MINIMUM OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA(北岡良之)

Department of Mathematics, School of Science Nagoya University (名方全大学)

We are concerned with reresentation of positive definite quadratic forms by a positive definite quadratic form. Let us consider the following assertion

 $A_{m,n}$: Let M, N be positive definite quadratic lattices over \mathbb{Z} with rank(M) = m and rank(N) = n respectively. We assume that the localization M_p is represented by N_p for every prime p, that is there is an isometry from M_p to N_p . Then there exists a constant c(N) dependent only on N so that M is represented by N if $\min(M) > c(N)$, where $\min(M)$ denotes the least positive number represented by M.

We know that the assertion $A_{m,n}$ is true if $n \geq 2m+3$ and there are several results. But the present problem is whether the condition $n \geq 2m+3$ is the best possible or not. It is known that this is the best if m=1, that is $A_{1,4}$ is false. But in the case of $m \geq 2$, what we know at present, is that $A_{m,n}$ is false if $n-m \leq 3$. We do not know anything in the case of n-m=4. Anyway, analyzing the counter-example, we come to the following two assertions $APW_{m,n}$ and $R_{m,n}$.

 $APW_{m,n}$: There exists a constant c'(N) dependent only on N so that M is represented by N if $\min(N) > c'(N)$ and M_p is primitively represented by N_p for every prime p.

 $R_{m,n}$: There is a lattice M' containing M such that M'_p is primitively represented by N_p for every prime p and $\min(M')$ is still large if $\min(M)$ is large.

If the assertion $R_{m,n}$ is true, then the assertion $A_{m,n}$ is reduced to the apparently weaker assertion $APW_{m,n}$. If the assertion $R_{m,n}$ is false, then it becomes possible to make a counter-example to the assertion $A_{m,n}$. As a matter of fact, $APW_{1,4}$ is true but $R_{1,4}$ is false, and it yields examples of N such that $A_{1,4}$ is false.

Anyway it is important to study the behaviour of the minimum of quardatic lattices when we vary them. Our aim is to show

Theorem. The assertion $R_{m,n}$ is true if n-m>3, $n\geq 2m+1$ or $n=2m\geq 12$.

Remark. If the assertion $R_{m,n}$ is false, we can construct a counter-example to the assertion $A_{m,n}$ as above. When the case of n < 2m seems to have a different nature from the case of $n \ge 2m$.

To prove it, we are involved in analytic number theory. The rest is a brief summary of the proof.

We denote by $\mathbf{Z}, \mathbf{Q}, \mathbf{Z}_p$ and \mathbf{Q}_p the ring of integers, the field of rational numbers and their p-adic completions. Terminology and notation on quadratic forms are those from [K]. For a lattice on M on a quadratic space V over \mathbf{Q} , the scale s(M) denotes $\{B(x,y) \mid x,y \in M\}$, and the norm n(M) denotes a \mathbf{Z} -module spanned by $\{Q(x)|x \in M\}$. Even for the localization M_p it is similarly defined. dM, dM_p denote the discriminant of M, M_p respectively. A positive lattice means a lattice on a positive definite quadratic space over \mathbf{Q} . We give proofs only for a few assertions.

Definition. For a real number x, we define the decimal part [x] by the conditions

$$-1/2 \le \lceil x \rceil < 1/2$$
 and $x - \lceil x \rceil \in \mathbb{Z}$.

Note that $\lceil x \rceil^2 = \lceil -x \rceil^2$ for every real number x.

Definition. For positive numbers a, b, we write

$$a \ll_m b$$

if there is a positive number c dependent only on m such that a/b < c. If both $a \ll_m b$ and $b \ll_m a$ hold, then we write

$$a \asymp_m b$$
.

If m is an absolute constant, then we omit m.

