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Sum of Kloosterman zeta functions

Yoshio TANIGAWA (/&n %38 254 X5F)

Department of Mathematics,School of Science,Nagoya University

Kloosterman zeta function is closely connected with Linnik - Selberg conjecture or
Selberg’s first eigeﬁvalue conjecture (cf.Goldfeld-Sarnak [2]), but its properties are not
known much yet. In.this paper, I want to show that a certain series of Kloosterman zeta
functions weighted by the Fourier coefficients of Maass wave form can be expressed by the

integral of the functions which we studied in [7]. We will use the following notations.

: .nd +md’
Kloosterman sum S(n,m;c):= Y ' exp(2mi——).
dmod(c) ¢
dd'=1mod(c)

The prime ' shows that d runs over the integers such that (c,d) = 1. Especially

S(0,m;c) is the so-called Ramanujan sum.
Kloosterman zeta function Z,m(s) := Y S(n,m;c)c™.
c=1
According to Weil’s estimate on Kloosterman sum S(n,m;c) < c'/2d(c), the

series defining Z, ,(s) converges absolutely for Res > 3/4.

- s+pu+v,. Ss+p—v._ S—pu+v._ S—U—v

G(e, 87 2) = F(a, B57152) — 1.
‘Here F(a, 8;7; 2) is the hypergeometric function. We have

G(o,B;7:2) = ﬁ@o%(;’):ﬂ_)z/: /oltﬂ(1 — )71 — txz) " ditd

for Re(y) > Re(8) > —1.

§1. Let f(z) be a Maass wave form with respect to SLo(Z). Namely, f(z) is a
non-constant function on the upper half plane M, belongs to Ly(SLy(Z)\H) and is an
eigenfunction of each n-th Hecke operator T,,,(n = 1,2,...) and a non-Euclidean Laplacian

A= —yz(% + %). When the eigenvalue of A is 1/4+ 2, then f(z) has the Fourier series
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expansion

f(z Zp 1/2Km 27r|n|y) 21rznz
n#0

Let us suppose that p(—n) = e¢p(n), €5 = £1. The value ¢y is called the parity of f(z).
We further assume that p(n) = O(n™) for some 7 > 0. Up to now, it is known that
Mo < 5/28.( cf. [1] Bump et al.)

We consider the Dirichlet series

o0 2rirn
D(s,r) =) p(n)n+, (reR).
n=1

Lemma 1 . Letc,d be relatively prime integers and dd’ =1 (mod c¢). Then D(s,d/c)
can be continued to the whole s plane as a holomorphic function and satisfies the following

functional equation:
D(s,d/c) = "2 Q(s){ cos(ms)D(1 — s, —d’[c) — € cos(mik)D(1 — s,d"/c)}, (1)

where the I'-factor is defined by

(2m)2~ix

Qin(s) = _[‘(3 + k)T (s — ik)sinw(s + i) sinw(s — i) @

Remark. 1 found recently that this functional equation has already been obtained by

Kuznetsov [4] or Meurman [5], but I will write the outlines of proof to make sure the points.

a

- b ‘
Proof. Let f(z) = 2f(z), (z =2z +1y). Fory = € SLy(Z), (c #0), we
Oz d

c
have the automorphic property of f(z):

1 -a 7

e ) 3)

22’ Ve T 2y

We define the (translations of) Mellin transforms of f(z) and f(z) by

00 . s d
Us,z) = [ fla+ighy ™

and

~ 0 . C\ s d
Ls,z) = [ fla+igy ).



First let f(2) be an even cusp form, i.e. €5 = 1. By the Fourier expansion of f(z), we

have
L(s,z) = 2—17|_—5P(s + m)F(s - m) $ p(n) cos(27m:c),
2 2 '~ "
- ey S+H14ik s+ 1—1K % p(n)sin(2rne
Fo ey e 1y R o)
2 2 n=1 n
Therefore,
| 27 i -
Dls,e) = L(s,z) — L(s,x).

e

. I\(s+12+'in )]_'\( s+l—in)

2

2
On the other hand, the automorphic properties of f(z) and f(z) yield the following func-

tional equations:

d a

L 2y — 1——23L 1— _Z
(5,5) = L(1 - 5,-2),
i(s,%) = —a2L(1 —s,-%)
’c . b c .

