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ABSTRACT. When a transformation semigroup arises from a system (of states
and events) to be understood, a covering of the transformation semigroup by
a wreath product of simpler transformation semigroups can be considered a
formal model of understanding. Such a wreath product decomposition yields
a coordinate system appropriate to the original system. This viewpoint (due
to Rhodes) is surveyed and extended here.

We present several examples from mathematics of the use of such coor-
dinate systems. As shown by Noether and Rhodes (and extended herein),
conservation laws and symmetries lead to refined understanding of physical
systems, and this understanding may be formalized as global $\mathrm{l}\dot{\mathrm{u}}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{j}\mathrm{C}\mathrm{a}\mathrm{l}$ co-
ordinatization. Hierarchical object structuring in computer software provides
another example.

Relational morpluisms can be considered as metaphors, since they can be
interpreted as partially successful attempts at understanding one structure
using another. Kernel theorems for relational morphisms of transformation
semigroups can then be employed as algebraic tools for the manipulation and
construction of such models of understanding.

We suggest that developing computational tools for the implementation of
feasible automatic discovery of these formal models of understanding as well
as for their algebraic manipulation $\mathrm{w}\mathrm{i}\mathrm{U}$ extend the human notions of under-
standing, metaphor and analogy to a formal automated realm.

1. UNDERSTANDING

When we (informally) understand a system, this implies several properties of
whatever it is that constitutes understanding:

(1) Globality. We have some sort of description of all essential characteristics
of the system and can describe or predict how it will change with the
occurrence of events possible for that system.

(2) Hierarchy. (Except in the simplest cases) the whole is broken down into
component parts, which themselves may consist of other parts, and so on,
resulting in a partial order that encodes the dependencies among the parts.
Information from the higher levels of the hierarchy gives good approximate
knowledge, while details are fleshed out at the lower levels.

(3) Simple Components. The smallest parts should by themselves be easy
to understand.

(4) Covering. We have (implicity or explicitly) a knowledge of how to map
our understanding to the system.

We shall take these properties as axiomatic for understanding. Note that such
understanding of a system is something quite distinct from knowledge of how build
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or emulate it efficiently, nor is it the same as knowledge of how the system is really
structured.

Nevertheless, if the $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\ln$ is to be maintained or modified later, then efficiency
in performance, number of states, and so on, will be often be subordinate to the
great inefficiency and cost of modifying a poorly understood system. Systems which
happen to be structured according to the above principles should thus be more
effectively maintainable. This is evidenced for example by the success of tlle object-
oriented paradigm for computer software.1

We present first a formalization of $‘(\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}$

” common in physics and computer
science. Then, beginning from the above properties, we present a formalization for
“model of understanding” of sucll a system.2

Our longterm goal is to present a notion of understanding which would facilitate
automatic generation, manipulation, and synthesis of understanding using math-
ematical and computational techniques. We shall see below that for finite-state
systems, methods already exist for generating a formal model of understanding for
the given system and that one also has definitions for analogy and metaphors as
relational mappings (morphisms in an appropriate setting) as well as character-
izations of exactly what [extension] is required for an incomplete relation to be
transformed into to an finished model [emulation].

Throughout the history of science and mathematics, great advances have often
come when a good “coordinate system” appropriate for the donlain in question
is discovered. We contend that generally such useful coordinate systems can be
considered as formal models of understanding of the domain via an emulation by
the (generally larger) coordinate system, giving global hierarchical coordinates in
the sense of emulation by a cascade (or wreath product) of small component parts.
See below for precise definitions.

The idea that wreath product emulations provide models of understanding ap-
pears to be due to John L. Rhodes [13]. In a still unpublished book written in
the late $1960\mathrm{s}$ , what we call formal models of understanding here are motivated as
theories which provide understanding of an experiment, i.e. a system. This paper
is an attempt to promote and extend this viewpoint. Much of it closely follows and
extends Rhodes [13]. Indeed, with the advant of higher performance computers,
it is becoming conceivable to automate the construction of “theories” of finite-
state $‘(\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{S}$”. Moreover, kernel theorems of the author [9], Tilson [17], and
Rhodes-Tilson [16] point the way toward automatically manipulating, relating, and
synthesizing collections of formal models of understanding according to an algebra
of formalized analogies and metaphors between them.

