OOoo0O00oOooon
958 0 1996 0 14-22 14

Some Sums involving Farey fractions
S. Kanemitsu (Univ. of Kinki, Kyushu)
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Introduction. Forany x21, let F, = K, denote the sequence of all irreducible

fractions with denominators = x, arranged in increasing order of magnitude:

E =<¢p,= ?l' 0 <b,=c,=x, (bv,cv) =1 P = —1- Po(x)-1 = 1- 1 , called the Farey series
cy [x] [x]
(sequence) of order x.
It is convenient to supplement p, = 9 = b to F. to form F because it is then easy to
0 1 c X X
o :

P . . b,+b . b, b,, .
construct F;,, from Fy by just inserting all mediants —v~"¥il of successive terms —~, = in Fy

¢y + Cval €y Gy

‘ 011 01121
bet th 1 +cy,=sx+1.E. g from F'=q—,—,— f E === ==
etween them as long as ¢, + ¢y g. from F, {1 5 1} we form F, {1 33273 1}

The number of terms in the Farey series of order x is

#F, =®(x):= Z(p(x) = ;3-2—x2 +0(xlogx).
‘nax

Here, @(n) stands for the Euler function 21, the number of integers sn that are relatively
msn
(m,n)=1
prime to 7, and is equal to the number of terms in F, whose denominator =n.

By Q, we denote the set of all pairs of consecutive terms in Fy:

v Cvsl

by _ bvﬂ}

Q= {(chwl)

E.g., 0, ={(13).(32),(2.3).(3D}. (#Q,=#F, =®(x)).

In [7] we considered the sums

Su®= Y (eam)  (meN)

(Cv’cv+1 )EQx

mainly in the special cases m=2,3. We note the identity

b,.c, —b,c -1
_ Yva1ly vEével
Pva— Py = = (Cv+lcv) ’
cv+lcv
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which follows from the basic relation b,,,c, —b,c,,; = Hence, e.g.
D(x)-1
$i(x)= Y (Pvs1=Py) = Pogy—Po=1-0=1.
v=0

In general, S, (n) can be thought of as the m-th power moment of the differences of consecutive
Farey fractions. On these moments the following theorem holds.

Theorem 1. For n — oo, we have

@ S,(n)= ﬁ{logn +y+ % - %(2)}+ 4U("‘1)31°g" + o(k;%")
i) S,(n)= ;(53()2)3 s {logn ry-t- %(2) + 2§2(2)cg1>(n)} L2 oe | o
(i) ,(n)= g(i(f{ {45((32)) +3¢(3)e %)}
o {mgn +7-5- F DL () 3:(2):(3)c§”<n)} » 200lon , of g
and for mz5
) $,m=22D e 2) 4202 1)l ()

Lmn™ " Z(m— D™

+m(m+1){ {(m-3) +&(m—-2)c", (n)+ L (m-1)c?,(n )} 359’logn+0(n1 )

nm+2 BC(m _ 2) m-2 m-2 C(2)n"’+3 m+3

where ¥ denotes Euler's constant, " is 1 or 0 according as m =5 or m>S5, and for Res > 1,

¢\ (n)is defined as the absolutely convergent series ¢ (n Z £ m) (—) Finally,
M~ m

g

man

where y(m) denotes the Mibius function, B/(x) denotes the periodic Bernoulli poiynomial of -

degree 1. (Note that B,(0)=-B,(1) = ——;— =B).

Remark 1. Theorem 1 gives very precise description of asymptotic behavior of these sums.
Theorem 1 refines fromer results of Mikolas, Hall, Lehner-Newman, Kanemitsu et al and provides
a direct relationship between the sums S, (n) involving Farey fractions aﬁd the error term U(n) of
the summatory function of Euler's function.

Between Theorem 1 and the results of Maier there is a close connection as follows. We put

é,=p,— v=0,..,D(n)

v
&(n)’
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1 v
Hence J,,,, =6, =0, 6, = —~3 =) etc.
Also following Maier, we put
®(n)-2 o
z d, +1 h, 8, h=0.
Noting that §,,, — 6, (cvcm) ~®(n)", v<®(n), wehave 5,,—5,, S () - ®(n)”",

whence by Theorem 1, (i) it follows that

@®(n)-1 (

2_¢ (=5 )= U (10en 1 & logn
Z (5v) —52,0(—%,2)“51,1'*'{(2)"2 (1 g +}’+2 (:(2)] 220 ) +O( 5 )

3 1 " 1 ¢ (logn
_s"‘+_§(2)n2 [log +y+2 é,(2))+0( 3 )

The estimate of s, , should be difficult. In fact, it was known to Franel that
- ®(n)-1
$50= 2 (6v)2 = O(n—He) S RH.

v=0

(=]

However, regarding s, ,, Theorem 1 already gives a very precise asymtotic formula:

=—S(n)+0( *)= 32:(22))3+0( ).

