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1 Introduction

let {fy}a be an one-parameter family of discrete dynamical systems on R, where A is an
interval of R.

As the parameter increased, a bifurcation parameter value \g is called orbit creating if
new periodic orbits are created, and no periodic orbits are annihilated, at Ag. A bifurcation
parameter value Aq is called orbit annihilating if periodic orbits are annihilating, and no
new periodic orbits are created , at A\g. A bifurcation parameter value Aq is called neutral
if no periodic orbits are annihilating, and no periodic orbits are created , at Ag.

A family {f)}a is said to be monotone increasing if every bifurcation parameter value in
A is neutral or orbit creating, and it is said to be monotone decreasing if every bifurcation
parameter value is neutral or orbit annihilating.

A family {f»}a is called non-monotone if A contains both orbit creating and orbit anni-
hilating parameter values.

A parameter value )\ is called anti-monotone if every neighborhood of A\g contains both
orbit creating and orbit annihilating parameter values.

In [Jon93], they studied heuristically that the existence of anti-monotone parameter
values in one-dimensional one-parameter multi-modal systems is a generic property and
they supported this by numerical experiments.

It is not known if anti-monotone parameter values exist in all generic bi-modal families
with a chaotic attractor.

For one-parameter family of dissipative plane C3-diffeomorphisms, the situation is dif-
ferent:
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ANTI-MONOTONICITY THEOREM((L. 92]) In any neighborhood of a nondegen-
erate, homoclinic-tangency parameter value of an one-parameter family of dissipative C3-
diffeomorphisms of the plane, there must be both infinitely many orbit-creation and in-
finitely many orbit-annihilation parameter values.

Subject to certain mild nondegeneracy restrictions, anti-monotonic creation and annihi-
lation of periodic orbits must occur in all one-parameter families of dissipative, chaotic
planar diffeomorphisms. The bifurcation diagram of any such family will have pitchforks
with opposite orientations ([I. 92]).

The creation and annihilation of periodic orbits is the most fundamental bifurcation
process in one-parameter family of maps. .

Here we discuss an one-parameter real quadratic family with pitchforks with opposite
orientations in its bifurcation diagram, and explain in the moduli space of the real quadratic
rational maps why we should expect such behavior. This result is a complete answer to
the paper of Nusse and Yorke ([NY88]). Namely they denoted that a 2-parameters family
given as 5 |

{mote) = m R,

by fixing the parameter r, does not exhibit periodic-halving bifurcation as the multiplier m
is increasing. In other words, this family does not have orbit annihilating parameter values.
But this statement is false. We show precisely our result later as Theorem 2 in Section 3,
and further in this section that for a suitably chosen parameter a = 1/m, period-doubling
and period-halving bifurcation both occur ( pitchfork bifurcation with opposite orientations
in its diagram ), as a parameter r varies monotonely. For example, this phenomenon can
occur at a = —0.2, see Figure 6.

2 Moduli space M5(R) of real quadratic rational maps
Rat,(R) is the space of all real quadratic rational maps f: RU {oo} — R U {00},
‘ p(z)  aoz® +arz + as

fle) = q(z) T boz?2 4+ by + by

Two maps fi, fo € Ratz(R) are holomorphically conjugate if and only if there ex1sts
g € PSLy(R) with go f; 0 g~! = f,, denoted by f; ~ fs. ' :

Definition 1  M;,(R) = Rat,(R)/PSLy(R) is called the moduli space of holomorphic

conjugacy class (f) of real quadratic rational maps f.
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Remark 1 The definitions of moduli space M;(C) for the complex quadratic maps,
Rat,(C), is identified with Rat,(C)/PSLy(C).

For each f E Raty(C), let z1, 22, 23 be fixed points of f, y; the multiplier of z; (1 < ¢ < 3);
pi = f'(2i). Now consider elementary symmetric functions of three multipliers,

01 =y + p2 + p3, 02 = paphy + piapis + K3pt1, 03 = pyfafi3.

Milnor introduces coordinates of My(C) as follows [Mil92].

Lemma 1 (lemma 3.1 of [Mil92]) These three multipliers determine f up to holomorphic
conjugacy, and are subject only to the restriction that

papzps = (1 + pg + pa) +2 =0, (1)

or In other words
’ o3 =07 — 2.

Hence the moduli space M3(C) is canonically isomorphic to C?, with coordinates oy and
T2.

. Here after we treat only the real case. o; (1 < ¢ < 3) are all real, because three
fixed points and multipliers are either all real or one real and a pair of complex conjugate
numbers..

Prop’ositionv 1 Mg(R) \ {<a(:v + %)>}GERX is isomorphic to R? except on the cubic
algebraic curve,

F(o1,00) = 20} + 00y — 0?2 — 402 — 80404 + 1207 + 1205, — 36 = 0. (2)
There is two to one map between {<a(:c + }U)>} and the curve of (2).