1Indeed, object-oriented design can be regarded as a special case of wreath product decom-
position over a partial order, and global semigroup theory then provides a rigorous algebraic
foundation for the object-oriented paradigm [10]. Hierarchically specified objects and classes in
the sense of object-oriented programming can be considered as formal models of understanding in
the sense of this paper.

$2\mathrm{W}\mathrm{e}$ remark that the model need not be in any way symbolic, although it is not forbidden from
being symbolically representational. Thus the standard mutual objections of the “artificial intelli-
gence” symbolic $\mathrm{v}\mathrm{s}$ . connectionist debate are non sequitur for our notion of fornial umderstanding.
Both symbolic and connectionist approaches (as well as others) could employ our formalization of
understanding, albeit in different manners.
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2. EXAMPLES

Cartesian coordinates on Euclidean $n$-space: The $n(‘ \mathrm{S}\mathrm{i}\mathrm{m}\mathrm{P}^{\mathrm{l}\mathrm{e}}$

” components
used to coordinatize Euclidean space are copies of the real numbers under addition.
These copies are partially ordered by the empty partial order (no dependencies
between them). In this case, there is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence from coordinates
for points to points of the space, and points (or vectors) are added component-wise
without regard to other components.
Decimal Expansion of Real Numbers: Here a real number is (perhaps non-
uniquely!) coordinatized by specifying countably many components fronl the ad-
ditive group of modulo 10 integers. Thus the small components are copies of the
group $(\mathbb{Z}_{10}, +)$ and they are arranged hierarchically along a total order of type
$(\mathbb{Z}, <)$ : to add a real number to one in decimal coordinates, it is necessary to con-
sider the values of the coordinates of lower magnitude positions (but never higher
order positions) in order to decide which element of $\mathbb{Z}_{10}$ to add in a given position.

In the case of the decimal expansion of integers, tlle order type
$\mathrm{i}\mathrm{s}3$

that of the
natural numbers, and each integer has exactly one coordinatization.

However, there are many choices of the coordinates that do not correspond to
any real or integer number. Indeed if we use base $p$ (prime) rather than 10 for the
coordinate expansion of the integers, then the $p$-adic numbers arise naturally by
allowing coordinates to take all possible values in $\mathbb{Z}_{p}$ .

We remark also that the (positive) real numbers arise naturally from the decimal
(or other base) expansion of the (positive) rationals by allowing all possible coor-
dinate values to be taken for coordinate positions of lower magnitude than some
maximal non-zero coordinate.

Thus we have two examples in which global hierarchical coordinates naturally
lead to interesting extensions of the original system (from $\mathbb{Q}$ to $\mathbb{R}$ and from $\mathbb{Z}$ to the
p–adic numbers). This suggests that introducing a formal model of understanding
on a given system may lead to interesting concepts that expand the original system.

Just few examples of many traditional uses of global hierarchical coordinatiza-
tions in mathematics include the Jordan canonical form of linear transformations
on finite-dimensional vector spaces, power series $\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}+$ , power series under., and
Taylor series. Indeed, series methods are often employed in trying to understand
possible solutions to a differential equation exactly because they give useful global
hierarchical information about the behaviour of a solution (first-order, second-order,
etc. approximations).

3. DEFINITIONS

3.1. Wreath Products and Coverings. This section contains standard defini-
tions and may be skipped by the reader and consulted later as necessary.
A transformation semigroup (X, $S$) is a set $X$ that a semigroup $S$ acts on the right
of: $x\cdot(SS^{J})=(x\cdot s)\cdot S’$ . Given two transformation semigroups (X, $S$ ) and $(Y, T)$ , we
define the wreath product $(Y, T)\iota(x, S)$ to be the transformation $\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}_{\mathrm{P}}$ with set

3In the case of the integers under addition (and other groups), the possible global hierarchi-
cal coordinate systems essentially (i.e. subject to “gluing” of actions) correspond to chains of
subgroups. See [8].
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$Y\cross X$ and action semigroup $T^{X}\rangle\triangleleft S$ with action $(y, x)\cdot(f, s)=(y\cdot f(X), X\cdot s)$ . This
defines a transformation semigroup with the evident multiplicative structure on its
action semigroup. Moreover the wreath operation on the class of transformation
semigroups is associative.4

