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An application of Mellin-Barnes’ typé integrals
to the mean square of L-functions

Masanori Katsurada (B Bt - BR B K 282 5)

1 Introduction

Let g be a positive integer, s a complex variable and L(s, ) the Dirichlet L-function
attached to a Dirichlet character x mod ¢q. Note that L(s, x) reduces to the Riemann
zeta-function ((s) if ¢ = 1.

Let ¢(q) be Euler’s function. The mean square

ea)™ X L), | (1.1)

x(modq)

summed over all characters x mod g, has been studied by various authors. Let w(n)
be Mobius’ function. In the special case s = %, D. R. Heath-Brown [He] found the

formula
o)™ > |G ,x)l2 =¢ Z#(’)T(k), (1.2)

(modq) klg

Nl

where k runs through a.]l positive d.1v1sors of ¢ and T'(k) has the asymptotlc expansion

2N-1 E
T(k)—k(log—k—-+'y)+2cz( D+ Y ek T+ 0kY)

n=0
for any integer N > 1, with Euler’s constant -y and unspecified numencal constants c,,.
If ¢ = pis a prime, (1.2) gives an asymptotic series in terms of p~3, since T(1) can be
evaluated in a closed form. On the other hand, Y. Motohashi [Mol] in a series of his
study on higher power moments for {(s) and L(s, X), applied a classical idea of F. V.
Atkinson [At] to (1.1) and proved for any prime ¢ = p

(-1 Y LG +itx)?

x(modp)
I
= log ot 27+ Re —(2 +it) + 2p"|('(2 + it)|? cos(log p)
=P (G + i) + O(p7H),

where T'(s) is the gamma-function and the constant implied in the O-symbol depends
on t. More general and precise formulae have been proved in [KM1], [Kal] and [Ka2]
by refining the argument of Atkmson and Motohashi.



and its meromorphic continuation.
Let 04(n) denote the sum of the a-th powers of positive divisors of n. The error
term ey(o + 1t; k) in (1.6) is of the form
é_N(a + it; k) = Re{k+* Y Ry(c +it,0 — it; k)}, )
where Ry(u,v; k) has the following expressions (cf. [Ka2, Lemma 2.2]):
For Reu < N, Rev > —N + 1 and Re(u +v) < 2,

I(N+1-u) r(l-1)V 1 &
OB T i

RN(’U, v k) = (—I)N(Zﬂ')""'”_l

" {e-;-i(uw-l)J_(T’ I k)+e"§i(“+"‘1)J4(T,l;k)}d"" : (1.8)

with - o
J:!:(T, l; k) = / yv+N—1(1 + k‘—lfy)u—N—letZﬂIydy,
0

while for Reu < N, Rev > —N + 1 and Re(u + v) > 0,

v+ N) 1(1_.,.)N— o
'(v). Jo (N-1)! i Zal—u—o(l)

X {j_('r, Lk)+Jo(n 1 k)}d’r (1.9)

Ra(u,nik) = (~D)¥L

with : o . .
Ji(r k) = / vy (1+ k'lfy)_"_Neﬂ”'”dy.

It is in fact possible to obtain a more explicit estimate for ex(o + it; k) by applying
a saddle point lemma of Atkinson [At, Lemma 1] to Ji(7,l;k) and Ji(‘r,l k).

Theorem 2 ([Ka2, Theorem 1 with h = 0]) For any integer N > 1, the inequality
en(o + it k) = O{k~N(Jt| + 1)*N+i—7) (1.10)

holds in the region
{o+it; —-N+1<o0 <N, t: real},

where the O-constant depénds only on o and N.

Remark. It is reasonable that such a bound as in (1.10) follows, since

(_l)n ka’-h't-—nr(a —it+ n)

= o (o Hit- n)C(o — it +n) < k°(jt] + 1) (1.11)

for —-n+1 < o < n (n > 1), see (1.5). Note that (1.11) is the best-possible, since
((o +1t) = (1) for 0 > 1 as t — *oo.

