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Abstract

In this talk I explain some topological descriptions for the Julia sets of some
polynomial automorphisms of $\mathbb{C}^{2}$ including complex H\’enon mappings, which are
recently developed by Bedford and Smillie. They showed that, if the mapping is
hyperbolic and its Lyapunov exponent is minimal, then the “Julia set for backward
iteration” $J_{-}\backslash K_{+}$ is modeled by a simple Riemann surface lamination and the Julia
set itself is expressed as a quotient space of the solenoid. A relationship between
the Lyapunov exponent and “dynamical critical $\dot{\mathrm{p}}$oints” is also mentioned.

1 Motivations

Let us consider a generalized H\’enon mapping on $\mathbb{C}^{2}$ with the following form:

$f_{p,b}$ : $\mapsto(^{p(X)-}X)by$ $b\in \mathbb{C}^{*}$ ,

where $p(x)$ is a monic polynomial of one variable with complex coefficients and degree not
smaller than two. Complicated but interesting dynamical properties of this mapping (with
all parameters being real and $p(x)$ being a quadratic polynomial, which will be simply
called a H\’enon mapping) restricted to $\mathbb{R}^{2}$ were first observed numerically by H\’enon [H]
for a special choice of parameters.

Some of the motivations to study the H\’enon mappings may be the followings:
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Fatou-Bieberbach Domains: Example of a Fatou-Bieberbach domain in $\mathbb{C}^{2}$ which is
a domain biholomorphically equivalent to $\mathbb{C}^{2}$ whose complement has non-empty
interior [$\mathrm{B}$ , F2] is given by an H\’enon mapping (consider an H\’enon mapping with
at least two attractive cycles; each attractive basin is equivalent to $\mathbb{C}^{2}$ ). Notice
that this phenomena can never be found in one-dimension due to the Liouville’s
theorem. The boundary of this domain seems to have a very complicated structure,
in fact it often fails to be a topological manifold.

Strange Attractors: For suitable choices of real parameters, this mapping on $\mathbb{R}^{2}$ has a
strange attractor (i.e. an attractor with very complicated shape and sensitive dy-
namics on it) as H\’enon observed [H]. This kind of observation is mathematically
justified (but in different situations from that of He’non) by Benedicks and Car-
leson [BC], Mora and Viana [MV], and recently by Jakobson and Newhouse [JN].

Classification: Friedland and Milnor [FM] (and H\’enon [H] for degree two case) proved
that a polynomial automorphism $f$ on $\mathbb{C}^{2}$ or $\mathbb{R}^{2}$ (i.e. a polynomial map with a
constant Jacobian determinant which has again a polynomial map as its inverse)
with non-trivial dynamics is linearly conjugated to a mapping which is a composition
of some generalized H\’enon mappings:

$f=f_{pb_{1}}1,f\mathrm{o}b2p2,\circ\cdots \mathrm{O}f_{p_{k},b}k$ .

In the following, we consider a mapping $f$ of the form as above with degree $d\geq 2$ so
that the dynamics is interesting. Here, by the degree of $f$ , one means the product of the
degree $d_{i}$ of $p_{i}$ which will be denoted by $d$ . Remark that the Jacobian determinant of $f$

is $b\equiv b_{1}\cdots b_{k}$ .

2 Cast of Players

According to Hubbard and Oberste-forth [HO1], we focus on the following sets:

$U_{\pm}\equiv\{\in \mathbb{C}^{2}|||f^{\pm n}||arrow+\infty(narrow+\infty)\}$ ,

$K_{\pm}\equiv \mathbb{C}^{2}\backslash U_{\pm}$ , and $J_{\pm}\equiv\partial K_{\pm}$ .

Futher, we define
$J\equiv J_{+}\cap J_{-}$ ,

and call it the Julia set of $f$ . One can easily see that each set is invariant and $J$ is compact.
To investigate these sets the following Green functions are fundamental:

$c_{\pm} \equiv\lim_{narrow\infty}\frac{1}{d^{7l}}\log^{+}||f^{\pm n}||$ .
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It is shown that $G_{\pm}\mathrm{v}\mathrm{a}\mathrm{n}\mathrm{i}_{\mathrm{S}\mathrm{h}}$ on $K_{\pm}$ , positive and pluri-harmonic on $U_{\pm}$ , and have dynamical
compatibility:

$G_{\pm}\mathrm{o}f=d^{\pm 1}\cdot G_{\pm}$ .

