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MINIMUM OF POSITIVE DEFINITE QUADRATIC FORMS
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Department of Mathematics, School of Science

Nagoya University ( 25/% X352 )

We are concerned with reresentation of positive definite quadratic forms by a positive
definite quadratic form. Let us consider the following assertion

A Let M, N be positive definite quadratic lattices over 7. with rank(M) =m
and rank(N) = n respectively. We assume that the localization M, is represented by
N, for every prime p, that is there is an isometry from M, to N,. Then there exists a
constant ¢(N') dependent only on N so that M is represented by N if min(M) > ¢(N),
where min(M) denotes the least positive number represented by M. A

We know that the assertion A,, , is true if n > 2m + 3 and there are several results.
But the present problem is whether the condition n > 2m + 3 is the best possible or
not. It 1s known that this is the best if ;o = 1, that is A; 4 is false. But in the case of
m > 2, what we know at present, is that A,, , is false if n — m < 3. We do not know
anything in the case of n —m = 4. Anyway, analyzing the counter-example, we come to
the following two assertions APW,, ,, and Ry, ,,.

APW,, » : There exists a constant ¢'(N) dependent only on N so that M is rep-
resented by N if min(N) > ¢'(N) and M, is primitively represented by N, for every
prime p. .

Ry, : There is a lattice M' containing M such that M, is primitively represented
by N, for every prime p and min(M") is still large if min(M) is large.

If the assertion Ry, is true, then the assertion A, , is reduced to the apparently
weaker assertion APW,, .. If the assertion Ry, , is false, then it becomes possible to
make a counter-example to the assertion A,, ,. As a matter of fact, APW, 4 is true but
R 4 1s false, and 1t yields examples of NV such that A, 4 is false.

Anyway 1t 1s important to study the behaviour of the minimum of quardatic lattices
when we vary them. Our aim is to show



Theorem. The assertion Ry, . is true if n—m >3, n2>2m+1 orn =2m 2> 12.

Remark. X the assertion R,, , is false, we can construct a counter-example to the as-
sertion A,, ,, as above. When the case of n < 2m seems to have a different nature from
the case of n > 2m.

To prove it, we are involved in analytic number theory. The rest is a brief summary
of the proof.

We denote by Z,Q,Z, and Q, the ring of integers, the field of rational numbers
and their p-adic completions. Terminology and notation on quadratic forms are those
from [K]. For a lattice on M on a quadratic space V over Q, the scale s(M) de-
notes {B(z,y) | z,y € M}, and the norm n(M) denotes a Z-module spanned by
{Q(z)|lzr € M}. Even for the localization M, it is similarly defined. dM, dM, denote

the discriminant of M, M, respectively. A positive lattice means a lattice on a positive
definite quadratic space over Q. We give proofs only for a few assertions.

Definition. For a real number z, we define the decimal part [z] by the conditions

~1/2<[z] <1/2 and =z-[z]€Z.

Note that [z]? = [—«]? for every real number z.

Definition. For positive numbers a, b, we write

a &y, b

if there is a positive number ¢ dependent only on m such that a/b < c. If both a «,, b
and b €,, a hold, then we write

aXm b
If m is an absolute constant, then we omit m.
Definition. For positive numbers ¢1,cp, we say that a positive definite matrix $(™) =
(si,5) 18 (¢1, c2)-diagonal if we have

e1 diag(s1,1,  * , 8m,m) < S < o diag(s1,1," " Sm,m)-

If S is in the Siegel domain &, then there exist positive numbers ¢;, ¢; dependent on &
so that § is (cg, ¢z)-diagonal (see Ch.2 in [K]).
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Lemma 1. Let M = Z[vy, - -- ,um] be a positive lattice and assume that (B(vi,v})) is

(¢1, ¢2)-diagonal. For a primitive element w = E:’;l r;v; in M and for a natural number

N, we have

min(M + Z[w/N]) X, e, min (min(]lf), benzlizl\lr{b Z[bri /N]QQ(fu,-)) .
! 1=1

Proof. Since there are positive constants ¢y, ca so that

e 3220 < QY. ) < @0 3 22 Q(w),
=1 =1

=1

putting

we have

ming (M + Z[w/N]) X¢, e, ming (M + Z[w/N])
=min (i(bg + br; /N)QQ('L:,-)) ,
=1

where integers b,b; (¢ = 1,--- , m) should satisfy b; + br; /N # 0 for some :. By noting
that under the restriction N|b, the minimum is min(M), and that the condition N b

yields b; + br; /N # 0 for some ¢, it is equal to
min (min(M), 6enzl’i]r\1qb ;[b"i/NVQ(U;')) . O

Remark. Let M and M' be positive lattices of rank M = rank M'. Then the condition
M' > M implies min(M') < min(M) < [M': M]? min(M").

Theorem 1. Let q;,---,q be positive numbers, and ry,- - ,r; non-zero integers with
r1 = 1, and finally N a natural number. Then we have

A {
K= mi br: [N12q:
(= min_ };f ri [ N1%g;

2 2 t

. ™ Ti-1 -2 2
> — Lo Stz < N 2 t"’ .
2 min (2?,2> il ,( 9, ) Gi-1, ~ 7495



Proof. Suppose that

. 2 :
(1) KS( ' ) gforj=1,--- t-1
2rj41

We will show that K is attained at b = 1. Suppose that an integer b give the minimum
K and |b] € N/2. The condition N { b implies b # 0. First, we claim

(2) |bri] < N/2forj=1,--- 1.