The main aim of this paper is to provide alternative simple proofs of Theorems 1
and 2. It should be remarked that the introduction of a Mellin transform (2.3) below is
a key to the considerable simplification. In Sections 2 and 3, we shall prove Theorems
1 and 2, respectively. In the final section, the inner conmections between different
expressions for Ry(u,v; k) (see (1.8), (1.9), (2.9) and (4.1)) will be examined.
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Theorem 1 ([KM1, Theorem 1], [Kal, Theorem 3], [Ka2,;Theorem 3 with i = 0])
Let

E ={1,2,3,...} U{% + it; n: integer < 2, t: rea.l}
Then for any integer N > 1, in the region

] _ {o+it; ~N+1<o<N+1, t: real} , (1.3)
except the points of E, the formula

elg)™ > |13(Cf+it,x)_|2

x(modg) . :
(o) L0 - #) + 2™ ola)0ae )20~ D Re{ TG 7o)
+2¢7% Y (4T (o + ity k) S (1.4)
klg

holds, where p runs through all prime dwzsors of ¢ and T(o + it; k) has the asymptotic
ezpansion

T(o +it;k) = ij%—’“—zne{kﬁ““r(r(a—d%f%(a+zt n)C(a—it+-n)}

+en(o + it; k). _ (1.5)

n=0

Here ey(o + it; k) is the error term satisfying
en(o +it;k) = O(k°™") B ¢ X))

in the region (1.3), with the O- constant depends only on cr, N andt. In particular, if
g = p is a prime, the asymptotzc series :

(-7 X Lo +it,x)*

x(modp) ‘
{(20) + Zpl_z’r(Za —1)¢(20 —1)Re {W}
—p7|¢(o +it)* + 2p7* T(o + it; p) - (@)

holds.

Remark 1. Asymptotic formulae as in (1.4) for the exceptional points 8 € E can
be deduced as limiting cases of Theorem 1. Important cases Res = 7 and s = 1 are
treated in [KM1, Theorem1] and [KM2, Theorems 1 and 4], respectlvely

Remark 2. In this paper, the region (1.3) in which (1.4) remains valid will be
slightly improved upon our eariler results [KM1, Theorem 1], [Kal, Theorem 3] and
[Ka2, Theorem 3].

Remark 3. Similar asymptotic results for (1.1) have been independently obtained
by W. Zhang [Zh2]-[{Zh7] and V. V. Rane [Ra]. Their proofs are based on the use of
the Hurwitz zeta-function (s, o) defined by '

{(s,) = i(n+a)" (Res>1, a>0),

n=0



2  Proof of Theorem 1

Let .
Q(U”v;q):‘P(Q)—l E L(u,x)L(‘v,;’c).

x(modgq)

We suppose first that Reu > 1 and Rev > 1. Then by the orthogonahty and the
periodicity of characters

co g had o .
Q(u,v;q) = >, BTV = > (qm +a)“(gn+a)™".
. h,k= a=1 mmn=
hEk(moldq) (a9)=1
(hg)=(k,q)=1

Classifying the last inner double sum according to the conditions m = n, m < n and
m > n, we get

Q(u,viq) = L(u +v,%0) + Flwyv30) + F(,50), (2.1)

where Xo is the prmclpal character mod ¢ and

flu,v39) = Z E E(qm+a) "(q(m+n)+a) v (2.2)

a=1 m=0n=1
(a’lq)—

- Atkinson succeeded in obtaining the analytic continuation of f(u,v;1) (namely
in , the case of ¢(s)), which led him to the eventual application on taking u = ; +
it and v = 3 — it Several ways are known to prove the a.nalytlc contmua.tlon of

flu,v; q). T. Meurman [Me] generalizes Atkinson’s original proof to treat f(u,v;q) by
Poisson’s summation formula, while Motohashi [Mo1] makes use of certain loop-integral
expressions for f(u,v;q). In this paper we apply

(gm+ o) am+n) +0)~ = o [ TETEE )y aymeiamyas, 23)

where ¢ is a constant fixed with — Rev < ¢ < —1 and (c) denotes the vertical straight
line from ¢ — @00 to ¢+ ioo. This can be obtained by taking —z = gn/(¢gm + a) in

I(a)(1 —2)= =-2-1— I(c+ 8)T(— s)(—z) ds (Jarg(~2)| <7, —Rea<b<0),
which is a special c,ase of Melli.n-Batnes’ integral expression for Gauss’ hypergeometric
function F(a,B;7;2) (cf. [WW, p.289, 14.51 Corollary]). Integrals of the type (2.3)
were firstly introduced by Motohashi [Mo2] to investigate the fourth power mean of
¢(s). Recently, A. Ivi¢ [Iv2, Chapter 2] applied Motohashi’s argument to treat the
mean square of {(s).

