## A remark on almost uniform distribution modulo 1

Shigeki Akiyama ( 社山茂 村 、新潟大理)

Let  $(a_n)$ , n = 1, 2, ... be a sequence of real numbers and  $A(I, (a_n), N)$  be the *counting function*, that is, the number of n = 1, 2, ..., N that  $\{a_n\}$  is contained in a certain interval  $I \subset [0, 1]$ . Here we denote by  $\{a_n\} = a_n - [a_n]$ , the fractional part of  $a_n$ . First we recall a kind of generalization of the classical definition of uniform distribution modulo 1 (see [11], [3] and [10]).

**Definition.** The sequence  $(a_n)$  is said to be almost uniformly distributed modulo 1 (abbreviated a.u.d. mod 1) if there exist a strictly increasing sequence of natural numbers  $(n_j)$ ,  $j = 1, 2, \ldots$  and, for every pair of a, b with  $0 \le a < b \le 1$ ,

$$\lim_{j\to\infty}\frac{A([a,b),(a_n),n_j)}{n_j}=b-a.$$

The purpose of this note is to emphasize the usefulness of this concept in considering the oscillation problems in number theory.

Now, for example, we define  $(c_n)$  by

$$c_n = \frac{n}{2^{1+\lceil \log_2 n \rceil}}.$$

Then  $(c_n)$  is a.u.d. mod 1 but not u.d. mod 1. It is obvious that if the sequence  $(a_n)$  is u.d. mod 1, then a.u.d. mod 1. On the contrary, if

$$n_{j+1}-n_j=o(n),$$

then a.u.d. mod 1 implies u.d. mod 1. According to the classical method of uniform distribution theory (see e.g. [8]), we can show the following

**Proposition 1.** The sequence  $(a_n)$ , n = 1, 2, ... is a.u.d. mod 1 if and only if there exist a strictly increasing sequence of natural numbers  $(n_j)$ , j = 1, 2, ..., and for every real-valued continuous function on the interval [0, 1], we have

$$\lim_{j\to\infty}\frac{1}{n_j}\sum_{i=1}^{n_j}f(\{a_i\})=\int_0^1f(x)dx.$$

**Proposition 2.** (Weyl's Criterion for a.u.d. mod 1) The sequence  $(a_n)$ , n = 1, 2, ... is a.u.d. mod 1 if and only if there exist a strictly increasing sequence of natural numbers  $(n_j)$ , j = 1, 2, ..., and for every integer h, we have

$$\lim_{j\to\infty}\frac{1}{n_j}\sum_{i=1}^{n_j}\exp(2\pi h\sqrt{-1}\{a_i\})=0.$$

We should pay attention to the next generalization of Fejér's Theorem.

Theorem 1. (Fejér's Theorem for a.u.d. mod 1) Let (f(n)), n = 1, 2, ... be a sequence of real numbers and  $\Delta f(n) = f(n+1) - f(n)$ . If the following three conditions is satisfied, then (f(n)) is a.u.d. mod 1:

- 1. There exists a natural number N that  $\Delta f(n)$  is monotone when  $n \geq N$  (hereafter, we say this property as ultimately monotone),
- $2. \lim_{n\to\infty} \Delta f(n) = 0,$
- $3. \ \limsup_{n\to\infty} \ n|\Delta f(n)|=\infty.$

Note that the corresponding third conditions for u.d. mod 1 is:

$$\lim_{n\to\infty} n|\Delta f(n)|=\infty.$$

Moreover, it is shown in [7] that  $\limsup_{n\to\infty} n|\Delta f(n)|=\infty$  is the necessity condition for u.d. mod 1 (see also [6]). Concerning this fact, in [3], it is shown that  $(\log n)$  is not a.u.d. mod 1 but a.u.d. mod 1 in the "average" sense. It is an interesting problem to study this delicate difference between u.d. mod 1 and a.u.d. mod 1. We can show the following:

Corollary 1. Let (g(n)) be a sequence of real numbers which satisfies three conditions:

- (C1) g(n) = o(n),
- (C2) Let  $f(n) = \frac{1}{n} \sum_{k=1}^{n} g(k)$ , then f(n) is not a.u.d. mod 1,
- (C3)  $\limsup_{n\to\infty} |f(n)-g(n+1)|=\infty$ .

Then  $\Delta^2 f(n)$  changes its sign infinitely many times. Here  $\Delta^2 f(n) = \Delta(\Delta f(n))$ .

Proof. We have

$$\Delta f(n) = \frac{1}{n+1} \sum_{k=1}^{n+1} g(k) - \frac{1}{n} \sum_{k=1}^{n} g(k)$$

$$= \frac{1}{n+1} g(n+1) - \frac{1}{n(n+1)} \sum_{k=1}^{n} g(k). \tag{1}$$

This shows that  $\lim_{n\to\infty} \Delta f(n) = 0$ . And by (1),

$$(n+1)\Delta f(n) = g(n+1) - f(n).$$

Thus

$$\limsup_{n\to\infty} |n|\Delta f(n)| = \infty.$$

If  $\Delta f(n)$  is ultimately monotone, then f(n) is a.u.d. mod 1, which contradicts with the assumption.