A relational morphism of $\varphi$ : (X, $S$ ) $\triangleleft(Y, T)$ is a $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ semigroup
$(Q, R)$ of (X, $S$) $\cross(Y, T)$ , thus,

$(x, y)\in Q$ and $(s, t)\in T$ implies $(x\cdot s, y\cdot t)\in Q$ ,

and $Q$ and $R$ project fully onto $X$ and $S$ , respectively. A relational morphism is a
morphism if each $Q$ and $R$ are [graphs of] functions, an embedding if $Q$ and $R$ are
injective functions, or is an approximation [or simulation] of (X, $S$ ) by $(Y, T)$ if it is
a surjective morphism. It is an emulation or covering of (X, $S$ ) by $(Y, T)$ if $Q$ and
$R$ are injective relations:

$((x, y)\in Q$ and $(x’, y)\in Q)\Rightarrow x=x’$ ,

and similarly for $R$ . If $(Y,T)$ covers (X, $S$) we write (X, $S$ ) $\prec(Y, T)$ , and often
say that (X, $S$) divides $(Y, T)$ . Also in the case of semigroups, we write $S\prec T(S$

divides $T$) if $S$ is a homomorphic image of a subsemigroup of $T$ .
In the case of covering, one can use $(Y, T)$ in place of (X, $S$): given $x\in X$ and

$s\in S$ , we choose $(x, y)\in Q$ and $(s, t)\in T$ . The elements $y$ and $t$ are called lifls of
$x$ and $0\dot{\mathrm{f}}s$ , respectively. Now the state $x\cdot s$ is uniquely determined from $y\cdot t$ by tlle
injectivity condition. If $(Y, T)$ has a nice form, say as a wreath product of simpler
transformation semigroups, then this covering provides a global hierarchical coor-
dinate system on (X, $S$), which may be more pleasant to manipulate and provide
insight into the original (X, $S$).

A transformation semigroup (X, $S$) is faithful if $x\cdot s=x\cdot s’\mathrm{f}\mathrm{o}\mathrm{r}$ all $x\in X$ implies
$s=s’$ . One can always make a transformation semigroup faithful by identifying the
$s$ and $s’\mathrm{w}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{h}$ both map $X$ exactly the same way. The wreath product of faithful
transformation semigroups is easily seen to be faithful.

3.2. Systems &Formal Models of Understanding. A system (X, $A,$ $\lambda$ ) con-
sists of a state space $X$ , inputs $A$ , and a transition function $\lambda$ : $X\cross Aarrow X$ .
Traditional physics considers (or hopes) that physical phenomenon are faithfully
modelled as such systems: knowing the current state $x$ and what happens $a$ , one
can determine the resulting state as $\lambda(x, a)$ . Note that for a sequence of events
$a_{1},$ $\ldots$ , $a_{n+1}$ , one has a recursive description of the behaviour of the system (as $\lambda$

induces an action of the free semigroup $A^{+}$ on $X$ ):

–4Moregenerally, transformation semigroups $(x_{\alpha}, s_{\alpha})$ generically
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}^{\backslash }\mathrm{n}\mathrm{e}\mathrm{d}$

with dependencies
coded by an [irreflexive] partial order $\mu=(V, <)$ yield (X, $S$) $= \int_{\alpha\in V}(X_{\alpha}, S_{\mathrm{Q}})d\mu$ , with states

$X= \prod X_{\alpha}$ and semigroup elemen$t\mathrm{s}f$ : $Xarrow X$ with $(xf)_{\alpha}=x_{\alpha}\cdot\overline{f}(x_{<\alpha}),$ $\backslash \mathrm{v}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\overline{f}(x<\circ)\in S_{\mathrm{O}}$

and $x_{<\alpha}$ is the projection of $x$ that forgets all components except the $x_{\beta}$ with $\beta<\alpha$ . The
transformation semigroup (X, $S$ ) is called the cascade integral of the $(X_{\alpha}, S_{\alpha})$ over $\mu$ .