The following construction is very useful for our purpose:

$\varphi_{+}\equiv\lim_{narrow\infty}(q_{1}\mathrm{o}f^{n})^{\frac{1}{d^{n}}}$ ,

where $q_{1}$ means the projection to the first coordinate and the branch of $d^{n}$-th root is
taken so that $\varphi_{+}$ tangents to $q_{1}$ when $||(x, y)||$ goes to infinity. One then proves that this
is well-defined on

$V_{+}\equiv\{\in \mathbb{C}^{2}||x|\geq|y|,$ $|x|\geq R\}$ ,

for $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}$

.
ntly large $R>0$ and analytic $\mathrm{t}\mathrm{h}\mathrm{e}\Gamma \mathrm{e}$ . This function also $\mathrm{h}\mathrm{a}.\mathrm{s}$ dynamical compat-

ibility:

$\varphi_{+}\mathrm{o}f=(\varphi_{+})^{d}$

In the works of Bedford and Smillie [BS1, $\mathrm{B}\mathrm{S}2,$ $\mathrm{B}\mathrm{S}3$] (also with Lyubich [BLSI, BLS2],
Fornaess and Sibony [FS] $)$ , they considered $(1, 1)$-currents defined by

$\mu_{\pm}\equiv dd^{C}G\pm\cdot$

Moreover, it is proven that their “product”:

$\mu\equiv\mu_{+}\wedge\mu_{-}$

is a well-defined $(2, 2)$-current and becomes a measure. Using these stuffs, they showed
many important results corresponding to the $\mathrm{J}\mathrm{u}\mathrm{l}\mathrm{i}\mathrm{a}-\mathrm{F}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{u}$-Brolin theory including some
topological properties of $J_{\pm}$ and $K_{\pm}$ , density of saddle periodic points in the support of $\mu$

(this corresponds to the fact that, in one-dimensional case, the repelling periodic cycles
are dense in the Julia set: in two-dimension, the support of $\mu$ coincides with the Julia
set when the dynamics is hyperbolic), and some characterizations of $\mu$ in terms of the
thermodynamical formalism (more precisely, $\mu$ is shown to be the unique maximal entropy
measure: thus, $\mu$ is a natural generalization of the one-dimensional Brolin measure).1
$\overline{\mathrm{l}\mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}}$analogie is true $\cdot$. the one-dimensional Brolin measure is characterized as a
limit distribution of the backward images of a generic starting point. A similar “con-
vergence theorem to the maximal entropy measure starting from a simple current” was
established in two-dimension (but for diffeomorphisms!), and this is one of the main tools
in the theories of Bedford(-Lyubich)-Smillie, Fornaess-Sibony etc. For more informations
on these potential theoritic methods, see Nishimura [N]
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3 A Topological Approach

The methods presented in the paper [BS4] are more topological. To clarih the meaning
of their results, let us briefly review the corresponding facts in one-dimension.

One-dimensional Theory (see, for example, [Mi])

Let $p$ be a monic polynomial on $\mathbb{C}$ . By definition, the Julia set $\sqrt p$ of $p$ is the boundary
of the filled-in Julia set:

$K_{p}\equiv\{z\in \mathbb{C}||p^{n}(z)|$ does not tend to infinity when $narrow+\infty\}$ .

The first important result is a relationship between the behavior of the critical points
of $p$ and the connectivity of its Julia set.

Theorem 3.1 (Fatou [F1], $\mathrm{J}\mathrm{u}\mathrm{l}\mathrm{i}\mathrm{a}[\mathrm{J}]$ ) The Juila set of a polynomial $p$ is connected if
and only if all critical points of $p$ remain bounded by the iteration.

When one extends the polynomial to the Riemann sphere by putting $p(\infty)=\infty$ , the
dynamics of $p$ near infinity almost look like

$p_{0}$ : $Z-Z^{d}$ .