Corollary. - The identity

i +m
m-2 oo r 2(‘]4—1)
IS Y g

m+j+ly m—j-1
e = N A
(k,r)=1

holds. Combining this with the reciprocity laws of Sitaramachandrarao and Sivaramasarma [14]

.

[15], we obtain identities like

- . ) ‘3Zk‘ -

r=1

O 4N 2 94552(3) 1
2 gr z::k 3

Remark 2. (1) represents the value at s =3 of the zeta-function H(s)= Zn‘sZk“
n=1 k=1
considered by Matsuoka [12], while (2) represents the value at s =4, z =2 of the zeta-function

H(s,z)= X’n'SE’k'z considered by Apostol-Vu [1]. Zagier [16] has proved that the values of
n=1 k=1

multiple zeta-functions can in general be expressed as linear combinations of products of values of

the Riemann zeta-function and this completely settles these types of problems save for concrete
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determination of the coefficients.
Theorem 2 (Refinment of a theorem of Mikol4s [13]). We have for n — oo,

. 1 _ (a) not 1 ) a max{a-1,1} 7. 0
@ VZ}P @+ 1)(a+ l) T ®(n)-{(a)c;’(n)n" + 0, (n log n) ,
where 0 =06(a)=0,a#2, 6(2)=1.

®(n)

(ii) 2 p;' = CI)(n){logn +y- % - Cg(Lz))} +O(nlogn).

Theorem 3 (Refinment of a theorem of Hand-Dumir [2]). We have for n — oo,

1 & (2)} 4U(n)logn (logn)
- = logn+y+1- +0 .
( k,g;‘gn K’k $@2)n { £(2) n’ n’
Theorem 3 is a special case of the formula for 2 k’ (aeN).
(k,k)eQ,

Theorem 4 (Refinment of a theorem of Kanemitsu [7], which in turn is a refinement of that
of Lehner-Newman [10]).
(i) For 0sa,b,

2 I
K (k') =c, n*"* - %(a +b+2)c, Un)n“""? + O( arbH (logn) ),

(k,k")eQ,
where 0” =1, sz<b§§ and 6" =0 ifb=o,b>%, and
. 5 1 _T(1+aI(1+b)
“ 72 |(1+a)1+b) T(B=a+b) |
. 1 1210g2 210g2 ( 1 )
= + Un)+0| = |;
(i) (k,éQn kk'(k+k')  m'n n’ (n) n?

- 2log2 —1)n+(1-2log2)U(n) + O(1);
B KR T ( Jn+( )

K _11-12log2 En) . ,
- +(11-121082 +0(n?),
WS K+ K 3 * °8 ) (")

where E(n)=®(n)- —37n2 .
T

Remark 3. In the course of proof of Theorem 4, (ii), we reprove Gupta's identity

3
Zz 2(r+k) 4

r=1 k=1 T
(k,r)=1
This can be obatined also as the case a =1 of Formula (19) for the zeta-function

r

r=1 k=1
(k,r)=1

considered by Apostol-Vu [1] (with T(s,z) the zeta-function defined by Formula (16)).

T'(s,2): ZZ rskz(r+k §(s+ +1) T(s:2)

Hata [6] developed a generalization of Farey fractions to deduce general summation formulas
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including (1), (2) and Gupta's identity. Also, his theorem enables one to express Euler's constant
in terms of an infinite series that contains only rational numbers. For the purpose of finding the
value of infinite series, Hata's method [6] is simpler and has wider range of applications.

§ 2. Supplementary lemmas

In this section we collect lemmas which together with those lemmas in [7] can provide
proofs of the theorems stated in §1.

Lemmal'. For any ueC and any x — oo, let L,(x):= Zn" . Then for any £ € N with

nax
£>Reu+1 we have

1 u+ T u
Lu(x) - {mx 1 + C(_u): uzx-—1 +liﬂ(’. ~ l)Br(x)xLHl—r + O(xReu—e) .

logx+7, u=-1 59 T

In the special case where u e N U{0}, we can take {=u+1 without error term, in which

case it is convenient to write the formula in the form
u+l

1 r u+l D u+t+l—r
Lu(x)=m§(f1)( r )B,(x)x " 4 ().

For instance, for k=0, Lemma 1' just says Ly(x)= x - B,(x)- —;—

In the course of proof of Lemma 1, we prove the identity for any £ € Nwith £>—Res

®3) {(s)=4,(0)=1+ (—1)‘“(_;) J Boytar - l—f—sﬁo(—l)'(l B s)B,
= -s—i-T+%+ %s . (—1)“‘(7%&30)"3-3‘1’

The Cauchy criterion shows that the the integral on the RHS represents an analytic function for
Res > -4, so that for Res > -/, {(s) is analytic with the excception of a simple pole at s =1.
Since £ e N is arbitrary, this signifies that {(s) is extended analytically over the whole plane with
the excception of a simple pole at s =1. We can, however, proceed still further to give a
conceptually the simplest proof of the functional equation of the Riemann zeta-fucntion. Actually,
although in a well-known proof one considers the case £ =1 of Formula (3) to use the Lebesgue
dominated convergence theorem on the grounds that the partial sums of the Fourier series of B,(r)

are bounded, we can prove the following corollary by just employing absolutely convergent Fourier
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series in the case £ =2 of Formula (3) without resorting such a rather high-brow theorem.
Corollary. The Riemann zeta-function satisfies the functional equation

&(s)=2(2n) "' T(1- s)sin%sg'(l —s).