We assume for brevity that all the singularities appearing in the following argument
are at most simple poles, since other cases can be treated by taking limits (see Remark
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1 of Theorem 1). Substituting (2.3) into each term in the right-hand side of (2.2), we
obtain

f(u,v;q) = -2—:—6 /(;) I‘(—-?%I(‘?(J;J + 3)q_u—u gx ((u+v+s,2)((—s)ds, (2.4)

(a)g)=1

where the interchange of the order of summation and integration can be justified, since,
by virtue of the choice of é, the variables « + v + s and —s are both in the region of
absolute convergence. As we shall see in the following, the formula (2.4) will provide
the analytic continuation of f(u,v;q) by deforming suitably the path of integration.
Note that (c) separates the poles at s = —1+n (n = 0,1,2,...) from the poles at
s=1-u—v,—v—n(n=0,1,2,...) of the integrand. If we replace (c) by the contour
C which is suitably indented in such a manner as to separate the poles at s = 1—u—,
—14n(n=0,1,2,...) from the poles at s = —v —n (n = 0,1,2,...), then we get by
the theorem of residues '

Fluyv) = ¥F T o = D T - 5+ gl ia), (29)

rle.

where

: g(u,’U;Q) =1’ ’q‘.“‘" E#(%)_LL I‘(_S)I‘('U + 3)C(u+ v+ a)c(_s)ku+v+ads

¥ie 27 T(v) '
= q"“"EI:u(%)S(u,v;k), - (2.6)

say. Here we applied the identities

> C(w,2) = () S u(O = cw)e* [ - 7).

a=1 klg rle
(a,q)=1 :
Hence from (2.1), (2.5) and (2.6),
Q(u,v;9)
= ((u+o) [[A-p™") + a7 p(g)(u+ v — )T (u+v — 1) X
rle

I‘(l—u) vI‘(l—‘v) —u—v’ q . )
ATt I T S MO i)+ S w b} (27)

klq

holds in the region Reu > 1 and Rev > 1, where S(v,u;k) is expressed in the same
manner as S(u,v;k).

Next we shift the path of integration to the left. We suppose at this stage that
Reu < 1 and Rev > 1, where C can be taken as a straight line (¢o) with —Rev <
co < min(—1,1 — Re(u + v)). Let N be a positive integer and cy a constant fixed
with —Rev — N < cy < —Rev — N + 1. Since the order of the integrand in (2.6) is
O(|Im s|®e~"I™™*l) as Ims — +oo (C is a positive constant depending only on Re s,



Reu and Rev), we can shift the path from (co) to (cy). Collecting the residues at the
poles s=—v—n (n=0,1,...,N — 1), we obtain

S(u,v; k) = 2—: (_1|)n L(v+n) ¢(u _ n)((v + n)k* ™" + ry(u, v; k), (2.8)

= n! I‘(v)
e 1 T+
(k) = o [ TEROED i pgapereras (29

Here the condition on » and v can be relaxed as
Reu<N+1  and Rev>—-N +1. (2.10)
Under (2.10) we can choose cy satisfying the condition
—Rev — N < ¢y <min(—1,—Rev — N + 1,1 — Re(u + v)),
by which (cy) separates the poles at s = —v —n (n=N,N +1,N + 2,...) from the
polessat s=1—u—v,-14+n(n=0,12,...),—-v—n(n=0,1,...,N —1).
Now we proceed to prove Theorem 1. Taking v = o + it and v = o — it in (2.7),
(2.8) and (2.9), we obtain (1.4) and (1.5), by noticing (2.10) and putting
T(o + it; k) = Re{S(c +it,0c —it;k)} and en(o +it;k) = Re{rn(o +it,0 —it; k)}.
The error estimate (1.6) follows from

(=1)¥ I'(v + N)