In fact, one can find a holomorphic bijection $\varphi$ from a neighborhood of infinity to a
neiborhood of infinity which conjugates $p_{0}$ to $p$ (called the B\"otkher coordinate [Mi]).
This conjugacy is unique if it is assumed to tangent to the identity at infinity. Moreover,
one can extend this map as a holomorphic bijection from the compliment of the closed
unit disc $\overline{\Delta}$ to the compliment of $K_{p}$ if and only if all critical points of $p$ are in $K_{p}$ . One
of the strongest tools in combinatorial studies of the Julia set is the following external ray

of angle $\theta$ :
$\varphi(\{re^{2i}\pi\theta|r>1\})$ .

It is shown that, if $p$ is hyperbolic, then all external rays can be extended to $r\geq 1$ .
So finally we have a surjection:

$\varphi:\partial\Delta=s^{1}arrow J_{p}$ ,

which conjugates the dynamics $p_{0}$ to $p$ . Thus, we can topologically produce the Julia set
as a quotient space of $S^{1}$ :

$J_{p}=S^{1}/\sim$
’

where we set $\theta_{1}\sim\theta_{2}$ if and only if $\varphi(\theta_{1})=\varphi(\theta_{2})$ , and the action of $p$ on $\sqrt p$ is the induced
map of $p_{0}$ on the quotient space. In the degree 2 case, this equivalence relation is well
understood combinatorialy.

145



Now it seems quite natural to ask the following questions for H\’enon mappings:

$\bullet$ What is the best topological model for a connected Julia set ? What should we
prepare instead of $S^{1}$ ?

$\bullet$ By what does the B\"otkher coordinate should be replaced ? How to define the
external rays ?

$\bullet$ A priori a H\’enon mapping does not have a critical point because it is a diffeomor-
phism. Still, can one define (

$‘ \mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ critical points” (in some sense) for a H\’enon

mapping ?

In fact, the answer to the first question in hyperbolic case given by Bedford and Smillie
is the solenoid (see also the next section):

$\Sigma\equiv.\varliminf(S^{1}, z\mapsto p_{0}(_{Z})=z)d$

$\equiv\{(\cdots, z_{-2}, z_{-1}, z\mathrm{o})|z_{n}\in S^{1},$ $p_{0}(z_{i-1})=z_{i}(i\leq 0)\}$ .

Solenoid first appeared in this context in [HO1].

Theorem 3.2 $(\mathrm{H}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{a}\mathrm{r}\mathrm{d}-\mathrm{O}\mathrm{b}\mathrm{e}\Gamma \mathrm{s}\mathrm{t}\mathrm{e}- \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}[\mathrm{H}\mathrm{O}1])$ For a generalized H\’enon mapping
$H$ there exists a compactification $X$ of $\mathbb{C}^{2}$ adding $S^{3}$ at infinity $\mathit{8}uch$ that

(1) the induced topologies on $\mathbb{C}^{2}$ and $S^{3}$ are the standard ones,

(2) $\mathbb{C}^{2}$ is dense in $X$ ,

(3) the closure of J-in $Xi_{\mathit{8}}J_{-\mathrm{u}}\Sigma_{f}$

(4) the mapping $H$ can be $continuou\mathit{8}ly$ extended to $S^{3}$ so that its restriction to $\Sigma$ is $\hat{p}_{0}$

given by:
$\hat{p}_{0}(\cdots, z_{-2}, z-1, z\mathrm{o})\equiv(\cdots, Z-3, Z_{-}2, z-1)$ .

Recall that, in one-dimensional case, if one makes a compactification of $\mathbb{C}$ by adding
$S^{1}$ instead of a point at infinity, then any polynomial extends continuously to $S^{1}$ and the
restriction on it is the multiplication of the angles by the degree of the polynomial. This is
why we used the unit circle and the angle multiplication on it to make a topological model
of the one-dimensional Julia set. So one may expect that there exists a homeomorphism:

$\Psi$ : $\Sigma_{+}\equiv\varliminf_{\backslash }(\mathbb{C}\backslash \overline{\Delta}, z-rp_{0}(_{Z}))arrow J_{-}\backslash K_{+}$,

which conjugates the dynamics $\hat{p}_{0}$ on the projective limit to $f$ on $J_{-}\backslash K_{+}$ where, again, $\hat{p}_{0}$

means the standard lift of $p_{0}$ to $\Sigma_{+}$ and $\Psi$ is hopefully holomorphic on each leaf. This is
realized the first thing for the cases of small perturbations of hyperbolic one-dimensional
$\mathrm{P}^{\mathrm{o}1}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{S}$ in $[\mathrm{H}\mathrm{O}2]$ .