Definition. For positive numbers c_1, c_2 , we say that a positive definite matrix $S^{(m)} = (s_{i,j})$ is (c_1, c_2) -diagonal if we have

$$c_1 \operatorname{diag}(s_{1,1}, \dots, s_{m,m}) < S < c_2 \operatorname{diag}(s_{1,1}, \dots, s_{m,m}).$$

If S is in the Siegel domain \mathfrak{S} , then there exist positive numbers c_1, c_2 dependent on \mathfrak{S} so that S is (c_1, c_2) -diagonal (see Ch.2 in [K]).

Lemma 1. Let $M = \mathbb{Z}[v_1, \dots, v_m]$ be a positive lattice and assume that $(B(v_i, v_j))$ is (c_1, c_2) -diagonal. For a primitive element $w = \sum_{i=1}^m r_i v_i$ in M and for a natural number N, we have

$$\min(M + \mathbf{Z}[w/N]) \asymp_{c_1,c_2} \min\left(\min(M), \min_{b \in \mathbf{Z}, N \nmid b} \sum_{i=1}^m \lceil br_i/N \rceil^2 Q(v_i)\right).$$

Proof. Since there are positive constants c_1, c_2 so that

$$c_1 \sum_{i=1}^m x_i^2 Q(v_i) < Q(\sum_{i=1}^m x_i v_i)) < c_2 \sum_{i=1}^m x_i^2 Q(v_i),$$

putting

$$Q'(\sum_{i=1}^{m} x_i v_i) := \sum_{i=1}^{m} x_i^2 Q(v_i),$$

we have

$$\begin{split} \min_{Q}(M+\mathbf{Z}[w/N]) &\asymp_{c_1,c_2} \min_{Q'}(M+\mathbf{Z}[w/N]) \\ &= \min\left(\sum_{i=1}^{m} (b_i + br_i/N)^2 Q(v_i)\right), \end{split}$$

where integers b, b_i $(i = 1, \dots, m)$ should satisfy $b_i + br_i/N \neq 0$ for some i. By noting that under the restriction $N \mid b$, the minimum is $\min(M)$, and that the condition $N \nmid b$ yields $b_i + br_i/N \neq 0$ for some i, it is equal to

$$\min\left(\min(M), \min_{b \in \mathbf{Z}, N \nmid b} \sum_{i=1}^{m} \lceil br_i/N \rceil^2 Q(v_i)\right). \quad \Box$$

Remark. Let M and M' be positive lattices of rank $M = \operatorname{rank} M'$. Then the condition $M' \supset M$ implies $\min(M') \leq \min(M) \leq [M':M]^2 \min(M')$.

Theorem 1. Let q_1, \dots, q_t be positive numbers, and r_1, \dots, r_t non-zero integers with $r_1 = 1$, and finally N a natural number. Then we have

$$K := \min_{b \in \mathbf{Z}, N \nmid b} \left(\sum_{j=1}^{t} \lceil br_j / N \rceil^2 q_j \right)$$

$$\geq \min \left(\left(\frac{r_1}{2r_2} \right)^2 q_1, \cdots, \left(\frac{r_{t-1}}{2r_t} \right)^2 q_{t-1}, N^{-2} \sum_{j=1}^{t} r_j^2 q_j \right).$$

Proof. Suppose that

(1)
$$K \leq \left(\frac{r_j}{2r_{j+1}}\right)^2 q_i \text{ for } j = 1, \dots, t-1.$$

We will show that K is attained at b=1. Suppose that an integer b give the minimum K and $|b| \leq N/2$. The condition $N \nmid b$ implies $b \neq 0$. First, we claim

(2)
$$|br_j| \le N/2 \text{ for } j = 1, \cdots, t.$$

When j=1, it is true because of $r_1=1$. Suppose that (2) is true for j=i; then we have $|br_i| \leq N/2$ and hence $K \geq \lceil br_i/N \rceil^2 q_i = (br_i/N)^2 q_i$, which yields $|b| \leq \sqrt{K/q_i} N/|r_i|$. Now using (1), we have $|br_{i+1}| \leq \sqrt{K/q_i} \cdot N/|r_i| \cdot |r_{i+1}| \leq |r_i|/(2|r_{i+1}|) \cdot N/|r_i| \cdot |r_{i+1}| = N/2$. Thus (2) has been shown inductively.

