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0. Introduction

Let T be a holomorphic mapping of a neighborhood, V, of the origin,
O = (0,0) € C?,into C* with T(O) = O. The germ of such a mapping
is called a local analytic transformation.

Let T denote the set of all local analytic transformations. Local an-
alytic transformations 7 and 7T’ are said to be r-equivalent if their
power series expansion at the origin coincide up to order r. The equiva-
lence class is called the r-jet of the local analytic transformation.

Local analytic transformations T and T are said to be r-conjugate if
there is an invertible local analytic transformation S such that S~!'oToS
and T’ are r-equivalent. Let T;={T € T |dT(0O) = id}, where dT
denotes the differential of T and 2d denotes the identity map. The
elements of T; are called parabolic local analytic transformations. Ueda|2]
gave a classification of 2-jets of Tj.

Let E= {PeC?|TYP) - O as n— oo}, and D= {P € C?*|
T™ converge uniformly to O in some neighborhood of P as n — oo}. If
D # 0, then we say O has a basin of attraction.

In Ueda’s list of normal forms, the case of Np1(\) ( case I-B in our
classification ) :

(0.1) {ml = =+’ +zy + .-
' yo=y +A+Dzy +y* 4

has a parabolic basin if Re(A)> 0. In this note, we shall prove that the
fixed point of the above type has another attractive basin of a different
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type. The author does not know if they are analytically conjugate or
not in the basins. Since this new type of attractive basin appears as a
degenerate case of parabolic basin, we call such a basin a weakly-parabolic
basin.

1. 2-jets of parabolic local analytic transformations

‘Let‘ f:C*>C ‘and g : C* - C be homogeneous polynomials of
degree 2, and let F': C? — C? Dbe a parabolic analytic transformation

defined by (%) — z+ f(z,y)
() = Gracm),

Let H :C?— C? defined by

- (x) 2 (f(x,y)> -
y)  \g(=z,y)
denote the homogeneous part of degree 2. We have F = id + H.

If an invertible local analytm transforma,tlon S has a hnear part L €
GL(2 C), then the 2—Jet of S oFo 5’ is glven by | P

L1 oFoL = zd+L oHoL

Hence, if parabolic local transformations F =id+ H and F' =id+ H'
are 2-equivalent, then there exists a linear 1somorphlsm L e GL(Z C)
such that

LloHoL=H'

and vice versa. Thus, the classification of 2-jets is reduced to the clas-
sification of homogeneous polynomial maps H : C2 — €? under the
conjugacy L™'o Ho L with L € GL(2,C). We have several cases.

CASEI: f(z,y) and g¢(z,y) are mutually prime.

CASE Il : f(x,y) and g(zx,y) have a common factor of degree one.

CASE IIT:  f(z,y) or g(z,y) is a scalar multiple of the other (and
not both zero). | | |

CASE IV : both f(z,y) and g(z,y) areO.

First, let us consider the case I Let = : C*\ {O} — C denote the
natural projection of C?\ {0} to the Riemann sphere C. Homogeneous
maps H and H' induce rational maps of degree 2 on the Riemann
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sphere. We denote the induced ratlona,l maps by [H ] C - C and
[H']: € — C respectively.

LEMMA 1.1 H and H' are conjugate by an element of GL(2 C)
if and only if [H] and [H'] are conjugate by a Mobius transformation.

The classification of rational functions of degree 2 under the conjugacy
of Mobius transformations is well known(e.g. see Milnor[1]). A conjugacy
class of rational functions of degree two is characterized by the set of three
multipliers of the fixed points. The three multipliers, say 1, ps, ug , are
subject to the restriction

pipops — (w1 + pe +p3) + 2 = 0.

These values are invariant under the conjugacies.
If pu; # 1(:=1,2,3), then the residues at each of the fixed points

_ 1 / dz _ 1

Coar/—1) [Hl(z2) -2z pi—1

give another set of holom(v)r'p.hirc irivziriahts‘ The values ); are called
“translation numbers” in the normal forms stud1ed by Ueda[2]. A1, Az, A3
are subject to the restriction

AL+ A + A3 = —1.
Ueda[2] proved the following. "

THEOREM (Ueda) If Re A; > 0, then F has a (parabolic) basin
of attraction of the fixed point O which corresponds to X;,. If F is
an automorphism of a complex manifold, then the basin of attraction is
isomorphic to C? and the dynamics in the basin is analytically conjugate
to a translation.