146



4Results of Bedford and Smillie [BS4]

One of the theorems of Bedford and Smillie states that the above observation is true if the

Julia set is connected and the dynamics on it is hyperbolic. Moreover, they gave answers
to othe questions mentioned above. To state their $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}.$ ’ let us recall the definition of

the Lyapunov exponent.

$\Lambda_{\mu}(f)\equiv\lim\frac{1}{n}narrow\infty\int\log||Dnf(x)||d\mu(x)$.

This means the rate of maximal expansion of $f$ avaraged by $\mu$ . By $\mathrm{d}\mathrm{e}\dot \mathrm{f}\mathrm{i}$nition, $f$ is said

to be solenoidal if its Lyapunov exponent is minimal (this means that $\Lambda_{\mu}(f)=\log d$ . See

Theorem 4.4 below).
The concept of the solenoidal mapping is tightly connected to the existence of dynam-

ical critical points:
$C^{u} \equiv\bigcup_{p\in J}C_{p}^{u}$

,

where $C_{p}^{\prime u}$ means the critical points of $c_{+^{\mathrm{i}\mathrm{n}U}+^{\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{t}}}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$to an open subset of the unstable

manifold of $p$ .
Some of their resluts in [BS4] are summarized as:

Theorem 4.1 (Bedford-Smillie [BS4]) Let $f$ be hyperbolic on J. Then the following

conditions are equivalent.

(i) $f$ is solenoidal.

(ii) $C^{u}$ is empty.

(iii) There exists a homeomorphism:

$\Psi$ : $\Sigma_{+}arrow J_{-}\backslash K_{+}$

which conjugates the dynamics and it is holomorphic on each leaf.

(iv) $\sqrt$ is connected.

Corollary 4.2 (Bedford-Smillie [BS4]) In the situation as above, Julia set is ex-
pressed as a quotient space of the solenoid, $i.e.$ , there exists a surjective continuous map:

$\Psi$ : $\Sigmaarrow J$

which conjugates the dynamics $\hat{p}_{0}$ to $f$ . Moreover, this map is bounded to one.

Sketch of the Proof of Theorem 4.1 We start with one more analogy between the

dynamics in dimension one and two. Let us recall the definition of the Lyapunov exponent
for a one dimensional polynomial $p$ :

$\lambda_{\nu}\equiv\lim_{narrow\infty}\frac{1}{n}\int\log|D^{n}p(_{X})|d\nu(x)$ ,

where lノ is the harmonic measure of $J_{p}$ .
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Theorem 4.3 (Manning [Ma], Przytycki [P]) For an one-dimensional monic poly-
nomial $p$ of degree $d$ , one has

$\lambda_{\nu}=\log d+\sum c(c_{i})$

where $c_{i}$ are the critical points of $p$ and $G$ is the Green function of $J_{p}$ .

Bedford and Smillie obtained a similar formula for a polynomial automorphism $f$ . To
state their result, let us define a measure which expresses the distribution of the critical
points. For any Pesin box $B=B^{s}\cap B^{u}$ (i.e., $B^{s}= \bigcup_{e\in Ee}\mathrm{r}^{S}$ where $\Gamma_{e}^{s}$ is a transversal to
a holomorphic bidisk such that $\Gamma_{e}^{s}\subset W^{s}(x)$ for some $x\in J.$ $B^{u}$ is defined in a similar
fashion), the restriction $\mu$ on $B$ is a product measure $\mu^{u}\otimes\mu^{s}$ with respect to the topological
structure of $B$ , where $\mu^{u}$ (resp. $\mu^{s}$ ) means the transversal measure in the unstable (resp.
stable) direction. We define the critical measure as

$\mu_{c}^{-}(x)\equiv\int_{e\in E}\#\{c_{e^{\cap}}X\}d\mu s(e)$,

where $C_{e}$ is the set of critical points of $G^{+}$ on $\Gamma_{e}^{s}\backslash K_{+}$ .