The condition (2) implies $\lceil br_j/N \rceil^2 = (br_j/N)^2$ and then

$$K = \sum_{j=1}^{t} (br_j/N)^2 q_j = b^2/N^2 \sum_{j=1}^{t} r_j^2 q_j \ge N^{-2} \sum_{j=1}^{t} r_j^2 q_j.$$

This completes the proof.

Corollary 1. Suppose t = 2. Then we have

$$K \gg \sqrt{q_1q_2}/N$$
 if $r_2^2 \asymp \sqrt{q_1/q_2}N$ or if both $(r_2, N) = 1$ and $\sqrt{q_1/q_2}N \ll 1$.

Corollary 2. Let q_i, r_i, t, N, K be those in Theorem 1, and put

$$\Delta := \prod_{k=1}^t q_k, \ \Delta_j := \Delta^{-(j-1)/t} \prod_{k < j} q_k, \ \eta_j := \frac{|r_j|}{N^{(j-1)/t} \Delta_j^{1/2}}$$

for $j = 1, \dots, t$. Then we have

(i)
$$4\left(\frac{\Delta}{N^2}\right)^{-1/t} K$$

$$\geq \min\left((\eta_1/\eta_2)^2, \cdots, (\eta_{t-1}/\eta_t)^2, \sum_{j=1}^t \eta_j^2 (\Delta/N^2)^{1-j/t} (\prod_{j < k \le t} q_k)^{-1}\right)$$

$$\geq \min((\eta_1/\eta_2)^2, \cdots, (\eta_{t-1}/\eta_t)^2, \eta_t^2)$$

- (ii) $\eta_1 = 1$,
- (iii) if $q_1 \geq q_2 \geq \cdots \geq q_t$, then we have $\Delta_j \geq 1$ for $j = 1, \cdots, t$.

To undestand K, it is better to give an estimate from above.

Proposition 1. Let q_1, \dots, q_t be positive numbers, and r_1, \dots, r_t integers, and finally N a natural number with $(r_1, \dots, r_t, N) = 1$. Put

$$\Delta = \prod_{i=1}^t q_i, \quad K := \min_{b \in \mathbf{Z}, N \nmid b} \left(\sum_{j=1}^t \lceil br_j / N \rceil^2 q_j \right).$$

Then we have the following:

(1)
$$K \ge \min\{q_1, \cdots, q_t\} \text{ or } K \ll_t (\Delta/N^2)^{1/t}$$

(2)
$$K \ll_t (\Delta/N^2)^{1/t}$$
 if $(\Delta/N^2)^{1/t} \ll_t \min\{q_1, \dots, q_t\}$.

We must study the distribution of isotropic vectors in a quadratic space over a finite prime field to take account of the condition at a finite prime in the assertion $\mathbf{R}_{m,n}$. For an odd prime p, F_p denotes the prime field with p elements.

Lemma 2. Let $V = F_p[e_1, e_2]$ be a regular quadratic space over the field F_p with quadratic form Q. Then for every positive integer H < p, we have

$$|\sum_{1 \le x \le H} \chi(Q(xe_1 + e_2))| \le 2\sqrt{p} \log p + 1,$$

where χ stands for the quadratic residue symbol with $\chi(0) = 0$.

The proof is routine.

Theorem 2. Let $V = F_p[e_1, \dots, e_m]$ $(m \ge 3)$ be a quadratic space over F_p . Then we have the following assertions:

(i) Suppose that $Q(e_i) = 0$, $B(e_i, e_j) \neq 0$ for some $i, j \ (i \neq j)$. Then for any $x_k \in F_p$ $(k \neq i, j)$, there are elements $y_i \in F_p$, $y_j = \pm 1$ and $u \in V$ so that

$$v := y_i e_i + y_j e_j + \sum_{k \neq i,j} x_k e_k$$

is isotropic and $B(u, v) \neq 0$.