The assertion (1) can be obtained by combining these equations.

- The case that f(z) is odd (i.e. ¢ = —1) can be treated similarly.

Let 0y > 1,05 < —7) be real numbers, and let w(z) be a test function defined on [0, co).

We put

" .

@(s) = / w(z)z* tdz,

0
the Mellin transform of w(z). We assume that the above integral converges absolutely
for Re(s) > 1, and the function &(s) can be continued holomorphically to the domain
containing o < Re(s). Furthermore, we assume that it has a sufficient rapid decay when
|Tm(s)] — oo. This condition will be used later only when we move the line of integration.

I do not set here how rapidly &(s) should decay. We have, by the Mellin inversion formula,

that

w(z) = — /(Gl)dz(s)a:"ds (4)

271

where the contour of integration (0;) is the straight line from oy — ico to oy + zoo.

First we consider the sum

122
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The test function w(z) should be taken so that the above series converges absolutely.

Lemma 2 . As to the sum (5), we have

me (m, m; cJu(n)

1

" omi ‘/(‘Uz) G(8)in(s)eT C°S(“){,§ p(n)S(0, m — n; C)nrl}ds

_5fCOS(7"i“)/ - _ 1-25 [ oo RV |
) [ 013 plm)S(0,m i s

Proof. 'We replace w(n) in (5) with (4),then (5) is transformed to

QLM ,/,1) (Z p(n)S(n, m; C)n—3>ds
Z, e 271 /a w

dmod(c) (01) n=1

ZI 27y T "“i

dmod(c)

27rz

In the last integral, we move the line of integration to Re(s) = o3, and substitute the
functional equation (1) for D(s,d/c). Since Re(s) = o3 < —1g, the series

D(L—s,£d'/0) = 3 pln £2minf -1

is absolutely convergent. After changing the order of integration and summation, we get

the desired equality.

Theorem 1 . Let sq be a complex number with Re(sq) > 0,then we have

Zp Znm(80)w(n)

= —-1— ‘/(;2) W(8)Qix(s) cos(7r.s){§::1 P(n)O2(1-s—s)(|n — m|)n3’1}C(23 +2sp — 1)7tds

271

€ cos(mik)

s [ o)) é P(R) 21— s ey (1 + m)ns 1 }¢(25 + 256 — 1)Nds,  (6)

where we put 0a(m) = Lgm d* (m # 0)\ 04(0) = {(—0).
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Proof. Let so be a complex number with Re(so) > 0. Multiply ¢=2* on both sides of

Lemma 2 and take the summation with respect to c, then we have

ZP Zn,m(80)w(n)

1 . — >, S(0,n —m;c)y ,_
= —27”,/ (8)Qix(8) cos(ms) Zp(n)(z 50,n —m;c) Ry ))n lds
(”2) n=1 c=1 4
€ cos(mik) 2 S(0,n +m;c)\ 4
AR i S ALALIMLURZA PSS B
o /(2) )Qux(s) ZP (z_:l c2s+2s0—1 )n $

The following formulas on Ramanujan sums are well known.

S 5(0,myc)  o1_(|m])

2T T T

(m # 0,Res > 1),

i_o: 0.9 Soc(f) = C(z(;)l) (Res > 2).

Hence, we get the theorem.

Remark. The above method which transforms the sum of Kloosterman sums to the
sum of Ramanujan sums by the functional equation of certain Dirichlet series was used in

Motohashi [6].

For a natural number k, we define

Dk(s; a, f) — i U2a~1(mm—t k)p(m) + £ i J2a—1(|m - kl)p(m)

8
© om=1 m=1 m
mz#k

(cf.[7]) This Dirichlet series is absolutely convergent for Re(s) > 1+ 7o if Re(a) < 1/2,
and for Re(s) > 2Re(a) + np if Re(a) > 1/2.