This theorem holds also in the cases I-B and II-A-2 below. See Ueda|2]
for the proof. Our case I is divided into three sub-cases.

CASE I-A : [H] has three distinct fixed points.
CASE I-B: [H] has a double fixed point and a simple fixed point.
CASE I-c : [H] has a triple fixed point.

Normal forms as 2-jets for these cases are as follows.

o {3 DT e
Bno= y +(A1 4+ Dzy  +A92



Note that in our case I-A, we exclude the case where A; = 0 holds for
some % . This case is treated as case II-A-1 and III-A-1, since in this
case the components of H have a common factor.

The parameter A in the following normal form is giveny by A = ;1—13,
if g1 #1and pp = ps =1, for example.
(I-B) {-’L’l- = z +xz?  +ay
o=y +(A+ D2y +y2

Note that in our case I-B, we exclude the case of A = 0, in which case
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the induced map [H] degenerates to a Mdbius transformation with an

indeterminate point. This case will be treated as case II-B-1.

In case I-c, we have pu; = ps = pz = 1.
r = x +xy
I-c
(I-¢) {y1 = y +2’ +y.

Next, considr the case II, where f(z,y) and g(z,y) have a common
factor and the induced map [H] defines a M&bius transformation except
at the indeterminate point corresponding to the common factor. We have
" three possibilities for the Mdbius transformation [H] .

CASE II-A : [H] has two distinct fixed points.
CAsE II-B : [H] has a double fixed point.
CASE II-c : [H] is the identity.

And taking the indeterminate point, originating from the common
factor, into considerations, we have sub-cases as follows.

CASE II-A-1 : the indeterminate point is different from the fixed
points.

CASE II-A-2 : the indeterminate point coincides with one of the fixed
points of the Mobius transformation.

CASE II-B-1 : the indeterminate point is different from the double
fixed point.

CASE II-B-2 : the indeterminate point coincides with the double fixed
point.

The normal form of case II-A-1 is same as the case I-A. There is a
restriction on the parameters. Let v € C\ {0,1} denote the multiplier
at one of the fixed point of the Mobius transformation. The parameters
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in the normal form are given by \; = T:—L'y’ Ay = 7}-—1’ and A3 =0.

o= z 4’ +7hay

(II-a-1) { _ " T 12
y1o= y +i5oy oyt
r; = x +Az?

1I-A-2 {

( ) Y1 = ¥y +(A + 1)zy.

Here, the parameter (translation number) A is given by A = 1—1—7 , for
multiplier v € C\ {0,1} of the M6bius transformation at the indetermi-
nate fixed point. Note that the cases A =0 and A = —1 are omitted
here. These cases will be treated as cases III-A-2 and III-B-1 below.

The case II-B-1 corresponds to the exceptional case of I-B with A = 0.

(11-B-1) { Ty = T +zy
Y o=y +zy +y.
T, = x 2
II-B-2
( ) {y1 = y +z’ +ay.
(I1-c) {wl = z +z°
Y = Y +zy.

In the case III, the induced map [H] yields a constant function on
the Riemann sphere. We have the following sub-cases according to the
common factors of the components of H .

CASE III-A : the components f(z,y) and g(z,y) have two mutually
prime common factors.

CASE III-B : the components f(z,y) and g(z,y) have a double
common factor.

The common factor defines the indeterminate points of the induced
map [H]|. The value of the constant function [H]| is defined except at
these indeterminate points. Let v([H]) denote the value. Taking these
points into considerations, we have following sub-cases.

CASE III-A-1: v([H]) is different from the indeterminate points.

CASE III-A-2 : v([H]) coincides with one of the indeterminate points.

CAsE III-B-1 : wv([H]) is different from the double indeterminate
point.
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CASE III-B-2: v([H]) coincides with the double indeterminate point.