When j = 1, it is true because of r; = 1. Suppose that (2) is true for j = ¢; then we have
|br;] < N/2 and hence K > [br;/N1?q = (br;/N)?q;, which yields |b] < \/K/gN/|ri|.

Now using (1), we have |briq1] < /K /[gi - Nf|ri| - |riqa] < |ril/ (2lrizal) - Nfiril - |riga| =
N/2. Thus (2) has been shown inductively.
The condition (2) implies [br; /N]? = (brj/N)? and then

1 1 i
K =Y (brj/N)q =¥ |N*Y rlgi > N7 rig;.
j=1 j=1 j=1

This completes the proof. O

Corollary 1. Suppose t = 2. Then we have
K > \/e1¢2/N if r x \/q1/@N or if both (Tg,'N) =1 and /¢ /N <€ 1.

Corollary 2. Let g;,7;,t, N, K be those in Theorem 1, and put

1
L [r]
A= HQk; Aj=A (-1t quk, nj = ""'""‘J"“T"‘
k=1 k<j N(J—l)ﬂAi/z

forj =1, ---,t. Then we have

(i) |
(&)

: 1
> min (771/772)2,“' ,(77{—1/771)2:Z’?,?(A/Ng)l_j/i( II Qk)_l
' j=1 J<k<t

>min((n1/n2)?, -, (h—1/m)* n7)

(H) ™h = 1)
(iil) #fg1 > g2 > -+ > ¢, then we have A; > 1 forj=1,--- ¢

To undestand K, it is better to give an estimate from above.
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Proposition 1. Let qq,---,q be positive numbers, and r1,- -,y integers, and finally
N a natural number with (r1,---,7,N)= 1. Put

i 1
A=Tl¢ K:= mi br; [N1?q;
_. gq,, (=, min ;fn/ 1%q;

Then we have the following:

(1) K Z min{ql’ ,qi}- or K e (A/Ng)l/i

(2) K < (AN it (AN & min{gy, -, ¢}

We must study the distribution of isotropic vectors in a quadratic space over a finite
prime field to take account of the condition at a finite prime in the assertion R, . For
an odd prime p, F, denotes the prime field with p elements.

Lemma 2. Let V = Fyle;,e2] be a regular quadratic space over the field F, with
quadratic form Q. Then for every positive integer H < p, we have
1 Y x(Qeex +e2))| < 2/plogp + 1,
1<z<H
- where x stands for the quadratic residue symbol with x(0) = 0.

The proof is routine.

Theorem 2. Let V = Fyley, -, en] (m > 3) be a quadratic space over F,. Then we
have the following assertions: e
(1) Suppose that Q(e;) = 0, B(ej,e;) # 0 for some i,j (i # j). Then for any z; € F,
(k #4,7), there are elements y; € Fp, y; = +1 and u € V so that
vi=yie; + yyej + Z Trep
E#i

is isotropic and B(u,v) # 0.
(ii) Suppose m > 4 and dim RadV < m — 3. Let r be a natural number. Then there
exist a subset T = {t1,--- ,t4} C {1,2,--- ,m} and a positive number ¢, which satisfy
the following property: '

Let 5y, 85 be subsets of F, and assume that |53| = 3 and S5 is a union of at

most r sets of consecutive integers. If p > ¢, and |Sy| > 5r/plogp, then there

are elements 1 € Fy, 20 = +1,23 € 51,84 € 53, yi € Fy fori ¢ T andu € V

such that .
v = ijeij + Zyiei
j=1 €T

is 1sotropic and B(u,v) # 0.
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" To combine stories at the infinite prime and at a finite prime, we need the following.

Theorem 3. Let p be a prime number and r,bm positive integers with r < m. Let

‘ AS‘S S4
Dy € My, —+(Zy), D2 € M,(Zp) be regular matrices and suppose that plt, oo pimr (

T 1
5(m) be a regular symmetric integral matrix and we write § = (Sl bz) and let

resp. pim=r+1 ... ptm ) be elementary divisors of Dy ( resp. Dz ) and t1 < < tm.
A(lr,m-—r) A(gr)

Let A(™ = (

that for a natural number e,

A0m=r) A(m—"')> be an integral matrix with det A = £1. Assume
3 4 .

A4 =0 mod pe’ t,ﬁ_r <e+ tl S min(tm + 1;tm—.r+1) ‘

S{A] = (l?)l I;)z) mod p'»*1,

Then S; and D, have the same elementary divisors and S3 = 0 mod p*tY | and the
matrix S; 1S5 is integral over Z, and both §1—8;'[S3] and D, have the same elementary

divisors over Z,.
Now we can show the following, and by using them we can show the theorem.

Proposition 2. Let M be a positive lattice such that rank(M) > 4, s(M) C pZ. Then
there is a positive number é satisfying the following condition:

If p > 6, then there is a lattice M' containing M such that [M' ; M] is a power
1/4

of prime p, s(M,) = Z,, and min(M') > p
Remark. In the Proposition 2, let N be a positive lattice of rank 2m and assume that
M, is represented by N, and that N, is unimodular if p > 8. Then M, is primitively
represented by Np.

Proposition 3. Let M and N be positive lattices of rank(M) = m > 6 and rank(N ) =
2m respectively, and p a prime number, and suppose that M), is represented by Np. Then
there is a lattice M' (D M) such that M, = M, if ¢ # p, M, is primitively represented by
N, and min(M') > ¢(N,) min(M)°», where ¢(N,) depends only on N, and c, depends

only on m. :
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