The usual wreath product of $n$ transformation semigroups is just a cascade integral over a finite
total order. Since the hierarchies we allow for formal models of understanding $\mathrm{p}\mathrm{e}\Pi \mathrm{n}\mathrm{i}\mathrm{t}$ components
to be combined according to a partial ordering, the above generalized form of wreath product
is very useful. For computational application, one would evidently most often restrict to finite
partial orders (as for Cartesian coordinates) or finitely many coordinates of an infmite partial
order (as for the decimal expansion of the integers). See [7] for applications and its appendix for
properties of the cascade integral.
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$x\cdot a_{1}\ldots a_{n}a_{n}+1=\lambda(x\cdot a_{1}\ldots a_{n}, an+1)$

Crucially, such a description of the system is not a model of understanding but
rather only a starting point for analysis.5 Indeed, $A$ may consist of tiny intervals
of time and $\lambda$ describe the evolution of a physical situation according to a set of
differential equations, e.g. determining the position and momentum of a set of point
masses according to Newtonian mechanics. Such recursive descriptions including
descriptions in terms of differential equations are often the beginning of analysis of
a physical system and precede formal understanding.

From (X, $A,$ $\lambda$) one derives a transformation semigroup (X, $S$ ) by making that
induced action of $A^{+}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{t}1_{1}\mathrm{f}\mathrm{U}1$ :

$w\equiv w’\Leftrightarrow\forall x\in X,$ $X\cdot w=X\cdot w’$ .
Here $S=A^{+}/\equiv$ .

A form $al$ model of understanding for a system (X, $A,$ $\lambda$ ) is a covering of the
induced transformation semigroup (X, $S$) by a wreath product of (

$‘ \mathrm{S}\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{e}\mathrm{r}}’}’$ trans-
formation semigroups over a partial ordering (see footnote 4 above).

4. $\mathrm{N}\mathrm{o}\mathrm{E}\mathrm{T}\mathrm{H}\mathrm{E}\mathrm{R}-\mathrm{R}\mathrm{H}\mathrm{o}\mathrm{D}\mathrm{E}\mathrm{s}$ COORDINATES FROM CONSERVATION LAWS &r SYMMETRY
Emmy Noether found a correspondence between certain conservation laws in

physics and certain one-parameter groups of automorphisms $[11, 12]$ . A gener-
alization of this idea is that a homomorphism defined on the system leads to a
conservation law. This statement has an explicit expression due to Rhodes [13] in
our language as the fact that a conserved quantity can serve has a highest level
coordinate in a formal model of understanding for the system.

4.1. Conserved Quantities. Given our system (X, $A,$ $\lambda$ ), one identifies a formal
invariant $e$ : $Xarrow Y$ , where $e(X)\subseteq Y$ is a set of “formally conserved values” : That
is, $e(x\cdot a)$ is determined by $e(x)$ and $a$ without dependence on $x$ , so tha.t one may
define $e(x)\cdot a:=e(x\cdot a)$ .

Examples of such conserved invariants $e$ include energy, angular momentum,
mass, etc. To determine the new energy, angular momentum, mass or what have
you, it is only necessary to know $a$ and the value of $e$ before the system was hit by
$a$ .

Now one can coordinatize as follows:

$x\mapsto$ (rest, $e(x)$ ),

where the rest is anything which uniquely determines $x$ among all $x’\in X$ with
$e(x)=e(X’)$ .

Then we have:

(rest, $e(x)$ ) $\cdot a=(reSt\cdot f(e(X), a),$ $e(X\cdot a))$ ,

5However, such a system, if modelling real world phenomena, abstracts essential features of
state and events while ignoring others. This abstraction from the real world is one property of
understanding that our formalism does not address. We shall always assume the system (X, $A,$ $\lambda$ )
to be available before beginning any formalization for understanding it or we shall construct it
from other, already available, systems.
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where $f(e(X), a)$ maps rest to the $rest’$ appropriate for $x\cdot a$ . For $f(e(X), a)$ to be
well-defined it is also necessary that $f(e(X), a)=f(e(x’), a)\mathrm{W}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{e}\Gamma e(X)=e(x’)$ .