Theorem 4.4 (Bedford-Smillie [BS4]) For every $t>0$ , we have

$\Lambda_{\mu}=\log d+\int_{t\leq d}c+<tc+d\mu^{-}C^{\cdot}$

Thus, $f$ is solenoidal if and only if $\Lambda_{\mu}(f)=\log d$.
$i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$ the theorem above, we can deduce that $\Lambda_{\mu}(f)=\log d$ if and only if $G^{+}$ has

no critical point on $W^{u}(p)\backslash K_{+}$ for $\mu$-almost all $p\in J$ . Now, let us assume that $G^{+}$ has
no critical point on $W^{u}(p)\backslash K_{+}$ and let $\mathcal{O}$ be a connected component of $W^{u}(p)\backslash K_{+}$ .
Then, it is not difficult to see that $\mathcal{O}$ is simply connected and unbounded (because $G^{+}$ is
pluriharmonic on $U_{+}$ ). If a point in $\mathcal{O}$ is sufficiently far from $p$ , then it is an element of
$V_{+}$ . Thus, we can make an analytic continuation of $\varphi_{+}\mathrm{t}_{\mathrm{o}J_{-}}\backslash K_{+}$ . Let us define

$\Phi$ : $J_{-}\backslash K_{+}arrow\Sigma_{+}$ ,

by
$\Phi(x, y)\equiv(\cdots, \varphi_{+}(f^{-2}(x, y)), \varphi_{+}(f-1(_{X}, y)), \varphi+(X, y))$.

It is shown that, by the hyperbolicity, this map is a covering of finite degree, say $m$ .
Define $\pi$ : $\Sigma_{+}arrow \mathbb{C}\backslash \overline{\Delta}$ by $\pi(\cdots, Z_{-2,1}Z_{-}, Z_{0})=Z_{0}$ .

For a complex number $s\in \mathbb{C}$ we write $s=\Re s+i_{S}^{\infty_{S}}$ where $\Re s$ and $s^{\infty}s$ denote the real
and imaginary parts of $s$ . Let us define a holomorphic vector field $S\equiv s(\partial_{\Re}s-i\partial \mathrm{G})sS$ . On
$\mathbb{C}\backslash \overline{\Delta}$ we consider two vector fields $\Re S$ and $\Re iS$ , and let $X$ and $Y$ be their lifts to $J_{-}\backslash K_{+}$

by $\Phi 0\pi$ . Integral curves of $X$ are called external $ray_{\mathit{8}}$ .
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Let $S_{0}\subset\Sigma_{+}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{S}\mathrm{t}}$ of points with O-th coordinate equal to the real number $e$ . Put
$T_{0}\equiv(\Phi)^{-1}(e)\subset J_{-}\backslash K_{+}$ and let

$\Phi_{0}$ : $T_{0}arrow S_{0}$

be the restriction of $\Phi$ to $T_{0}$ . It is shown that, if a partition $\prime P$ of $T_{0}$ is sufficiently fine,
then $(\Phi_{0}|_{P})^{-1}$ is bijective on each classes $P\in P$ . So, if a partition 2 of $S_{0}$ is sufficiently
fine, then $\Psi_{0}\equiv\Phi_{0}^{-1}0\ominus_{m}$ is a bijection on each classes $Q\in Q$ , where

$\ominus_{m}$ : $\Sigmaarrow\Sigma$

is defined by
$\ominus_{m}(\cdots, Z_{-2}, Z_{-}1, Z\mathrm{o})\equiv(\cdots, z_{-2}^{mm_{1}}, z_{-}, z_{0}^{m})$.

We extend this mapping $\Psi_{0}$ using $\mathbb{R}$-actions induced by $Y$ and $\Re iS$ , and next $\mathbb{R}$-actions
induced by $X$ and $\Re S$ . Modifying this map a little bit, we finally get the global conjugacy
map $\Psi$ .

If $f$ is hyperbolic on $J$ , then all external rays land on $J$ . And the extended map:

$\Psi$ : $\Sigmaarrow J$

is a continuous surjection. Thus, $J$ is connected.
In [BLSI] they showed that connectivity of $J$ implies the minimality of the Lyapunov

exponent. This completes the proof of the theorem.

149



References

[BC] Benedicks, M., Carleson, L. The dynamics of the H\’enon map. Ann. Math. 133,
pp. 73-169 (1991).

[BLSI] Bedford, E., Lyubich, M., Smillie, J. Polynomial diffeomorphi8ms $of\mathbb{C}2$ IV: The
measure of maximal entropy and laminar currents. Invent. Math. 112, pp. 77-125
(1993).