The case ITI-A-1 falls into the normal form I-A with excepted param-
eters A1 = A2 = 0, and a simpler normal form is given by

(I1-A-1) {"’1 -7 )
B =y +ry +y°.

The normal form for case III-A-2 is obtained by setting A = 0 in
II-A-2.

(IT1-A-2) {”1 -7
Y1 = Y +zy.
The normal form for case III-B-1 is obtained by setting A = —1 in
II-A-2.
IT1-B-1 {ml —
( ) yo= y +y°.
ry = T
III-B-2
( ) {y1 = y +a’.

Finally, the case IV has the 2-jet normal form

= I

S M

Here, we note the correspondence between our classification of 2-jet
normal forms of parabolic analytic transformations and that of Ueda’s

classification[2].
Ueda’s notation our clasification
Nl(}‘la Az, )\3) I—A, II—A—l, III-a-1
N2’1(>\) I-B, II-B-1
Na2(A) II-A-2, III-A-2, III-B-1
Ns 4 I-c
N3,2 1I-B-2
N33 III-B-2
Ny 1I-c

Ny ' Iv
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2. Pseudo-parabolic fixed points

In this section, we consider the case I-B. In this c_asé, the induced map
[H] has a simple fixed point and a double fixed point. The translation
number A in the normal form I-B is related to the simple fixed point.
We call a fixed point of type I-B a pseudo-parabolic fixed point. We are
interested in the double fixed point of [H]. In order to study the behavior
of the local analytic transformation in the neighborhood of the pseudo-
parabolic fixed point, we consider the blow-up = : C? - C? of C? at
O. we denote the exceptional curve by © = 77}(0O) ~ C. Let V be
the domain of definition of the transformation T and let V = W:(V).

The transformation induces an analytic transformation T:V — C% As
dT(O) = id, all points of the exceptional curve are fixed points of T .

Let us try a blow-up in our case I-B. The z-axis direction, {y =
0}, corresponds to the simple fixed point of [H], and is related to the
translation number A. To see this, we may try a blow-up with t = L,
We obtain the following local analytic transformation.

r; = =z +(A+t)z? +---
(2:3) { t, = t Hr A
The y-axis direction, {x = 0}, corresponds to the parabolic fixed point
of [H]. We try a blow-up with u = " and obtain the following.
i = y +Q+QA+Du)y® +--
I L
1 = U u‘y + .

‘Local analytic transformations arising from such a blow-up leaves the
exceptional curve invariant, and all the points in the exceptional curve
are fixed points. By taking a system of local coordinates around the
point in the exceptional curve, we can assume, in general, that the local
analytic transformation is of the following form.

(2.5) {“’1 = = +HW +h® +--

y =y tae +e@zt +--
Local analytic transformations of the form (2.5) is called a transfor-
mation of class S,, v =0,1,2,--- [resp. class Sy]if g¢1(y) vanishes at

y = 0 exactly with order v [resp. vanish identically]. For T € S;, we
define the translation number A by

_ £(0)
A= 91(0)
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The translation number -\ and the multiplier p of the corresponding
simple fixed point of [H] are related by ‘A = u%l The translation
number is also a holomorphic invariant in class S;.

For T € S, the order of vanishing of g1(y) at y = 0 is invari-
ant under those holomorphic change of coordinates which transforms the
transformation of the form (2.5) into the same form.:

Let T be a local analytic transformation, and T € S;. The origin has
a basin of attraction if the real part of the translation number is positive.
We call this basin of attraction a parabolic basin of the parabolic fixed
point. _

Note that (2.3) is of class S; and its translation number is A. The
transformation for the double fixed point (2.4) is of class Sy, which shall

be discussed in the following section.

3. Weakly-parabolic basin
In this section, we consider a local analytic transfbfmatiﬁong T eSS,
given by
{xl =z +hy? +il)® +--
i =y +ayr +e(y)z? +--,
where g¢1(0) =0, ¢;(0) =0, and g{(0) # 0.

THEOREM 3.1 If f,(0) # 0, local analytic transformation (3.1) has
a non-empty basin of attraction.

(3.1)

We call this attractive basin a weakly-parabolic basin. As a preliminary,
we try to simplify the transformation by local change of coordinates.