How good this coordinatization is of course will depend on how $\mathrm{s}\mathrm{i}_{1}\mathrm{n}\mathrm{p}\mathrm{l}\mathrm{e}$ the com-
ponent where $f(e(X), a)$ is computing is, and on how simple the action $e(X)\cross Aarrow$

$e(X)$ is.
The component for computing with the conserved quantity is $(e(X), S/\sim)$ , with

$S$ made faithful on $e(X)$ , and we have a surjective morphism of transformation
semigroups (X, $A^{+}/\equiv$ ) $arrow(e(X), S/\sim)$ . By use of the covering lelnma6 for trans-
formation semigroups [9] (see section 6 below), one can characterize exactly the so-
lutions for component $(Z, T)$ [computing with rest and transformations $f(e(X),$ $a)$ ]
for which (X, $A^{+}/\equiv$ ) is covered by $(Z, T)1(e(X), S/\sim)$ , thus extending to an
emulation the original $1_{1\mathrm{o}\mathrm{m}}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{m}}$ from the system to the conserved quantity
semlgroup.

If each $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}.a$ of $X$ is invertible (as is the case in reversible physics!),
the kernel theorem [9] can be used to show $\mathrm{t}\mathrm{l}$) $\mathrm{a}\mathrm{t}(Z, T)$ can be chosen to be a
transformation group. $\cdot$ Thus $\mathrm{s}\mathrm{y}\mathrm{m}$

.
metry arises from a homomorphism on a reversible

physical system.

4.2. Understanding via Symmetries. Given our same system (X, $A,$ $\lambda$ : $X\cross$

$Aarrow X)$ and induced transformation semigroup (X, $S$ ), we consider the symmetries
of the system. Here a permutation $\pi$ : $Xarrow X$ is called a symmetry if $\pi(x\cdot a)=$

$\pi(x)\cdot$ $a$ for all events $a\in A$ .
Denote by $G$ any group of symmetries of (X, $A^{+}/\equiv$ ). It is easy to check that

$[x]\cdot a=[x\cdot a]$ is well-defined and so induces an actio.n of $S$ on $X/G$ . Then we
establish

(X, $S$) $\prec(G, G)\{(X/G, T)$ ,
where $(X/G,T)$ is the faithfulization of the action of $S$ induced on $X/G$ :

Choose orbit representatives $\overline{X}\in[x]\in X/G$ . Now for $x\in[x]$ there is a $\pi$ with
$\pi(\overline{x})=x$ . So we coordinatize by

$x\mapsto(\pi, [x])$ .

Taking all such $(\pi, [x])$ as related to $x$ defines a injective relation, since $\pi$ and $[x]$

determine $x$ uniquely. We let $(\pi, [x])\cdot a=(\pi\cdot f_{a}[x], [x\cdot a])$ , where $f_{a}[x]$ is an element
of $G$ with $f_{a}[x](\overline{x\cdot a})=\overline{x}\cdot a$ . ( $f_{a}[x]$ must exist since $[\overline{x\cdot a}]=[\overline{x}\cdot a].$ )

This is a covering as $(\pi, [x])\cdot a=(\pi\cdot f_{a}[x], [x]\cdot a)=(\pi f_{a}[x], [x\cdot a])$ which is a
coordinatization of $x\cdot$ $a$ since $\pi f_{a}[X](\overline{x\cdot a})=\pi(\overline{x}\cdot a)=\pi(\overline{x})\cdot a=x\cdot a$ .

The covering is an embedding in the case of transitive (X, $S$ ): Each $\pi$ is a
regular permutation, that is, it fixes no point or is the identity: if $\pi$ fixes $x_{0}$ , then
by transitivity we can write any $x$ as $x_{0}\cdot a_{1\cdots}$ a and then $\pi(x)=\pi(x0)\cdot a_{1}\ldots a_{n}=$

$x_{0}\cdot a_{1}$ . .. $a_{n}=x$ . Now it is easy to see the $\pi$ taking $\overline{x}$ to $x$ as well as the $f_{a}[x]$

are unique. And so $(\pi, [x])$ would be the unique coordinatization (lift) for $x$ and
( $f_{a}[]$ , image of $a$ in $T$) would be the unique lift for the action of $a$ .

Thus the symmetries of a system provide a $‘(\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}$ detailed” coordinate in a formal
model for understanding the system. This is in contrast to conservation quantities
which provide a top-level (least detailed or most vague) coordinate in a formal
model of understanding for the system. Moreover, with the action of a symmetry

6Covering lemmata in various settings are also called kemel theorems.
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group $G$ as above, the component $(X/G,T)$ computes a conserved quantity (just
take $e(x)=[x])$ , invariant under the symmetries in $G$ .