In Figure 15 [Mil92] the curve of (2) is drawn. Here we can give a defining equation (2)
of this cubic curve. ‘ '

Proof.  There is a following relation between a point (07, 032) on the moduli space and a
multiplier 4 of a fixed point of f, (compare lemma 3.4 of [Mil92])

1 9 2
o =(p+ —)oqg — + —).
2= ( H)l (p H)4
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Hence, T v :
=yt togu—o+2=0. v (3)
Let p1, g9, ps be the three roots of (3). Notice that if two multipliers p;, u; are different,
corresponding fixed points z; and z; are distinct.
For (0y,0;) € R?, the following four combinatorial cases of {1, 2, is} are possible.
If f has three distinct fixed points, we can assume that these points are 0, 1, and infinity.
Case 1. : py, po, i3 are real numbers and p; # pj, (¢ # j) o
Corresponding quadratic map can be chosen as the following form,

T+
fz)=2——.
T pexr +1
Case 2. : iy, jiz, i3 are one real number and a pair of complex conjugate numbers.

Let p; be unique real root and ps,us a pair of complex conjugate roots, namely p =
p3 = fiz. In this case corresponding fixed point z; is real and 2, 23 are a pair of complex
conjugate numbers. Same as Case 1. corresponding quadratic map can chosen as the
following form, -

_ rtp
f(z) = wl_“ 1

By using Mobius transformation again, real representative of the class (f) is obtained as

follows,

Lt it 2+ (gt p—2)
(—p+p)a?+diz+ (—p+p)
Case 3. : w1 = p2 = s. : o ’
This case occurs only on the line: g — 207 +3 = 0.
Now let gt = py1 = po = 3.
If it # 1, corresponding fixed points z; (¢ = 1,2,3) are distinct each other. Calculating
the index of fixed points, we have i = 2. Hence f has the following form,

: T+ 2
@) =2

If i =1, corresponding fixed points are same: z; = z, = z3. The other case: z; = 2z, # 23
can’t occur because of degf = 2. ;
Assuming that only one fixed point is infinity, we have

ﬂﬂ#x+3”

Case 4. : M1 = M2 §é H3.
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Case 4. occurs if and only if discriminant of the equation of (3) is equal to zero. Hence
we have

(03 = 201 + 3)(202 + 0}02 — 0 — 402 — 80103 + 1201 + 1205 — 36) = 0. (4)
If corresponding fixed points 24, 2, satisfies z) = z3, then p; and p, equal to 1 an‘d‘u3
can be arbitrary.
Assuming that z;, z3 are zero and infinity, we obtain the form,

z+1
z) = .
f(z) S

In this case, one-parameter family {xﬁ%}u corresponds with the first factor of (4). This
line, o — 207 + 3 = 0, called per(1).
If 2, # 2z, then ps = ﬁ%, and f has following two real forms
Toal, LooL
M3 z #3 x
These representatives are conjugate by = +— iz, however, these are not “real” conjugate.

In this case one-parameter families {:};(:v + 1)} correspond with the second factor of (4).

From now on, we regard moduli space M;(R) as R%.

Figure 1: Moduli space with the cubic curve :
20? + 0%02 — o2 — 40% — 80103 + 1201 + 120, — 36 = 0.

3 A quadratic family with non-monotone bifurcation

Now, we treat a real 2-parameter family given by Nusse and Yorke [NY88],

{fm,r(m —m

ral4+z+r

14 22 }(m,r)€R2 )
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M. Bier and T. C. Bountis studied “period-bubbling” bifurcation [BB84]. . Their pur-
pose is to demonstrate that monotone bifurcation commonly arise in some of the simplest
nonlinear dynamical systems involving the variation of more than one parameter. As
a simple example of non-monotone bifurcation, they treat quadratlc rational mapping,
Tepr = Q + Az/(a} + 1), (A,Q >0).

H. E. Nusse and J. A. Yorke gave an example of exponential function family that has non-
monotone bifurcation, even though it has negative Schwarzian derivative [NY88]. Their
question was arisen of whether having a negative Schwarzian derivative rules out non-
monotone bifurcation. They describe in [NY88] that if the above quadratic rational family
is written in the following form,

{fm,r(w) - mw} ’

14 22

it does not exhibit non-monotone bifurcation as the parameter m is increased. But we can
show that this family exhibit non-monotone bifurcation for suitable parameter r.

3.1 The case of the parameter r fixed

In this section, we show that this family exhibit non-monotone bifurcation for suitable
parameter r.

Since fmr ~ fm,—r, We can restrict parameter r positive: r > 0.

In general, we obtain next results for a fixed parameter r.