ProPoOSITION 3.2  For any. 6 € C, by a change of coordinates
Sa: (X,Y) — (z,y) of the form

{x = o)X

(3.2) Yy

where «(Y) is an analytic function of Y, transformation (3.1) can be
transformed into the form

{Xl = X +E({Y)X? +RBY)X® +--
i = Y +G(Y)X +GY)X? +---

with F3(Y) =146Y +---, G1(0) = G}(0) =0, and G¥(0) # 0.

(3.3)
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PrROOF Let T denote the transformation (3.3). As S, is a local
automorphism, we have «(0) # 0 and

ToS, = S,0T

holds. Expand the both sides as power series in X with analytic func-
tions in Y as coefficients. By comparing the coefficients of both sides,
we have

(34)  AX)NY))® = aY)F2(Y)+ o/ (Y)Gi(Y)

and

(3.5) Gi(Y) = o(Y)au(Y).

The function «(Y) must satisfy the differential equation
(36)  fo(Y)Y) — g1(Y)(Y) = F(Y),

with @(0) # 0. Let .

£2(0)’
1 f2(0)
= 7 (0> Rl k) = 25650

and choose the analytic function «(Y) as, for example,

apg =

ax

)

a(Y) = ap+ar1Y.
We obtain the desired change of coordinates of the proposition. As
a(0) = ag # 0, the conditions for G;(Y) are satisfied.
Especially, as we have GY(0) = £»(0)g;{(0), we can take § = GJ(0)/2 =
f2(0)g7(0)/2 to be used in the following proposition.

PROPOSITION 3.3 Assume T € S; and fo(y) = 1+ 6y +O(y?), with
6= Qlégl. By a change of coordinates Sg: (X,Y) +— (z,y) of the form

r = X
(37) t Z B(Y),

with B(0) =0, B'(0) #0, T can be transformed into T : (X,Y)
(Xl’Yl)’

X, X +RY)X: +FRY)X® +--
(3.8) v
1

Y 4G(V)X +Gy(Y)X? +--

Il
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with F5(Y)=14+Y +O(Y?) and G{(Y)=Y?+ O(Y?).

PROOF Compare both sides of T'oS3 = Sgo T as power series in
X and obtain

£(B(Y)) = Fx(Y), and gi(B(Y)) = B'(Y)Gi(Y).

Let B(Y) = EJ—'{%_O)Y’ for example, to get G1(Y) = YZ+ O(Y3).
Note that, here, generally, a term of order 3 cannot be suppressed by an
analytic change of coordinates. We have, also,

E(Y) = f2(8(Y)) = 1+Y +0(Y?).

PROPOSITION 3.4  Let T : (z,y) — (z1,41) be a local analytic
transformation of the form

ry = x +fly)z® +f(y)zd +---
(3:9) {yl = y +alyz +g(y)z* +---,

and let S:(X,Y)— (z,y) be a change of local coordinates of the form

{x = ()X +a(Y)X? +a3(Y)X3 +--.
= BY) +6(MX +61Y)X% +---

o~

Let T:(X,Y) (X1,Y;) be the transformation given ‘by T = S1o
ToS , with

(3.10)

X, = X +BY)X? +RBY)X® +...
(3.11) {Yl = Y +G(Y)X +Gy(Y)X?2 +-....
Then we have the followings.
_ a(Y)
Gi(Y) = ﬂ(’)(Y)gl(ﬂo(Y))
and o (V)
F(Y) = a1(Y)£(Bo(Y)) — ﬁO(Y)gl(ﬂO(Y))'

PROOF These are verified by an immediate computation.

PROPOSITION 3.5 Assume T € S, is of the form (3.9) with fo(y) =
1+y+O0(y?*) and ¢:1(y) = y® + O(y®). By a local change of coordinates
S of the form (3.10), the transformation T can be transformed into T'
of the form (3.11) with F3(Y) = f2(Y), G1(Y) = g1(Y) and G»(Y) = 0.
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PROOF Weset a;(Y) =1 and By(Y) =Y. Then proposition 3.4
guarantees that G1(Y) = g1(Y) and F3(Y) = f(Y). Compute SoT
and T oS to compare the coefficients of X2 in y;. We get '

Go(Y) = g2(Y) + B1(Y)(01(Y) = £2(Y)) + g1(Y) (a(Y) — B1(Y)).