(ii) Suppose $m \geq 4$ and dim Rad $V \leq m-3$. Let r be a natural number. Then there exist a subset $T = \{t_1, \dots, t_4\} \subset \{1, 2, \dots, m\}$ and a positive number c_r which satisfy the following property:

Let S_1 , S_2 be subsets of F_p and assume that $|S_1| = 3$ and S_2 is a union of at most r sets of consecutive integers. If $p > c_r$ and $|S_2| > 5r\sqrt{p}\log p$, then there are elements $x_1 \in F_p$, $x_2 = \pm 1$, $x_3 \in S_1$, $x_4 \in S_2$, $y_i \in F_p$ for $i \notin T$ and $u \in V$ such that

$$v = \sum_{j=1}^{4} x_j e_{t_j} + \sum_{i \notin T} y_i e_i$$

is isotropic and $B(u, v) \neq 0$.

To combine stories at the infinite prime and at a finite prime, we need the following.

Theorem 3. Let p be a prime number and r, m positive integers with r < m. Let $S^{(m)}$ be a regular symmetric integral matrix and we write $S = \begin{pmatrix} S_1^{(r)} & S_2 \\ S_3 & S_4 \end{pmatrix}$ and let $D_1 \in M_{m-r}(\mathbb{Z}_p)$, $D_2 \in M_r(\mathbb{Z}_p)$ be regular matrices and suppose that $p^{t_1}, \dots, p^{t_{m-r}}$ (resp. $p^{t_{m-r+1}}, \dots, p^{t_m}$) be elementary divisors of D_1 (resp. D_2) and $t_1 \leq \dots \leq t_m$. Let $A^{(m)} = \begin{pmatrix} A_1^{(r,m-r)} & A_2^{(r)} \\ A_3^{(m-r)} & A_4^{(m-r,r)} \end{pmatrix}$ be an integral matrix with $\det A = \pm 1$. Assume that for a natural number e,

$$A_{4} \equiv 0 \mod p^{e}, t_{m-r} < e + t_{1} \leq \min(t_{m} + 1, t_{m-r+1})$$
$$S[A] \equiv \begin{pmatrix} D_{1} & 0 \\ 0 & D_{2} \end{pmatrix} \mod p^{t_{m}+1}.$$

Then S_4 and D_1 have the same elementary divisors and $S_3 \equiv 0 \mod p^{e+t_1}$, and the matrix $S_4^{-1}S_3$ is integral over \mathbb{Z}_p and both $S_1 - S_4^{-1}[S_3]$ and D_2 have the same elementary divisors over \mathbb{Z}_p .

Now we can show the following, and by using them we can show the theorem.

Proposition 2. Let M be a positive lattice such that $rank(M) \ge 4$, $s(M) \subset p\mathbb{Z}$. Then there is a positive number δ satisfying the following condition:

If $p > \delta$, then there is a lattice M' containing M such that [M': M] is a power of prime p, $s(M'_p) = \mathbb{Z}_p$, and $\min(M') \ge p^{1/4}$.

Remark. In the Proposition 2, let N be a positive lattice of rank 2m and assume that M_p is represented by N_p and that N_p is unimodular if $p > \delta$. Then M_p' is primitively represented by N_p .

Proposition 3. Let M and N be positive lattices of rank $(M) = m \ge 6$ and rank(N) = 2m respectively, and p a prime number, and suppose that M_p is represented by N_p . Then there is a lattice $M'(\supset M)$ such that $M'_q = M_q$ if $q \ne p$, M'_p is primitively represented by N_p and $\min(M') > c(N_p) \min(M)^{c_p}$, where $c(N_p)$ depends only on N_p and c_p depends only on m.

REFERENCES

[[]K] Y.Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, 1993.

[[]S] W.M.Schmidt, Equations over Finite Fields An elementary Approach, Springer Lecture Notes in Math, vol. 536, Springer-Verlag, 1976.

[[]V] I.M. Vinogradov, Elements of Number Theory, Dover Publications, 1954.