Theorem 1 On M;(R), one parameter family {fm.(z)},, for a fixed r # 3,0 is char-
acterized as the following irreducible algebraic curve of degree 4,

H,(01,03) = —4006r°+ (—12807 + 5120, + 5120, + 1536)r*
+(—01 + 803 + (804 + 8)0F + (=320, — 96)0y — 1602 — 960, — 144)r?
—20% + (=03 + 1)o} + (802 — 12)0y + 402 — 1202 +36 = 0. (5)

For r = 1, following irreducible algebraic curve of degree 3.
Hyi(o1,00) = —0? — 202 + (403 — 24)0; + 80y — 64 = 0.

Forr =0, .
Ho(01,02) = F(01702)-
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Proof. Three fixed points zy, 25, z3 of f are the roots of the equation

2® — mrz? + (1- m)x —mr = 0.

From the relation between coefficients and solutions, following equations hold.

z21+ 23+ z3=mr
2129+ 2p23+ 2321 =1 —m
212923 = mr

Let p,- (:=1,2,3) be multipliér of each fixed point z; (z =1, 2,3) given by,

2

Hi = m(zf 1)

By using “Grobner basis” of Risa/Asir, symbolic and algebraic computation system, we
can obtain oy(= gy + pg + u3) and o3(= pq g + pas + pspy) as functions of m and r:

4m?*r* —m? + (01 +2)m —4 =10 (6)
—4m*rt + (m* = 12m® — 8m?)r? 4+ 2m3 + (o — 5)m? +4m —4 = 0.

Using “Grobner basis” again, we can remove m from (6), and we have (5).
-In the case of r = 3, —07 — 207 + (403 — 24)01 + 80, — 64 = 0.
In the case of r equal to 0, algebraic curve of (5) coincides with the curve of (2).

Example 1 For example, bifurcation diagram of one parameter family { fm 054)m 1S
given in Figure 2, and its characteristic curve is Figure 3.

Example 2 We can analyze the non-monotone bifurcation by overwriting the algebraic
curve of H, = 0 on the M,(R). ‘ ‘

One parameter family {f 058}m has non-monotone (period-bubbling) bifurcation. See
Flgure 4.

In Figure 5, the thick line 1ndlcates this family, and the gray belt is the region on which
each map has attracting period 2 cycle. When algebraic curve of degree 4 through this gray
belt, period-doubling bifurcation occurs. In this case, the curve intersects the gray belt
(period-doubling occurs) and intersects again the period 1 region (period-halving occurs).
Hence period-bubbling bifurcation occurs, as in Figure 4.
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Figure 2: Non-monotone bifurcation, Figure 3: algebfaic curve of degree 4 and
~25.0 < m < 5.0, -3.0 < =z £ 1.0, cubic curve in the moduli space. In the

r=0.54 . . o . case of r = 0.54.

Figure 4:  Period-bubbling bifurca- Figure 5: algebraic curve of degree 4

tion: —10 < m < 1, = -2 < in the “classified” moduli space. Thick

r < 0.2, Parameter r = 0.58. curve corresponds with r = 0.58, thin
’ curve corresponds with » = 0.7.
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Theorem 2  For a fixed parameter r, there are following three possibilities;

1. various bifurcations occur, if 0 <r < 1,
2. non-monotone bifurcations occur, if % <r< ?Asé’ or

3. any bifurcation can’t occur, if ?Asé <r.

Proof. Now introduce the escape locus F;

E = ElUE2UE3,
E, = {(01,02) | 02> =201+ 1,02 > 20y — 3},

E;, = {(01,02) ] 02 <2071 —3,01 < —1},
'—20'% — 70y — 10
E; = {(o1,02) |02 < S Tor o1 > _1}.

E is the region on which there doesn’t real periodic orbits other than the attracting fixed
point. Therefor if the algebraic curve H, corresponding to {fm r}m contained in the escape
locus, any bifurcation don’t occur.

Now consider H,(2,0;) = 4(2r — 1)(2r + 1)(16r® + 8r — 0;)(—16r*> + 8r + 02) = 0. If
r# :i:%, at least one of the oy = 1672 + 8r or 03 = 1672 — 8r is positive number. Hence, it
is impossible that the curve H, contained in the component E; U E;.

From calculation, if 64r? — 27 > 0, the curve H, contained in the escape locus, that is,
any bifurcation can’t occur. Hence possibility 3. is determined. _

On the other hand, non-monotone bifurcation can occur on condition that corresponding
algebraic curve H, intersects transversally the line Per; (1), the boundary of period 2 region
and the escape locus, and again intersects the line Per;(1). 1 < r < 3485 satisfies this
condition.