Corollary 1 . Let Re(so) > 0, then we have
5° () [ Zaa(50) + €1 Zn,-4(50)](n)

e A . )
= 57:—2 o) @&(8)Qix(8)(cos ms — cos wik)((2s + 2859 — 1)

x {Di(1 — 5;3/2 = s — 50, f) + £4p(k)k*71¢(25 + 250 — 2) }ds (7)
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Proof. This corollary can be obtained by adding the both sides of (6) for m = k and

m = —k.

§2. Let G = SLy(Z) and G, be the stabilizer of the cusp ico. The real analytic

Eisenstein series E(z, o) is defined by

E(z,a)= ) (Imyz)* for Rea > 1.

VTEG\G
We put E*(z2,a) = £(20)E(z,a) where £(s) = n~*/2T'(s/2)¢(s) and ((s) is the Riemann
zeta function. It is well known that the function E*(z,a) has a holomorphic continuation

to all a except for simple poles at @ = 0 and 1 and satisfies the functional equation

E*(z,a) = E*(z,1 — a). For a natural number k, we put

8 a f / / E* Z (1 s 21rzkzd:r’dy

B2
pols,a) = 4(7ri§s2f2_1/2p(s +a —21/2 + in)r(s +a —21/2 - z'f-c)
+4(§;§2):—j«:3/2r(3—a+21/2+'ifc‘)1_‘(s—a+21/2—z'n), |
Rsa,f) = 3, P G (A0 St 0 L1 - (k)
vey 5 Mmoot oy Lio (M),

G(a,B;7;2) = F(a,B;7;2) — 1 as defined in the introduction. The series Ri(s; o, f)
converges absolutely for Res > 2Rea—1+1if Rea > 1/2,and for Res > nyif Res < 1 /2.

According to [7] Proposition 1, we have
Di(s;a,f) = 4n* 20 (s—a+ %)f‘(s\-— a+1/2ik,a—1/2)71
x{I(s —a+ e, 1) = £spkynls - a+ s o)} - Ru(siaf). (8
Theorem 2 . Let Re(sg) > 3/2 — 03, then we have

i p(1) [ Zn(50) + €1 Zn,—i(50)]w(n)

n=1
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. so— 2 I(3'3+so—1/2 f)
= —2m® 2T (s 2 0(s) e . = ds
I ( 0) (02) F( m)F(s m) (8 + 8—12:‘:"")1—‘(50 + s—lz—m)c(2s + 230 _ 1)

o 70(s)pof80;3/2 — 5 — 50, f)
+2im*0 2 p(k)T(s / - ; ' ', 8
p(k)L(s0) (o) 1“(’—+;—")F(’—‘;—")F(So + i——lz‘"—’ﬁ)lf‘(so + ’—_—15_-&)((23 + 280 — 1)

£f 22s=1x25(s) Ri(1—5;3/2—5— so,f)ds
211 J(o) [(s + k)T (s — ik)(cos s + cos mik) ¢(2s + 250 — 1)

p(k)/ 22— 1p2sf=15(s) ¢(2s + 280 — 2)ds

211 J(o2) T(s + iK)T (s — ik)(cos ms + cos mik) (25 + 250 — 1)

Proof. We rewrite the right hand side of Corollary 1 by using (8). Then

o5}

> p(n) [Zn,k(so) + Eon,~k(50)]w(n)

n=1
- _Qiﬂ.so—lsfl-\(%)/ (s Qi,i(s)(c'os ms — cos mik) Ix(s0; 3/2 — 5 — S0, f)
(o2) ['(s0;ik,1 — s — o) C(2s+ 250 — 1)

ds

Qix(5)(cos s — coswik) @o(s0;3/2 — 8 — o)

+2im*~1p(k)T(s0) / &(s)

(02) f‘(so; ik, 1 — s — $o) ¢(2s +2s0— 1)

e [ .  Ri(l—83/2—s—s0,f)
5= Qi -

51t Jion) @(8)%x(s)(cos Ts — cos wik) @+ 250 )

p( ) . o 1C(28 4+ 250 — 2)

iK - k d

27rz o) @(8)Qux(s)(cos s — cos mik) 35250 1) 8.

