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Abstract

Refinement and abstraction are complementary techniques in system design and
analysis; both of them are generally referred to as replacements. In this paper we
consider a general enough technique of replacement of Petri nets. It may be simply
described by ”replace the subnet $\gamma_{1}$ of $\gamma$ by the net $\gamma_{2}$ ; denote the result by $\gamma[\gamma_{1}arrow$

$\gamma_{2}]$ ”. The subnet $\gamma_{1}$ will always be generated by a subset of transitions of $\gamma$ , and
this is the only restriction imposed in our replacement operation. Moreover, this
operation is expressed in terms of difference and catenation of nets. A commutative
monoid of nets with respect to catenation and two congruences, $\approx_{mP}\mathrm{a}\mathrm{n}\mathrm{d}\approx_{mPW}$ , on
this monoid are given. It is shown that from $\gamma_{1}\approx_{mP}\gamma_{2}$ ( $\gamma_{1}\approx_{mPW}\gamma_{2}$ , resp.) one
can infer $\gamma\approx p\gamma[\gamma_{1}arrow\gamma_{2}]$ ( $\gamma\approx_{PW}\gamma[\gamma_{1}arrow\gamma_{2}]$ , resp.), $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\approx p\mathrm{a}\mathrm{n}\mathrm{d}\approx_{PW}$ are the
process and respectively partial word equivalence on nets. A particular case when the
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}\mathrm{s}\approx_{mP}\mathrm{a}\mathrm{n}\mathrm{d}\approx_{mPW}$ may be easier decided is highlighted. Some applications
on normalization of Petri nets are then presented. They consist in establishing the
correctness of four transformations ([10], [19]) in a much simpler way.

1 Introduction and Preliminaries

Many transformations of Petri nets may be simply described by ”replace the subnet $\Sigma_{1}$

of $\Sigma$ by the net $\Sigma_{2}$ ”; that means the subnet $\Sigma_{1}$ will be removed from $\Sigma$ and the net $\Sigma_{2}$ is
inserted in its place. Clearly, some fitting conditions must be satisfied and if one wants
to preserve some $\mathrm{p}\mathrm{r}o$ perties of the original net, some more conditions are needed. If $\Sigma_{2}$ is
more ”detailed” than $\Sigma_{1}$ this operation is called refinement, otherwise it is an abstraction;
both of them are particular cases of replacement. In literature mostly refinement was
studied and various techniques was proposed ([1], [2], [5], [6], [8], [9], [16], [20], [23], [24]).
A large number of behaviour and equivalence notions preserving refinements have also
been considered.

1a complete final version of this paper will be published elsewhere
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In this paper we propose a technique of replacement preserving the processes and partial
words of the original net (Section 2). Using this technique we give shorter and elegant
proofs to the correctness of some transformations of Petri nets (Section 3). In the re-
mainder of this section we recall the basic definitions and notations in Petri net theory
(for further details the reader is referred to [3], [4], [12], [13], [14]). The empty set is
denoted by $\emptyset$ , and $|A|$ denotes the cardinality of the finite set A. $A\subseteq B$ denotes the
inclusion of the set $A$ into the set $B$ . The set of nonnegative integers is denoted by N. If
$f_{i}$ : $A_{i}arrow \mathrm{N}$ are functions, $\dot{i}=1,2,$ $f_{1}+f_{2}$ is the function from $A_{1}\cup A_{2}$ into $\mathrm{N}$ given
by $(f_{1}+f_{2})(a)=f_{1}(a)$ for all $a\in A_{1}-A_{2},$ $(f_{1}+f_{2})(a)=f_{2}(a)$ for all $a\in A_{2}-A_{1}$ , and
$(fi+f_{2})(a)=f1(a)+f_{2}(a)$ for all $a\in A_{1}\cap A_{2}$ . The restriction of a function $f$ : $Aarrow B$

to the set $C\subseteq A$ is denoted by $f|c;f^{-1}$ is the function from $B$ into the powerset of $A$

given by $f^{-1}(b)--\{a\in A|f(a)=b\}$ for all $b\in B$ .
A (finite) $P/T$-net, abbreviated $PTN$ , is a 4-tuple $\Sigma=(S, T, F, W)$ where $S$ and $T$ are

two finite non-empty sets (of places and transitions, resp.), $S\cap T=\emptyset,$ $F\subseteq(S\cross\tau)\cup(T\cross s)$

is the flow relation and $W:(S\cross T)\cup(T\cross S)arrow \mathrm{N}$ is the weight function of $\Sigma$ verifying
$W(x, y)=0$ iff $(x, y)\not\in F$ (we suppose that all our nets do not have isolated transitions).
A marking of $\Sigma$ is any function $M$ : $Sarrow \mathrm{N}$ ; it will sometimes be identified with a
vector $M\in \mathrm{N}^{|S|}$ . The operations and relations on vectors are componentwise defined.
For $x\in S\cup T$ we set $x=\{y|(y, x)\in F\},$ $x=\{y|(x, y)\in F\},$ $\cdot x$.