An interesting open problem is to $\mathrm{r}\mathrm{e}$-cast Noether’s original results [11] or their
modern generalization [12] explicitly into the wreath product form.

5. KROHN-RHODES &LAGRANGE COORDINATES
For a given (faithful) (X, $S$), say with $X$ finite, one can can as $\mathrm{k}$ , What are the

formal models for understanding (X, $S$ ) ? Indeed, Do any non-tmvial ones exist?
The answer to the latter question is given by the celebrated

Krohn-Rhodes Theorem. Let (X, $S$ ) be a finite faithful semigroup, then

(X, $S$ ) $\prec(X_{n’ n}s)\iota\cdots\iota(x_{1}, S_{1})$ ,

where each $(X_{i}, S_{i})$ is either $(G, G)$ where $G$ is a finite simple group or $(X_{i}, S_{i})=$

the flip-flop, the faithful transformation semigroup with two states, two resets and
an identity. In any such decomposition each finite simple group divisor of $S$ must
occur among the $S_{i}$ . Moreover, the group $S_{i}$ may be chosen to be divisors of $S$ .

This gives the existence result for global hierarchical coordinate systems on ar-
bitrary finite $S$ . Note that the order type of the hierarchy is a total order. More
generally partial orderings of components may be possible and provide better mod-
els of understanding (cf. the Cartesian coordinates on vector spaces).

If (X, $S$) is a transformation group, then in fact embedding in the wreath product
is possible.

Lagrange Coordinatization Theorem. Let (X, $S$) be a finite, transitive faithful
transformation group. Then

(X, $S$) $\leq(G_{n}, G_{n})\iota\cdots \mathit{1}(G1, c_{1})$ ,

where each $G_{i}$ is a simple divisor of $S$ .

A maximal subnormal chain in $G$ yields such a decomposition, and results of
the author [8] imply that each such decomposition corresponds $\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}‘ \mathrm{y}$ to such
a subnormal chain.

The above results refer to finite (X, $S$). Several infinite versions of the Krohn-
Rhodes theorem have now been published.7 Also the results $of the author for
groups extend to infinite groups, using wreath products over arbitrary total orders
(cascade integrals) rather than finite total orders.

In the finite case, with computer implementation in mind, it will useful to develop
more computationally feasible versions of the Krohn-Rhodes Theorem, especially
versions in terms of finite-state machines while reducing the full semigroups that
must be calculated. Indeed, for $|X|=n$ and faithfully acting $S$ , the number of
elements in $S$ may be as high as $n^{n}$

) so one would not want to explicitly represent $S$

7Infinite versions of the Krolm-Rhodes theorem include the Infitite Iterative Matrix Semigroup
coverings of Rhodes [14], the Allen-Birget-Rhodes Synthesis Theorem $[1, 15]$ , the Eilenberg-Elston-
$\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{u}_{-}\mathrm{L}\mathrm{a}\mathrm{z}\mathrm{u}\Gamma \mathrm{u}\mathrm{s}-\mathrm{N}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{V}$-Rhodes-Zeiger Holonomy Embedding [2, 3, 4, 18], and the Cascade
Covering Theorem [7].
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or a cover in computer memory. Rather, one could seek to represent lifts of a small
set of generators for $S$ , e.g. lifts of just the events $A$ , to a covering transformation
semigroup with global hierarchical coordinates.

6. CREATING UNDERSTANDING FROM $\mathrm{F}_{\mathrm{A}1}\mathrm{L}\mathrm{E}\mathrm{D}$ EMULATION

A (for simplicity) surjective morphism or relational morphism

$(Q, R)$ : $(X, S)\triangleleft(Y, T)$

can be regarded as a failed attempt to cover (X, $S$) with $(Y, T)$ . It is suggestive to
call a relational morphism a metaphor or partial model for understanding (X, $S$).

Furthermore, it is possible to characterize exactly what must be ((
$\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{e}\mathrm{d}$

” to this
attempt in order to obtain a real emulation. That is, we want to determine how
and for which $(Z, U)$ one can extend the relation to obtain an emulation

(X, $S$) $\prec(Z, U)\circ(Y, T)$ .

The answer is that the the kernel of the relation morphism $(Q, R)$ must be
computed by $(Z, U)$ . The reader can find the exact definition of the kernel and
theorems on extending a relational morphism to an emulation (or embedding) in
$[9]^{8}$.