3.2 The case of the parameter m fixed

For simplification of calculation, we rewrite the family as follows

lra’4+z+r
{f‘”(x) Ta 1422 |
For a fixed parameter a, one parameter family {f..}, becomes parabola in M3(R). Hence
it is easy to analyze the dynamical behavior along the algebraic curve in M(R), in com-
parison with algebraic curve of degree 4.
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It is known that for a suitably chosen parameter a, period-doubling and period-halving
bifurcation both occur, as the parameter r varies monotonely. For example, this phe-
nomenon can occur at a = —0.2, see Figure 6.

The bifurcation diagram is symmetry as f_g5 _,(z) = —f_g2,(—2). The family {f_o2,(z)},
coincides with a part of parabolic curve in M3(R), see Figure 7.

N

Figure 6: Period-doubling and period- Figure 7: Parabolic curve in the moduli
halving bifurcation, —1.0 < r < 1.0, space. In the case of a = —0.2, —-10 <
—6.0<z<6.0, a=-0.20 ‘ 01 <30, -10< 0, <40

We obtain next results for a fixed parameter a.

Proposition 2  On M;,(R), one parameter family {f, .(z)}, becomes the parabola
' 1N 1, a 1
02:—(01—(8a+4+%)) —55(16a +3a2+§+ﬁ) (7

with the turn

1 1 :
(ZZ(“M +2a - 1), 5(4(13 — 4a* + 5a — 2)) i

Any point excepts the turn on this parabola, corresponds with two maps for,, fo—r.
The set of the turns parameterized by a coincides with the cubic algebraic curve of (2).

Proof.

Same as the proof of proposition 1, a,r varied function oy, 03 is obtained as follows,

oy = —1(4r? — 4a® + 2a — 1) (8)
oy = —5{4a* + (8a® + 12a — 1)r? + 4a* — 4a® + 5a% — 2a}
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Removing r from previous two equations, we have

1, 1 1 o
o= 707+ (~4a—2 - Z(-Z-)al +16a" +3 + - | y(9)v

For any a, a family {f,(z)}, forms parabola on the moduli space. Since r2 > 0, this
parabola has the turn (r = 0),

1 1
(o1,02) = (g(——4a2 +2a — 1), -(-1—2—(4a4 — 4a® + 5a® — 2(1))

It is clear that trace of turns parameterized a satisfies

01=4a——2+%
02=4a2—4a+5—%

Expressing a as a function of oy, and substituting second equation, we have the equation

2).

|
Hence, we can take the principal part, » > 0 of the bifurcation diagram, again.
For a = —0.2, a bifurcation with two types occur in the principal part > 0 in Figure 6.
Proposition 3 The trace of vertices of parabola family in propositibn 2 is
G(o1,02) = 205 + (02 — 13)0? + (403 + 24)0y + 402 — 1605+ 16 =0.  (10)

Moreover, there is following relation between G and F),

G(2 - 0'1,2 - 0'2) = F(O'I,O'z).

Proof. Here we take leave out of consideration to existence of the turn. From proposition
2, vertices of parabola family satisfies

- 01=8a+4+51; :
0y = —5(16a® + 3a® + 1a + 16)

Removing the parameter a from previous equations, we have (10). It is clear from calcula-
tion that G(2 — 61,2 — 02) = F(01,03).- ‘
|
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Proposition 4  M,(R) is the disjoint union of the reg1on of Nusse- York’s family { f, ,(z)}
and of the following set S

{(01,02)€M2(R) IF(U],U2) < 0} U{(01,0'2)€M2(R) IO'I = 2, 09 <-1 }

Proof. Since for any a,r, the map f,, always has critical points 1, f,, cannot exists
on {+deg2} C M,y(R).
From the parabolic curve (7)

1 . 1 1 .
16a® — 4aoy + (Zaf - 271 +3- 02) + (5 - %) Pl Q, ‘ (11)

multiplying by a, (a # 0),

1 1
16a® — 40ya% + (—012—-201—}-3——02)(1—{——— a =0. (12)
4 2 4 -
For (01,02) € R?, there certainly exists real value a because (12) is cubic equatioh with
real coefficients. But, a = 0 is not allowed. Therefore (01, 0,) € R? which gives a = 0 are
exceptional points on My(R). ' ’

Calculatlng the constant term of (12) equal to zero, we have o = 2 Substltutmg (11)
a(16a* — 8a — 02) =.0.

Since real solution of this equation isonly a = 0,

D
Z:16+160'2<0.

Hence we have o, < —1.

Remark 2 The set {(01,0,) € My(R)|oy = 2,0, < —1} corresponds with a part of
the family of quadratic polynomials {22 + ¢|c < ——-}

This proposition shows that 2-parameter family { fm,.} covers all intrinsic part of the
quadratic rational maps.
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I,
\
. \\

Figure 8: Moduli space with parabolic curves: —10 < oy < 20, —10 < g, < 30. The right
white region is the degree +2 region, and the wedged white region in the left is the degree
—2 region.
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