$=.x\cup x.\cdot$ , and usually
extend these notations to subsets $X\subseteq S\cup T$ .

A marked $PTN$ , abbreviated $mPTN$ , is a pair $\gamma--(\Sigma, M_{0})$ , where $\Sigma$ is a $PTN$ and $M_{0}$ ,
the initial marking of $\gamma$ , is a marking of $\Sigma$ . A $\lambda$ -labelled $mPTN$ , abbreviated $l^{\lambda}mPTN$ ,
is a 3-tuple $\gamma=(\Sigma, M_{0}, l)$ , where the first two components form an $mPTN$ and $l$ , the
$\lambda$ -labelling function of $\gamma$ , assigns to each transition either a letter or the empty word $\lambda$ .
When $\lambda$ is not in the range of $l$ we will refer to such triples as labelled $mPTN$ and to $l$ as
labelling function; the notation will be modified correspondingly to $lmPTN$ .

In the sequel we shall often use the term ”Petri net” or ”net” whenever we refer to
a structure $\gamma$ as defined above. In all the above definitions $\Sigma$ is called the underlying
net of $\gamma$ . A marking (place, transition, arc, weight, resp.) of a net $\gamma$ is any marking
(place, transition, arc, weight, resp.) of the underlying net of $\gamma$ . Pictorially, a net $\gamma$ is
represented by a graph. Then the places are denoted by circles and transitions by boxes;
the flow relation is represented by arcs. The arc $f\in F$ is labelled by $W(f)$ whenever
$W(f)>1$ . The initial marking $M_{0}$ is presented by putting $M_{0}(s)$ tokens into the circle
representing the place $s$ and the labelling function is denoted by placing letters into the
boxes representing transitions.

Let $\gamma$ be a net and $M$ a marking of it. The transition rule states that a transition
$t$ is enabled at $M$ , denoted $M[t\rangle_{\gamma}$ , if $M(s)\geq W(s, t)$ for all $s\in S$ . If $t$ is enabled
at $M$ then $t$ may occur yielding a new marking $M’$ , abbreviated $M[t\rangle_{\gamma}M’$ , given by
$M’(s)=M(s)-W(s,t)+W(t, s)$ for all $s\in S$ . The transition rule is extended to
sequences of transition $w\in\tau*$ in the usual way. If $M_{0}[w\rangle_{\gamma}M$ then $M$ is called reachable;
[ $M_{0}\rangle_{\gamma}$ denotes the set of all reachable markings. The notation ” [ $\cdot)_{\gamma}$

” will be simplified to
” [ $\cdot\rangle$

” whenever $\gamma$ is understood from context.
The concurrent behaviour of Petri nets is well-expressed by the notion of a process.

Generally speaking, processes of Petri nets are obtained by running the nets and solving
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conflicts in an arbitrary fashion as and when they arise. A process of a net is also a net;
these nets are called occurrence nets and they are classical nets $N=(B, E, R)(R$ is the
flow $\mathrm{r}\mathrm{e}\dot{\mathrm{l}}$ ation and the weights of the arcs are 1) satisfying:

(i) $|b|\leq 1$ and $|b|\leq 1$ , for all $b\in B$ ;
(ii) $R^{+}$ is acyclic, i.e. for all $x,y\in B\cup E$ if $(x,y)\in R^{+}$ then $(y, x)\not\in R^{+}$ .

Usually the elements of $B$ are called conditions whereas the elements of $E$ are called
events. The partially ordered set induced by $N$ is $(B\cup E, \prec_{N}),$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\prec_{N}=R^{+}$ . A B-cut
of $N$ is any maximal subset $C\subseteq B$ of incomparable elements according with the relation
$\prec_{N}$ . As we will only use $B$-cuts we shortly call them cuts (see [4] for more details). The
initial (final, resp.) cut of $N$ is $\mathrm{o}N=\{b\in B||b|=0\}$ ( $N^{\mathrm{o}}=\{b\in B||b|=0\}$ , resp.). In
defining processes we will use labelled occurrence nets which are couples $\pi=(N,p)$ , where
$N$ is a occurrence net and $p$ is a total function from $B\cup E$ into an alphabet $V$ . The above
definitions (partial order, cut, initial and final cut) are transferred to labelled occurrence
nets $\pi$ by means of $N$ ; the notations are obtained by changing ” $N$” into ”