This situation is entirely analogous with the case of group theory in which any
group $I\mathrm{f}’$ that is divided by $(” \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{s}")$ the kernel If of a group $\mathrm{h}_{\mathrm{o}\mathrm{m}}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{P}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{m}}$

$\varphi$ : $Garrow H$ may be wreathed onto $H$ to obtain an emulation: $G\prec K’\mathit{1}H$ , projecting
$\mathrm{o}\mathrm{n}\mathrm{t}_{0}^{c}\varphi$ , and no $K’$ for which $K\not\simeq K’$ will work.

If $(Y, T)$ is already in global hierarchical coordinate form, the relational mor-
phism can be regarded as an analogical mapping, that is as the suggestion of a full
analogy facilitating the $\mathrm{r}\mathrm{e}$-use of an already available hierarchical decomposition.

Using the above-mentioned kernel theorem [9], one could find exactly what else
(what $(Z,$ $U)$ ) is needed to “make to the analogy work”.

This provides a formal algebraic approach to moving from metaphors and ana-
logical mappings to formal models for understanding (X, $A,$ $\lambda$ ) or (X, $S$). In fact,
an automated computational system could carry out decomposition algorithms for
systems, look for relational morphisms between them, and generate new global
hierarchical coordinate systems according to the kernel theorem. This suggests
an algebraic computational basis for finding formal models of understanding using
$\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{p}1_{1\mathrm{o}\mathrm{r}}$ and analogy. Resolving partially successful metaphors (relational mor-
phisms) with the covering lemma as a constraining guide, we seek to automatically
generate new understanding from old. Of course, a global hierarchical coordina-
tization for formal understanding of a system that an automated computational
process finds and uses need not be one that a human would create.

8As a sketch, the kernel consists of the maximal subsets $X_{y}$ of $X$ related to fixed elements
of $Y$ and arrows consisting of mappings between two such (formally disjoint) subsets $X_{y}$ to $X_{y’}$

induced by the action of $S$ (with some arrow identifications). To compute the kernel a [possibly
relational] labelling of the subsets and mappings by elements of $Z$ and $U$ must be compatible with
the mappings of the kernel, and satisfy certain separation conditions. Moreover, the converse
holds for faithful (X, $S$). Full details and proofs are in [9].
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I owe a great intellectual debt to my friend and teacher Professor John Rhodes for
the concept $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}$ the theory of an experiment can be formalized by a wreath product
covering. Further motivation and a nuore complete discussion of the relations to
physics can be found in his book [13]. Prof. $\mathrm{T}.\mathrm{L}$ . Kunii encouraged me to apply ideas
from semigroup theory to computer systems. Thanks to Dr. Bret Tilson for proving
the first kernel theorems for semigroups, which inspired similar considerations for
systems modelled as transformation semigroups [9]. Also I thank Prof. Masami Ito
for his kind invitation to present these ideas at RIMS.

The notion (due to the author) that relational morphisms can be considered
as analogies between formal models of understanding appears to be original (first
announced in [6] $)$ . It first occurred to me while reading S. Ryan Johansson’s article
[5] which argues that metaphors provide a kind of software for the human mind by
offering suggestions or commands to attempt to consistently relate two systems and
thus force the mind to construct understanding by trying to $\mathrm{r}\mathrm{e}$ -solve ambiguities
and contradictions of the resulting mapping.

The programme for automatic manipulation of formal models of understanding
via algebra can itself be understood as an attempt to resolve the $\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{a}arrow \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{p}\mathrm{h}_{\mathrm{o}\mathrm{r}:}$

Relational morphisms are metaphors and Kemel theorems describe the creation of
meaning from resolving the failure of metaphors to work perfectly.

153



REFERENCES
1. J.-C. Birget. The synthesis theorem for finite regular semigroups and its generalization. Jour-

nal of $Pure\not\in y$ Applied Algebra, 55:1-79, 1988.
2. Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic Press, New

York, 1976.
3. $\mathrm{G}.\mathrm{Z}$ . Elston and $\mathrm{C}.\mathrm{L}$ . Nehaniv. Holonomy embedding of arbitrary stable senigroups. Collo-

quium on Semigroups, Szeged, Hungary, (abstract) 1994. journal version in preparation.
4. Karsten Henckell, Susan Lazurus, and Johm Rhodes. Prime decomposition theorem for ar-

bitrary semigroups: General holonomy and synthesis theorem. Journal of Pure 8 A pplied
A lgebra, 55:127-172, 1988.

