoo
Namely o(A4) = 0(0, A).
This size o(A, B) has the following properties:

Theorem 10. (Cf. [5]) For any A,B,C € M,(K(z)) and any T' € Gl,(K(z)), the
followings hold:

(10.1) o(A,A) =0,
(10.2) o(4, B) = o(T[A], T[B]),
(10.3) .~ 9(A,B)<d(AC)+0(C,B).

Here T[A] = TAT ' + (£T )T 1
An application of Theorem 10 as the converse proposition of Theorem 7 is following:

Theorem 11. (Cf. [5]) Let A € M,(K(z)) and let Y be the normalized uniform part
of the solution of differential equation (1). Let u € Ok|z] be a common denominator of
A, where Ok denotes the integer ring of K. Let s := max(degu, deg(uA)). Suppose that

= {Eigenvalues of the residue of A } C Q.
Then

o(A) < 9n4(s +1)o(Y) +3log Ne +3 Y IOgﬁ
(11.1) piNe P

p:prime

+ (s + 1hoo(u) + log(s+1) + 3(n — 1),

where hoo(u) 1= #1- Zv|oo max;<m log" |u;|, and N¢ € N is a common denominator of €.
ie.,
(YY) < oo implies 0(A) < 0.

Remark 12. The same result on the finiteness by another method was published [4].

From Theorem 7, Theorem 11 and the uniqueness of the normalized uniform part, we
summarize them as follows:
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Theorem 13. Under the assumptions of Theorem 7, the following eight assertions are
equivalent:

(13.1) o(Y) < oo,
(13.2) o(A) < oo,
(13.3) p(Y) < oo,
(13.4) p(A) < oo,
(13.5) oY1) < oo,
(13.6) o(A*) < oo,
(13.7) p(Y™1) < oo,
(13.8) p(A*) < oo,
where A* = —tA. More precisely

(13.9) - o(A) =o0(AY),
(13.10) p(A) = p(A7).

Remark 14. Equation (13.10) is derived using a different method in [1].
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