Hence, if we set

~ 92(Y)
AY) = 28— g

and
| a(Y) = B(Y),
weget Go(Y) =0. As fo(Y) = 14Y+0(Y?) and g{(Y) = O(Y), Bu(Y)

is analytic near the origin.

4. Proof of theorem 3.1

By propositions in the previous section, we can asuume
fly) = 1+y+0(y?),

aly) = ¥’ + 0P,
and .

92(y) = 0

to prove theorem 3.1. Then, the transformation T : (z,y) — (z1,y1),
T € S,, takes the following form

BT T AL 10U +06)
’ v =y 'z +0@z) +0(z?),

where O(¢(z,y)) implies some analytic function, say 4 (z,y), which
can be written as ¥(z,y) = ¢(z,y)p(x,y) for some analytic function
p(z,y) in a neighborhood of the origin.

As we are interested in the behavior of the transformation in the y-
axis direction near the origin, let us blow-up the origin along the y-axis.
More precisely, we change the coordinates by

4.2 'u,:§ v =
(4.2) , Y

into new coordinates (u,v). The origin (0,0) of (z,y)-coordinates
corresponds to the exceptional curve € x {0} in the (u,v)-coordinates.
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In the (u,v)-coordinates, (4.1) takes the form

{ul = u Hovu? +0(v3u?) +0(viud)

(4.3) v; = v +vdu +O0(viu) +O0(v3ud).

Let us take a new system of coordinates defined by
(4.4) z = 5 w = 1
Then (4.3) is transformed into the form

{ 21 = Z —%hl(z,w)

45 w = w —Lhy(zw),

where hi(z,w) = 1+0(&)+0(%) and he(z,w) = 1+0(%)+0(2).
We regard (4.5) as a transformation near (oco,00) € C x C.
Take constants 6, 6,60, such that

1 1 )
0<00<§7I', 0<92<'8-00, and 90+02<61<Z¢90—02.

Note that 0 < 6y + 61 + 62 < 3 holds.
Choose r; and 7y such that % <rm<l<ry< % and let

Q = {z€C||argz| < 0y,71 < |2| <72}
For Ry,R; >0, let
U = {z€C||arg(—2)| < 61,Rez < —Ry}

and
V = {weC||argw| < 6y, Rew > Ry}.

Choose sufficiently large R; and R; such that
hi(z,w) € Q2 and he(z,w) € Q
holds for all (z,w) € U x V, and that

0
re < RlR% SID(EO)

Let ®: (z,w) — (21, w;) denote the transformation (4.5) defined near
(00,00) € C x C.

PROPOSITION 4.1 If (z,w) € UxV, then ®(z,w) = (z;,w;) € UXV,
Re z; < Re z, and Re w; > Re w.
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PrOOF Let (z,w) € U x V. Then

1
|arg(;h1(z, w))| < Og+06, <6
and 4
Re(;hl(z,w)) > 0.
Hence 2, € U and Re z; < Re z follow. Now, let 6 = argw . Then
—0y < 8 < 6y. Note that

1 T
——h 0y + 0y + 0, < —
| arg( — 2(z,w))| < O+ 61 + 2 < 3

and

1
Re(—%hz(z,w)) > 0.

First, consider the case where %ﬂ < 6 < 6y. In this case, we have

1
arg(—zu-hz(z,w)) < —0+6,+0; < 0.

So, we have argw; < 6 and Re w; > w > R,;. On the other hand,

T2

RiR,

1 v . 0
|'w1—w| = l—zu—hz(z,w)|< <R2s1n50.

Hence w; € V' in this case.
Similarly, if —6y < 6 < —%‘1, we have w; € V.
Next, if |8] < %, we have

1 )
Re(——ha(z,w)) >0 and |w; — w| < Rysin—,
2w 2

which imply w; € V and Re w; > Re w. Thus proposition 4.1 is proved.

Theorem 3.1 is a corollary of this proposition.
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