5. S. Ryan Johansson. The brain’s software: The natural languages and poetic information
processing. In Hermann Haken, Anders $1\mathrm{e}_{\mathrm{a}}\Gamma 1\mathrm{q}_{\mathrm{V}}\mathrm{i}\mathrm{S}\mathrm{t}$ , and Uno Svedin, editors, The Machine as
Metaphor and Tool, pages 9-43. Springer-Verlag, 1993.

6. $\mathrm{C}.\mathrm{L}$ . Nehaniv. Text of a public lecture on the algebra of understanding. Teclmical Report
94-01-043, University of Aizu, September 1994.

7. $\mathrm{C}.\mathrm{L}$ . Nehaniv. Cascade decomposition of arbitrary semigroups. In J. Fountain, editor, Semi-
groups, Formal Languages and Groups, pages 391-425. NATO Advanced Science Institute
(August 7-21, 1993), York, U.K., $\mathrm{I}<\mathrm{l}\mathrm{u}\mathrm{w}\mathrm{e}\mathrm{r}$ , 1995.

8. $\mathrm{C}.\mathrm{L}$ . Nehaniv. Monoid and group acting on trees: Characterizations, gluing and applications
of the depth preserving actions. International Journal of A lgebra and Computation, $5(2):137-$
$172$ , 1995.

9. $\mathrm{C}.\mathrm{L}$ . Nehaniv. From relation to emulation: The Covering Lemma for transformation semi-
groups. Journal of Pure $\xi y$ Applied Algebra, 107:75-87, 1996.

10. $\mathrm{C}.\mathrm{L}$ . Nehaniv. Algebraic engineering of understanding: Global hierarchical coordinates on
computation for manipulation of data, knowledge, and process. In Proceedings of the 18th
Annual International Computer Software $\mathcal{E}\mathit{4}$ Applications Conference (COMPSA $C\mathit{9}\mathit{4}$ ), Taipei,
Taiwan, pages 418-425. IEEE Computer Society Press, November, 1994.

11. E. Noether. Invariante Variationprobleme. Nachr. $I\mathrm{f}\dot{\mathit{0}}n|g$ . Gessel. Wissen. $G\overline{\mathit{0}}ttingen$ , Math.-
Phys Kl., pp. 235-257, 1918. English Translation: Transport Theory and Stat. Phys., 1:186-
207, 1971.

12. P. Olver. Applications of Lie Groups to Differential Equations. Springer-Verlag, 2nd edition,
1993.

13. Jolm L. Rhodes. Applications of Automata Theory and Algebra via the Mathematical Theory
of Complexity to Biology, Physics, Psychology, Philosophy, Games, and Codes. University of
Califomia Library (unpublished book), 1971. New edition to be published.

14. John L. Rhodes. Infinite iteration of matrix semigroups, parts I &II. Journal of A lgebra,

15.
$\mathrm{J}\mathrm{o}110025\mathrm{m}\mathrm{L}^{-13}.\mathrm{R}7\mathrm{h}’ \mathrm{O}\mathrm{l}\mathrm{d}98\mathrm{e}\mathrm{s}6\mathrm{a}\mathrm{n}\mathrm{d}$

Dennis Alien, Jr. Synthesis of classical and modern semigroup theory.
Advances in Mathematics, 11:238-266, 1976.

16. Jolm L. Rhodes and Bret Tilson. The kernel of monoid morphisms. Journal of Pure $\xi y$ A pplied
Algebra, 62:227-268, 1989.

17. Bret Tilson. Categories as algebras: an essential ingredient in the theory of monoids. Journal
of Pure $V$ Applied Algebra, 48:83-198, 1987.

18.
$\mathrm{H}.\mathrm{P}\mathrm{a}1967$.ul Zeiger. Cascade synthesis of finite-state machines. Information $\xi y$. Control, 10:419-433,

School of Computer Science and Engineering
University of Aizu
Aizu-Wakamatsu City, Fukushima Prefecture
985-80 Japan

154