TN('U», UH k) N! P('U) C(u — N)C(v + N)ku—N
¥ -21? ‘/(°N+l) r(—s%](:’l(l; =) ((uto+ 8)¢(—s)k*+***ds

& kReu—N+kRe(u+v)+cN+| & kReu—N’

by —Rev— N —1< ¢y41 < — Rev— N. Furthermore (1.7) can be deduced from (2.7)
by noting

S(u,v;1) + S(v,u;1) = ((u)l(v) — ¢(u+v)
—f(u+v— 1)I‘(u+'a—1){

M(1-%) T(1-v)
Tw) | T(w) }

which is the special case ¢ = 1 of (2.7). The proof of Theorem 1 is now complete.

3 Proof of Theorem 2

Throughout this section, let —N 4+ 1 < ¢ < N and é a constant fixed with 0 < é <
imin(N — o, N — 1+ 0,1). We write s = —0 — N + £ + 47 in (2.9). For the proof of
Theorem 2, we need
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Lemma For any real 7, t and £ with |¢| < 6, we have

Lo+ N—¢—ir) < (jr|+ 1)Vt 5, (3.1)

D(-N+E+i(r—1) < { ot -t 2L,
€ +i(r —t)|7* for |7 — ¢ <1,

T(o —it)™ < (Jt]+1)iefl, (3.3)

(o—N+&+ir) < (I + 1)“"*”‘ , (3.4)

((c+N—-¢—it) < 1. (3.5)

Here and in what follows the implied constants depend at most on o and N.

Proof. (3.1)~(3.3) follow from Stirling’s formula (cf. [Ivl, p.492, (A.34)]) and the
trivial bounds for I'(w) near the real axis. By virtue of the choice of §, (3.5) is an
immediate consequence of the inequality ((w) < 1 for Rew > 1, while (3.4) can be
proved by applying the functional equation of {(w). a

For the proof of Theorem 2 we may restrict ourselves to the case ¢ > 2, since the
case t < —2 follows from this case by the reflection principle, and the case |[t| < 2is a
simple consequence of Theorem 1.

Let oy = 0 + N and L the infinite broken line joining the points —oy — 700,
—on+i(t—8), —on+6+i(t—8), ~on+6+i(t+8), —on +i(t +6) and —on + ico.
Taking v = o — it and v = o + it in (2.9), and then replacing the path (cN) by L, we
have

1 /‘ I(—s)T(c — it + 3)

2mi I'(o — it)
We shall estimate the right-hand integral in (3.6) by dividing

. . 1 7 3
TN(O' +2t,0’ - lt;k) = z—m{ EI“ + ZI5,V}7
p=1

rnlo +it,o — it; k) = (20 + s)¢(—s)k**ds.  (3.6)

v=1
p#5
where
—oy—t —oN+t —oy+i(t—1) —a'N-h(t 6)
I1=/ ) Iz'—‘/ ) Is=/ . ) 4—-/
—oN—t —oNy—t —oy+tt o'N+t(t—1)
—on+6+1(t—6) —O’N+5+i(t+6) —vn+|(t+5)
I5,1 = / . ’ 2 = / . = /
—on+i(t—6) tru+5+:(t—6) vn+5+:(t+6)

—~on+i(t+1) ~oN+ico
b= ovn 7L

—on+i(t+6) dw+i(t+1)
The treatment of Iy, (v = 1,2,3) is more delicate than that of other I,’s. By Lemma
and the assumption ¢ > 2, we get

-1
I, € koVNg-e / (=7 (t — 1)N-terdr « kNg—oN (3.7)

1
I, € kN / (t—7)¥idr < KN, ' (3.8)
-1



Moreover
t—1
I, < k""Nt%—"‘/l ?N(t - T)_N';’dfr <L kf'—Nt?N'*%‘”, (3.9)

t-5 .
I, < k""Nt%_"/ Nt -1)dr < kO-NEN+3=0 Jog 671, (3.10)

t-1
where the last upper bounds in (3.9) and (3.10) are obtained by integrating by parts.
Similarly to I3 and I, '

4 t+1
I, < k"Nt%_’/ , 2Nt —-7)dr < kNN Jog 671, (3.11)
t+

,_ R
I < kN / PN (r — ) V-t ™y < kNN (3.12)
t+1

For Iy, (v = 1,2,3), we procced as follows. By0<é<3,
5 : :
Iy < koNi—e / (t — 6)N-2teFo|e — is|'ktde
. o