Let  $P_n$  be the n-th prime and we will later apply this Corollary 1 for the oscillation problem of  $P_n$ . Now we show

**Theorem 2.**  $(\log P_n)$  is not a.u.d. mod 1.

**Proof.** Let  $\mathbf{T} = \mathbf{R}/\mathbf{Z}$  be the real torus, which is identified with the interval [0,1) via the map  $x \to \{x\}$ . Define by  $\chi_{\tau}$ , the characteristic function of  $[\tau, \tau + 1/2)$  mod  $\mathbf{Z}$  in  $\mathbf{T}$ , and by  $\pi(x)$ , the number of primes smaller or equal to x. Let us evaluate, for a positive integer k,

$$T_{ au}(k) = rac{1}{\pi(N_k)} \sum_{n=1}^{\pi(N_k)} \chi_{ au}(\log P_n),$$

with  $N_k=e^{k+\tau+1/2}$ . By using the prime number theorem of the form:

$$\pi(x) = \frac{x}{\log x} + O(\frac{x}{\log^2 x}),$$

we have, for a positive number c = o(k),

$$\begin{split} \pi(N_k)T_{\tau}(k) &= \sum_{n=1}^{\pi(N_{k-c})} + \sum_{n=\pi(N_{k-c+1})}^{\pi(N_k)} \\ &= \frac{e^{k+\tau+1/2}}{k+\tau+1/2} - \frac{e^{k+\tau}}{k+\tau} + \frac{e^{k+\tau-1/2}}{k+\tau-1/2} - \frac{e^{k+\tau-1}}{k+\tau-1} + \dots \\ &+ \frac{e^{k+\tau+3/2-c}}{k+\tau+3/2-c} - \frac{e^{k+\tau+1-c}}{k+\tau+1-c} + O(\frac{e^{k-c}}{k-c}) + O(\frac{c \cdot e^k}{(k-c)^2}). \end{split}$$

If  $c = [2 \log k]$ , then

$$T_{\tau}(k) = 1 - \frac{k + \tau + 1/2}{e^{1/2}(k + \tau)} + \frac{k + \tau + 1/2}{e(k + \tau - 1/2)} - \frac{k + \tau + 1/2}{e^{3/2}(k + \tau - 1)} + \dots$$

$$+ \frac{k + \tau + 1/2}{e^{c-1}(k + \tau + 3/2 - c)} - \frac{k + \tau + 1/2}{e^{c-1/2}(k + \tau + 1 - c)} + O(\frac{\log k}{k})$$

$$= 1 - e^{-1/2} + e^{-1} - e^{-3/2} + \dots + e^{-c+1} - e^{-c+1/2} + O(\frac{\log k}{k})$$

$$= \frac{\sqrt{e}}{1 + \sqrt{e}} + O(\frac{\log k}{k}).$$

Here, the implied constant of the last O symbol does not depend on the choice of  $\tau \in [0, 1)$ , and we have  $\sqrt{e}/(1+\sqrt{e}) = 0.622459... > 1/2 + \delta$  with a positive constant  $\delta$ . This shows that there exist an open neighborhood of  $\tau$  in  $\mathbf{T}$ :

$$U_{ au} = \{x \in \mathbf{T} | d(x, au) < \epsilon\}$$

that if  $\{\log N\} - 1/2 \in U_{\tau}$ , then

$$\frac{1}{N} \sum_{n=1}^{N} \chi_{\tau}(\log P_n) > 1/2 + \delta, \tag{2}$$

for sufficiently large N. Here d(x,y) is the natural distance between x and y on T. Remark that the value  $\epsilon$  does not depend on the choice of k, if k is sufficiently large. As T is compact, there exist a finite sub covering  $T \subset \bigcup_{i=1}^m U_{\tau_i}$ . Thus there exist a constant M that if  $N \geq M$ , then we have (2). If the sequence  $(\log P_n)$  is a.u.d. mod 1, then by Proposition 1, there exist a strictly increasing sequence of natural numbers  $(n_j)$ ,  $j = 1, 2, \ldots$  that

$$\lim_{j\to\infty}\frac{1}{n_j}\sum_{i=1}^{n_j}\chi_\tau(\{\log P_i\})=\frac{1}{2},$$

which is a contradiction.

Now we give a very different proof of the results of [2].

**Theorem 3.**  $\Delta^2 \log P_n$  changes its sign infinitely many times.

**Proof.** Let  $g(n) = n \log P_n - (n-1) \log P_{n-1}$  and  $f(n) = \log P_n$  in Corollary 1. (Here we put  $P_0 = 1$  for example.) By using Theorem 2, it suffice to show (C1) and (C3). By using prime number theorem, we have

$$\log P_n = 1 + \frac{P_n}{n} + O(\frac{1}{\log P_n}). \tag{3}$$

Thus we see

$$g(n) = P_n - P_{n-1} + 1 + O(\frac{n}{\log n})$$
$$= o(n).$$

Here we used the fact:

$$P_n - P_{n-1} = O(P_n^{\theta}),$$

with a certain positive constant  $\theta < 1$ . This type of result was first shown by G. Hoheisel in [4] with  $\theta = 1 - 1/33000 + \epsilon$ . The best knowledge up to now is  $\theta = 23/42$  in [5]. For the condition (C3),

$$g(n+1) - f(n) = (n+1)(\log P_{n+1} - \log P_n)$$
 $> \frac{(n+1)(P_{n+1} - P_n)}{P_{n+1}}$ 
 $\sim \frac{P_{n+1} - P_n}{\log P_n}$ .

