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A remark on almost uniform distribution modulo 1
Shigeki Akiyama  ( #1475 757. %9:5X5%)

Let (an), » = 1,2,... be a sequence of real numbers and A(I, (az), N) be the counting
Junction, that is, the number of n =1,2,..., N that {a,} is contained in a certain interval
I C [0,1]. Here we denote by {a,} = an — [a,], the fractional part of a,. First we recall a
kind of generalization of the classical definition of uniform distribution modulo 1 (see [11],
[3] and [10]).

Definition. The sequence (a,) is said to be almost uniformly distributed modulo 1
(abbreviated a.u.d. mod 1) if there exist a strictly increasing sequence of natural numbers
(nj), =1,2,... and, for every pair of a,b with 0 < a < b < 1,

lim A([a’ b)a(an)’nj) —

Jj—oo n;

b—

The purpose of this note is to emphasize the usefulness of this concept in considering the
oscillation problems in number theory.

Now, for example, we define (c,.) by

n

G = Siflogaml”

Then (c,) is a.u.d. mod 1 but not u.d. mod 1. It is obvious that if the sequence (an) is u.d.
mod 1, then a.u.d. mod 1. On the contrary, if

ny41 —n; = o(n),

then a.u.d. mod 1 implies u.d. mod 1. According to the classical method of uniform
distribution theory (see e.g. [8]), we can show the following

Proposition 1. The sequence (a,), n = 1,2,... is a.u.d. mod 1 if and only if there
exist a strictly increasing sequence of natural numbers (nj), 7 = 1,2,..., and for every
real-valued continuous function on the interval [0, 1], we have
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lim 3" f({ad) = [ J(@)da:

J—o0 n’J =1



Proposition 2. (Weyl’s Criterion for a.u.d. mod 1) The sequence (a,), n = 1,2,...
is a.u.d. mod 1 if and only if there exist a strictly increasing sequence of natural numbers
(ny), 3=1,2,..., and for every integer h, we have

nj

lim 1 Zexp(27rh\/—_1{a.-}) =0.

Im N

We should pay attention to the next generalization of Fejér’s Theorem.

Theorem 1. (Fejér’s Theorem for a.u.d. mod 1) Let (f(n)), n = 1,2,... be a
sequence of real numbers and Af(n) = f(n + 1) — f(n). If the following three conditions
is satisfied, then (f(n)) is a.u.d. mod 1:

1. There exists a natural number N that Af(n) is monotone when n > N (hereafter,
we say this property as ultimately monotone),

2. J_%Af(n) =0,

3. limsup n|Af(n)| = oco.

Note that the corresponding third conditions for u.d. mod 1 is:
Jim alAf()] = oo

Moreover, it is shown in [7] that limsup,_,., n|Af(n)] = oo is the necessity condition for

u.d. mod 1 (see also [6]). Concerning this fact, in [3], it is shown that (logn) is not a.u.d.

mod 1 but a.u.d. mod 1 in the ”average” sense. It is an interesting problem to study this
delicate difference between u.d. mod 1 and a.u.d. mod 1. We can show the following:

Corollary 1. Let (g(n)) be a sequence of real numbers which satisfies three conditions:
(C1) g(n) = o(n),
(C2) Let f(n) = 1 5% g(k), then f(n) is not a.u.d. mod 1,

(C3) limsup|f(r) — g(n +1)| = co.
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Then A?f(n) changes its sign infinitely many times. Here A2f(n) = A(Af(n)).
Proof. We have

n+1 n
AS) = g k)= > otk
= et D = s S e o

This shows that Jim Af(n) =0. And by (1),

(n+1)Af(n) =g(n+1) — f(n).
Thus
limsup n|Af(n)| = oo

If Af(n) is ultimately monotone, then f(n) is a.u.d. mod 1, which contradicts with the
assumption. v |

Let P, be the n-th prime and we will later apply this Corollary 1 for the oscillation
problem of P,. Now we show

Theorem 2. (log P,) is not a.u.d. mod 1.

Proof. Let T = R/Z be the real torus, which is identified with the interval [0,1) via the
map z — {z}. Define by x,, the characteristic function of [, T +1/2) mod Z in T, and by
7(x), the number of primes smaller or equal to z. Let us evaluate, for a positive integer k,

1 w(Ni)

T8 = iy 3 Xellos Pa)

with Nj, = eF+7+1/2_ By using the prlme number theorem of the form:

w(e) = oz + Ol

we have, for a positive number ¢ = o(k),

T (Nk—c) w(Ng)

ML) = 3+ Y

n=n(Nk_ci1)

ek+T+1 /2 ek+'r ek+7’—1 /2 ek+‘r-—1
= - - +
k+14+1/2 k+'r+k+'r—1/2 E+7-1
ek+'r+3/2—c ek+'r+l—c k—c 0 k )
- +0 + .
Jrk+7’+3/2—c k+17+1—c (k ) (( —c)?