[BLS2] Bedford, E., Lyubich, M., Smillie, J. Distribution of periodic points of polynomial
$diffeomorphi_{\mathit{8}}ms$ of $\mathbb{C}^{2}$ . Invent. Math. 114, pp. 277-288 (1993).

[BS1] Bedford, E., Smillie, J. Polynomial diffeomorphisms of $\mathbb{C}^{2}$ : Currents, equilibrium
measure and hyperbolicity. Invent. Math. 103, pp. 69-99 (1991).

[BS2] Bedford, E., Smillie, J. Polynomial diffeomorphisms of $\mathbb{C}^{2}$ II.. Stable manifolds
and reccurence. J. Amer. Math. Soc. 4, pp. 657-679 (1991).

[BS3] Bedford, E., Smillie, J. Polynomial diffeomorphisms of $\mathbb{C}^{2}$ III.. Ergodicity, ex-
ponents and entropy of the equilibrium measure. Math. Ann. 294, pp. 395-420
(1992).

[BS4] Bedford, E., Smillie, J. Polynomial diffeomorphisms of $\mathbb{C}^{2}$ V: Critical points,
Lyapunov exponents and solenoidal mappings. Preprint, May 1995.

[BS5] Bedford, E., Smillie, J. Fatou-Bieberbach domains arising from polynomial au-
tomorphisms. Indiana. Univ. Math. J. 40, pp. 789-792 (1991).

[B] Bieberbach, L. Beispiel zweier ganzer funktionen zweier komplexer variabeln,
welche eine schlicht volumetreue abbildung des $\mathbb{R}_{4}$ auf einen teil 8einer8elbst
vermitteln. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-math. Kl., pp. 476-
479 (1933).

[F1] Fatou, P. Sur les \’equations fonctionnelles. Bull. Soc. Math. France 47, pp. 161-
271 (1919) ; 48, pp. 33-94, 208-314 (1920).

[F2] Fatou, P. Sur les fonctions m\’eromorphes de deux variables. C. R. Acad. Sci. Paris
175, pp. 862-865 (1922) ; Sur certaines fonctions uniformes de deux variables.
C. R. Acad. Sci. Paris 175, pp. 1030-1033 (1922).

[FM] Friedland, S., Milnor, J. Dynamical properties of plane polynomial automor-
phisms. Erg. Th. &Dyn. Syst. 9, pp. 67-99 (1989).

[FS] Fornaess, J., Sibony, N. Complex H\’enon mappings in $\mathbb{C}^{2}$ and Fatou-Bieberbach
domain8. Duke Math. J. 65, pp. 345-380 (1992).

150



[H] H\’enon, M. A two-dimensional mappings with a strange attractor. Commun.
Math. Phys. 50, pp. 69-77 (1976).

[HO1] Hubbard, J., Oberste-Vorth, R. He’non mappings in the complex domain I: The
global topology of $dynami_{n}cal$ space. Publ. Math. IHES 79, pp. 5-46 (1995).

[HO2] Hubbard, J., Oberste-Vorth, R. H\’enon mappings in the complex domain II..
Projective and inductive limits of polynomials. Preprint SUNY at Stony Brook
#1994/1 (1994).

[JN] Jacobson, M., Newhouse, S. Talks at IMPA (1993).

[J] Julia, G. M\’emoires 8ur l’it\’eration des foction8 rationelles. J. Math. Pure Appl.
8, pp. 47-245 (1918).

[Ma] Manning, A. The dimen8ion of the maximal measure for a polynomial map. Ann.
3

Math. 119, pp.425-430 (1984).

[Mi] Milnor, J. $Dynani_{C\mathit{8}}$ in one complex variable: Introductory lectures. Preprint
SUNY at Stony Brook #1990/5 (1990).

[MV] Mora, L., Viana, M. Abundance of strange attractors. Acta Math. 171, pp. 1-71
(1993).

[N] Nishimura, Y. Lecture note. Topics in Complex Analysis (ed. M. Taniguchi), pp.
23-69 (1993).

[P] Przytycki, F. Hausdorff dimension of harmonic measure on the boundary of an
attractive basin for a holomorphic map. Invent. Math. 80, pp.161-179 (1985).

151