Here we write  $f \sim g$  if  $|f/g| \to 1$ . P. Erdős [1] was the first to obtain

$$\limsup_{n\to\infty}\frac{P_{n+1}-P_n}{\log P_n}=\infty,$$

by showing

$$\limsup_{n\to\infty} \frac{(P_{n+1}-P_n)(\log\log\log P_n)^2}{\log P_n \log\log\log P_n \log\log\log\log P_n} > \exists c > 0.$$

About the improvement of the constant c, see [9]. This completes the proof.

Our method to show this type of results can be generalized by a kind of "linearity" in many cases. To explain this, we notice

**Theorem 4.** Let l be a fixed positive integer, and  $C_i$  (i = 1, 2, ..., l) be the real numbers with  $\sum C_i \neq 0$ . The sequence  $(\sum_{i=0}^{l-1} C_i \log P_{n+i})$  is not a.u.d. mod 1.

*Proof.* First, we consider the case  $(C \log P_n)$ . Without loss of generality, we may assume that C > 0. Then we write  $C \log P_n = \log_b P_n$  with a constant b > 1. To see the assertion, replace e with b in the proof of Theorem 2.

If l > 1, it suffice to note that

$$\sum_{i=0}^{l-1} C_i \log P_{n+i} - \log P_n \sum_{i=0}^{l-1} C_i = o(1).$$

This shows the assertion.

**Theorem 5.** Let l be a fixed positive integer, and  $f_i$  (i = 1, 2, ..., l) be the positive real numbers. Then

$$\Delta^2 \log(P_n^{f_1} P_{n+1}^{f_2} \dots P_{n+l-1}^{f_l})$$

changes its sign infinitely many times.

"Proof. Put

$$g(n) = n(\sum_{i=1}^{l} f_i \log P_{n+i-1}) - (n-1)(\sum_{i=1}^{l} f_i \log P_{n+i-2})$$

$$f(n) = \sum_{i=1}^{l} f_i \log P_{n+i-1}.$$

By using Corollary 1 and Theorem 4, in a similar manner as in the proof of Theorem 3, we see the assertion. Here, we essentially used the positiveness of  $f_i$  (i = 1, 2, ... l) in proving (C3).

We expect that the conditions  $f_i > 0$  (i = 1, 2, ... l) can be droped.

Our method is applicable to a lot of arithmetic functions g(n), that  $f(n) = 1/n \sum_{k \le n} g(k)$  is not a.u.d. mod 1. For example, we can show similar assertions for the divisor function  $d(n) = \sum_{d|n} 1$  as

$$\frac{1}{n}\sum_{k=1}^n d(k) = \log n + (2\gamma - 1) + O(\frac{1}{\sqrt{n}}),$$

with the Euler constant  $\gamma$ . The proof for this case is easier, but the results do not seem well worthy of stating here.

## References

- [1] P. Erdös, On the difference of consecutive primes., Quart. J. Math. (Oxford) 6, (1935) 124-128.
- [2] P. Erdös and P. Turán, On some new question on the distribution of prime numbers., Bull. Amer. Math. Soc. **54**, (1948) 371-378.
- [3] J. Chauvineau, Sur la répartition dans  $\mathbf{R}$  et dans  $\mathbf{Q}_p$ ., Acta Arith. 14, (1968) 225-313
- [4] G. Hoheisel, Primzahlprobleme in der Analysis., Sitz. Preuss. Akad. Wiss. **33**, (1930) 581-588.

- [5] H. Iwaniec and J. Pintz, Primes in short intervals, Monatshefte Math. 98, (1984) 115-143.
- [6] T. Kano, Criteria for uniform and weighted uniform distribution mod 1., Comment. Math. Univ. St. Pauli **20**, (1971) 83-91.
- [7] P. B. Kennedy, A note on uniformly distributed sequences., Quart. J. Math. (2)7, (1959) 125-127.
- [8] L. Kuipers and H. Niederreiter, Uniform distribution of sequences., Pure and Applied Math., John Wiley & Sons, (1974)
- [9] R. A. Rankin, The difference between consecutive prime numbers. V., Proc. Edinburgh Math. Soc. (2) 13 (1962/63) 331-332.
- [10] I. Z., Ruzsa, On the uniform and almost uniform distribution of  $a_n x \mod 1$ ., Seminar on number theory, 1982-1983 (Talence), Exp. No.20 21pp.
- [11] I. I. Šapiro-Pyateckii, On a generalization of the notion of uniform distribution of fractional parts., Mat. Sbornik N.S. **30**, (1952) 669-676.