If ¢ = [2log k], then

_ kE+7+1/2  k+71+1/2 E+r+1/2
T’r(k) - 1 61/2(k+7') +e(k—|—r—1/2) 33/2(k+T—1) +..-
k+71+1/2 B E+7+1/2 +O(logk
el k+7+3/2—¢) e 2(k+7+1—¢) k
= 1—e V2 el 32 peotl_gctl/2y O(—loik)
_ __\/_c_a_Jr (logk
 1+44/e E

Here, the implied constant of the last O symbol does not depend on the choice of T € [0,1),
and we have \/e/(1 ++/e) = 0.622459... > 1/2 + § with a positive constant §. This shows
that there exist an open neighborhood of 7 in T:

U, ={z € T|d(z,7) < €}
that if {log N} — 1/2 € U,, then

1 N
~N Y x:(log Pn) > 1/2+6, (2)
n—1

for sufficiently large N. Here d(z,y) is the natural distance between z and y on T. Remark
that the value e does not depend on the choice of k, if k is sufficiently large. As T is
compact, there exist a finite sub covering T C UZ,U,.. Thus there exist a constant M that
if N > M, then we have (2). If the sequence (log P,) is a.u.d. mod 1, then by Proposition
1, there exist a strictly increasing sequence of natural numbers (n;), j = 1,2,... that

1 1
lim — +({log Bi}) = -,
Jim =3 x:({log P) = 5
which is a contradiction. U
Now we give a very different proof of the results of [2].

Theorem 3. A?log P, changes its sign infinitely many times.

Proof. Let g(n) = nlog P, — (n—1)log P,—1 and f(n) = log P, in Corollary 1. (Here we
put P, = 1 for example.) By using Theorem 2, it suffice to show (C1) and (C3). By using
prime number theorem, we have

P, 1
14 1n
log P, + - + O(loan

)- (3)
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Thus we see

g(n) = P,,—P,,_1+1+0(k)%)
= o(n).

Here we used the fact:
B, _Pn.~—1 — O(P:),

with a certain positive constant @ < 1. This type of result was first shown by G. Hoheisel

in [4] with # = 1 —1/33000 + €. The best knowledge up to now is § = 23/42 in [5]. For the
condition (C3),

gn+1)—f(n) = (m+1)(log Poyy —logP,)
(n+1)(Potr — Pa)

) Pn+l
) Pn+1 “Pn '
log P,

Here we write f ~ g if | f/g| — 1. P. Erdés [1] was the first to obtain

lim su Poa— b 00
ﬂ—>OOP log Pn B . ’
by showing : ‘
(Ppt1 — Pu)(logloglog P,,)?. -
li EI 0.
noos? Tog Py loglog Pr loglogloglog B, ~ ¢~
About the improvement of the constant c, see [9]. This completes the proof ]

Our method to show this type of results can be generalized by a kmd of ” hnea.nty” in
many cases. To explain this, we notice

Theorem 4. Let [ be a fixed pos1t1ve integer, and C; (1 = 1,2,. .., 1) be the real numbers
with 3~ C; # 0. The sequence (3°4=3 C;log Py;) is not a.u:d. mod 1

Proof. First, we consider the case (C'log P,). Without loss of generality, we may assume
that C' > 0. Then we write C'log P, = log, P, with a constant b > 1. To see the assertion,
replace e with b in the proof of Theorem 2.

If I > 1, it suffice to note that

-1 -1

ZC,—loanH —IOanZC,‘ - 0(1)

i=0 1=0



This shows the assertion. : 0

Theorem 5. Let [ be a fixed positive integer, and f; ( = 1,2,...,1) be the positive real
numbers. Then
A’log(PLPL,...PL, )

changes its sign infinitely many times.
“Proof. Put
gn) = n(d_ filog Poyii1) — (n—1)(Q_ filog Poyis)
=1 =1
1
fn) = ) filogPayia.
=1

By using Corollary 1 and Theorem 4, in a similar manner as in the proof of Theorem 3, we

see the assertion. Here, we essentially used the positiveness of f; (i = 1,2,...1) in proving
(C3). ’ O

We expect that the conditions f; >0 (i = 1,2,...1) can be droped.

Our method is applicable to a lot of arithmetic functions g(n), that f(n) = 1/n 3 <, g(k)
is not a.u.d. mod 1. For example, we can show similar assertions for the divisor function

d(n) = Zd|n 1as
- > dk) = logn + (37~ 1)+ O(%ﬁ),

with the Euler constant 7. The proof for this case is easier, but the results do not seem
well worthy of stating here.
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