. . ) |
& keNN+3-egl / (t2k)Ede < koNEN+Io max(1, (kt72)°), (3.13)
0

t+6 -
Iy < kNG / TIN-Be 3§ (¢ — 7)|TNdr
. t—§
' 45
S B R e G (3.14)
t—§
Iy < RN max(t, (477, (3.15)

‘where the treatment of Iss is similar to (3.13). Combining (3.7)-(3.15), we obtain
ra(o + it 0 — ity k) < kNN {log 671 4 max(1, (kt72))}. - (3.16)
Next let L’ be the infinite broken line joining the points —ox —ico, —on + i(t — 6),
—on — 6 +i(t—6), —oxy — & +i(t + 6), —on +i(t + 6) and —on + ico. Then
rn(o +1it,0 —it; k)
_ (-1)"T(c —it+N)

{(o+1it—N)(o—it+ N)ge+H-N

N I(o-#)
* % /L P(_?‘I(‘ga—_i:; *9) (20 + s)(— )k d. (3.17)

The first term in the right-hand side of (3.17) is bounded as < k*~V¢*¥+3~ by (1.11).
To estimate the second term, we divide

7 3
/' = EI“-‘-ZI‘:)’V’
p:l y=1
p#£d
where

—o g —6+i(t—6) —on—b+i(t+5) —oy+i(t+6)
r r L
I5,1 - / . ’ 15,2 - / . ’ I5,3 - / . *
—oyn+i(t—86) —ay—5+i(t—6) —oy—5+i(t+85)
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Similérly to the previous case,

L, < EVOVH T max(1, (k7)) (v =1,3),
Ié,z < kc—Nt2N+%—c(k—1tz)5_

Therefore
ra(o +it, 0 — ity k) < B NVEN Y~ {log 671 + max(1, (k~12)%)}. (3.18)

Theorem 2 now follows from (3.16) if t > k7, and from (3.18) if ¢ < k7, respectively.

4 Additional remarks

The first purpose of this section is to show how we can deduce (2.9) directly from

(1.8) or (1.9). To do this we introduce a confluent hypergeometric function ¥(«,v;z)
defined by

¥(a,v;2) = L /m“ e ™ w* (14 w)""* dw
ne () Jo

for Rea > 0, |¢| < 7 and |¢ + argz| < ¥ (cf. [Er, p.256, 6.5(3)]). Rotating suitably
the path of integrations for Ji(r,l; k) and Ji(,1; k), we find

Ji(r,l;k) = (kr~Y)"*NT (v + N)¥(v + N,u + v;2mkir"1e¥7)
and '
Je(r, k) = (k7 )YV "D(N 41— ) (N +1— 4,2 — u— v; Zwklf‘le*'T‘).

Furthermore, J1 (7, I; k) and J1(7,1; k) can be expressed in terms of Mellin-Barnes’ type
integrals by using

Y(a,v;2) = — s)z'ds,

i/ (e + s)I(—s)I'(1 —
271 J(v) FNo)T(a—v+1)

where —Rea < b < min(0,1 — Rey) and |argz| < 3 (cf. [Er, p.256, 6.5(5)]).

Substituting these integrals into each term in the right-hand infinite series in (1.8) and

(1.9), respectively, and then applying the functional equation of {(w), we can see that
either (1.8) or (1.9) directly yields (2.9), by noting

rn(u,v; k) = k* Y Ry(u,v; k). (4.1)
On the other hand, (1.8) and (1.9) are connected by the transformation formula
¥(o,132) = 27" ¥(a—v+1,2 — 7;2)

(cf. [Er, p.257, 6.5(6)]), for details see [Kal, Section 3]. In view of the consideration
given above, this connection is embodied in (2.9) with the functional equation of {(w).



In this occasion we point out an error in the preceding article [KM3]. In Section 2,
we should mention that the same result as R. Sitaramachandrarao [Si] with a slightly
different log-factor was independently obtained by Zhang [Zh1, Corollary], whose main
theorem is proved in a more general setting.
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