The defining Dirichlet series for{(1—s) being absolutely convergent' for Res<0,

gives an analytic continuation of {(s) into Res <0 in explicit form.

Proof. In the case I =2 the above formula has the form

=S 1 1 1
=1- B,(t)**dt + ——+—+—
¢ (2)J 2t s-1 2 120
The improper integral | B, t)t*~*dt can be calculated when —2 < Res < -1, to give
prop gral | 5 _
1 1 1 1

J'B ()= — b= —
l—s s 6s+1

Hence in the same region —2 < Res < —1, we get the representation

£(s)= S(” S5+ (5 (2.

Substituting the absolutely convergent Fourier series —222822—”'15 for B,(t), we get
n=1
{(s)=- s(s2+ ) 12 ZJ 2 cos 2mntdt

By the change of variables 27t = u this becomes further
=-2(27) " s(s + l)j: u? cosuduz n'"s.
n=1
Hence by a formula for Mellin transform
r ucosudu= sinst(l -5)
0 2
we conclude that
L(s)=—-2(2m) " s(s + 1)(-— sin%s)l"(—l -s)(1-5)
=-2(27)" ' s(—=s - 1) (-1~ s)sin%s{ (1-5)==2(27)" " (—=s)['(~s) singsc (1-5),

whence we get the formula in question. []

We continue to state further lemmas. As immediate corollaries of Lemma 1', we have

Lemma 11. For any a € Rand any re Nwe have

o) 2 .
&= a)z u(d)a®, a#-1
a*(x,r):= 2}1“= r a+l T

L
(n’,lr§)x=1 %r)'(logx +o(r)+ '}’), a=-1

this



ig_(kal}m kz”(d)B"( )dkl ofx""a,(n),

k=1 o dr

where 0/(r) is defined before.

Proof L,'(xr)= Y 3 u(d)= 2” d)d“L( ) Zu(d)d“L( )

nax djmr) dr
o |
o) (x) Hila)h ar-l St @ g 2y
"dz,rt“(d)d 10;;” a__1+k§:~ k (k I]Bk(d)(d)
()" -

a+l

N M) )Y e, o

= dr dr i(_( }la+1 kz.u d)Bk )Jk 1
~ (ogx +7)2# () zu(d)logd _ k-1

dr — dr

0 a— -/ 2 df
[ d|r
whence the result follows. [ ]

Corollary. Forany aeR, with N>{>a+1

o(x) ;%_TCD(x)+C(—a)S_a(x), at-1 1

—1pv B Z(P(n)(log”"'a(”))"'?@(x), 2=-1 +r2=1' =~ (r—l)BrS“_l( )+ O(x).

2lr
®(x)

Proof. Substituting for L, (n) = L;,(n,n)from lemma 11 in va Z—L , we get

a+l

QI f-a)Y pd)d®,  ax-l

sza=2;;1;z— n a+l e

v=1 nsix (P—Stz(logn +a(n)+7), a=-1
4 r a —(n _ .
AL S5 1+o[znaaa-e<n>]
+12¢(n)+c Y Y ua(i] ax1

= nsx djn

Z«p(n) (logn-+ax(n) +7), a=-1 7 ol

20
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+ o[z O'_Z(n)]

———(D(x) + C(—a)Zd“M( ) a#-1
Z¢(n) ogn+a()+10(). a1 & T

whence the result follows. [

Lemma 12. For the summatory function of the arithmetical function t(k 2 L (d) log—
' dlk
we have as x — o

&'(2)
;’(k 30 {logx -1- 22 } + H(x)logx + O(logx).

where

H(x)= k2¢(k)—m

This lemma is an improvement of Lemma 8 in [7].

Lemma 13. For a>1,

L1 1 ) 1 ¢ U(n) logn
= ZZ (a- 1)§(2)n“-'{1°g A ;(2)} logn +O(n )

r=n+l1 r k=1
kor)=

Lemma 14. For a=22, b22,

PR 1 4o (-aagh(n) ((logn)ﬁ),

i d*  (a-D¢B+Dnt ne 2n*"! net e
2 3
here v =|— |, B=|—]|.
where [b:| B I:b:l

Lemma 15. For az2, b22,

1 £(b) 1)) L(-0) 2y _(b=2)B
(Z)k TR | - Oaara LR o
+O((10§212ﬁ }
Lemma 16. Putting A;(n) = Z(JJ m)i \ Tjﬁl;rm’ we can express S, (n) as
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