Since
225—17r23

ie(s)(cos ms — cosmir) = I'(s +ik)['(s — iK)(cos s + cos WiK)’

Qix(8)(cos Ts — cos Tik) 21

T(sojik, 1 —s—s0)  T(5=)T(35%)T(s0 + =55)0(s0 + 2=5)
and the functional equation Ii(s; o, f) = Ix(s;1 — a, f), we get the theorem.

§3. Although we imposed the condition Re(so) > 3/2 — 03 in the above theorem, we
will show that the right hand side can be continued analytically beyond this region. We
denote each term in the right hand side of Theorem 2 by Ji,Jo,J3 and Jy respectively.
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First we consider the term J;. By the definition of (g, the integrand of J; is

20k =15(s) I'(s + s — 1) [(1=gtie) P(1=s=2)

4 F(s m)r(a m)l'\(so + s-—lzj:in.)l-\(so + 3—12—in)
C(25+ 259 —2) w32 205(s) (s + 5o — 1/2)
C(25+2s9 —1) = 4k2sots-1 T(stix)p(e=ix)’
Let ¢ be an arbitrary small positive number. We move the line of integration from (a3) to

(1—¢). This is possible because there are no poles of the integrand and &(s) decays rapidly
by assumption. Next we will move the point s¢ to the left. J5 is analytic with respect to
sp in the region

2(1—€)+2Re(so) —2> 1,

that is, Re(sg) > 1/2 4+ ¢. If we want to continue further, we must consider the terms
arising from the pole and zeros of the zeta function. v

For Js, we consider in the region Re(s + so) > 1 to avoid zeros of ((2s + 2so — 1).
Then, since Re(3/2 — s — s9) < 1/2, Ri(1 — 5;3/2 — s — s¢, f) converges absolutely for
Re(s) < 1 —no. For a.rbitrary small ¢ > 0, we put 03 = 1 — 799 — € and move the line of
integration from (o) to (03). Then we can see that J3 is holomorphic in Re(sp) > 10 + €.

To deal J; next,we will define two Poincaré series, namely

Pi(z,8) = Y (Imyz)*e®™)
7EGx\G

and

Bu(zs)= 3 (Imyz)eie),

7EG\G
These series are absolutely convergent in Re(s) > 1. Furthermore, it is known that P(z, s)

can be continued to Re(s) > 1/2 as a holomorphic function, belongs to Ly(G\H) and
|| Pe(z, 8)|| = O(1) with fixed Re(s) > 1/2. (cf. Hejhal [3]|, Goldfeld-Sarnak [2].) Since

e—21rky =1 + (e—Zrky _ 1) — 1+ O(y) »
for y > 0, we have

Pk(z,.s) = P(z 5)+ E Im'yz ( —27rk1m"/‘z__1)627rikRe»yz
YEG\G

= Pk(z,s)+0( > (Im'yz)Re(s)H). , (9)

TEG\G
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1+Res)

The last series in (9) converges absolutely for Re(s) > 0 and O(y . Now we have

oo pl . dxd
L(sois+s0-1/2f) = €@s+200-1) [ [ E(z,s+so—1/2)f(z)y3°ez’”k“-——zzy

~ dzd
= £(25+250 — 1) /G S EEst50-1/2) f(z)Pk(z,so)—?g
So if we move the line of integration (o2) of J; to (¢) with o > 1, we can get the analytic
continuation to the region Re(sg) > 1/2.
We can deal similarly for Jy.
Remarks. 1) We obtained the spectral decomposition of I in [7] Lemma 2. Hence,by

substituting it for the right hand side of Theorem 2, we can get the spectral decomposition
of Y p(n)[Zn(s0) + €5 Zn,1(s0)|w(n).
n=1
2) I have not considered yet how to choose the test function w(z). Professor K.Matsumoto

pointed out to me that we should consider the test functions which are dependent on sg,too.
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