$\pi$
” (e.g. $\prec_{\pi},$

$\circ\pi$ ,
$\pi^{\mathrm{o}})$ . Let $\Sigma=(S, T,F, W)$ be a Petri net, $\pi=(N,p)$ a labelled occurrence net such that $p$

is a function from $B\cup E$ into $S\cup T$ satisfying $p(B)\subseteq S$ and $p(E)\subseteq T$ , and $C$ a subset of
conditions of $\pi$ . Define the marking induced by $C$ in $\Sigma$ as being $M_{C}(s)=|p^{-1}(s)\cap C|$ , for
all $s\in S$ . There are two alternative definitions of a process, axiomatic and inductive, and
it is well-known that for Petri nets of finite synchronization they yields exactly the same
objects ([4]). We adopt here the axiomatic definition. A process of $\gamma=(\Sigma, M_{0})$ is any
couple $\pi=(N, \varphi)$ , where $N$ is an occurrence net and $\varphi:B\cup Earrow S\cup T$ is a mapping
satisfying:

(i) $\varphi(B)\subseteq S,$ $\varphi(E)\subseteq\tau$ ;
(ii) $M_{0}(s)=|\varphi^{-1}(S)\cap^{o}N|$ for all $s\in S$ ;
(iii) $W(s, \varphi(e))=|\varphi^{-1}(S)\cap e|$ and $W(\varphi(e),s)=|\varphi^{-1}(S)\cap e|$ for all $e\in E$ and $s\in S$

(as we can see we allow events without pre-conditions or post-conditions). In order to
obtain processes of $\lambda$-labelled nets $\gamma=(\Sigma, M_{0}, l)$ what we have to do is to consider each
proces $\pi=(N,p)$ of $(\Sigma, M_{0})$ and to replace the function $p$ by $p’$ , where $p’(x)–p(x)$ for
all the conditions $x$ , and $p’(x)=(l\mathrm{o}p)(X)$ for all the events $x$ ; that is, the events will
be labelled by $l\mathrm{o}p$ ; we will sometimes use $l\mathrm{o}p$ instead of $p’$ with the above meaning.
Finally, to compare processes we consider the notions of isomorphism of processes and
partial word. Let $\pi_{1}=(N_{1},p_{1})$ and $\pi_{2}--(N_{2},p_{2})$ be processes (not necessary of the
same net). $\pi_{1}$ and $\pi_{2}$ are said isomorphic, abbreviated $\pi_{1}\cong\pi_{2}$ , if there is a bijection
$\varphi:B_{1}\cup E_{1}arrow B_{2}\cup E_{2}$ such that
(1) $p_{1}(x)=p_{2}(\varphi(x))$ for all $x\in E_{1}$ , and

$p_{1}(x)=p_{2}(\varphi(x))$ whenever $x\in B_{1}$ and $p_{1}(x)\in S_{1}\cap S_{2}$ or $p_{2}(\varphi(x))\in S_{1}\cap S_{2}$ ;
(2) $x\prec_{\pi_{1}}y$ iff $\varphi(x)\prec_{\pi_{2}}\varphi(y)$ for all $x,$ $y\in B_{1}\cup E_{1}$ .

(1) says that $\varphi$ is a label-preserving bijection between $E_{1}\cup p_{1}^{-1}(S_{1}\cap S_{2})$ and $E_{2}\cup p_{2}^{-1}(S_{1}\cap$

$S_{2})$ , while (2) says that $\varphi$ is order preserving in both directions.
In order to define the partial word associated to a process we have to derive from

processes another structure by recording only the events which are not labelled by $\lambda$ . Let
$\pi=(N,p)$ be a process of a net $\gamma$ . An abstraction of $\pi$ is any labelled partially ordered
set $(E’, A,p’)$ , where:

$-E’=\{e\in E|p(e)\neq\lambda\}$ and $p’=p|_{E’;}$
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$-(e, e’)\in A$ iff there is a path in $\pi$ leading from $e$ to $e’$ .
The equivalence class with respect to isomorphism induced by $(E’, A,p’)$ , denoted $PW(\pi)$ ,
is called the partial word associated to $\pi$ . The set of all partial words of $\gamma$ is denoted by
$PW(\gamma)$ .

Let $\gamma_{1}$ and $\gamma_{2}$ be two nets. We say that $\gamma_{1}$ and $\gamma_{2}$ are process equivalent, abbreviated
$\gamma_{1}\approx_{P}\gamma_{2}$ , if for any process $\pi_{1}$ of $\gamma_{1}$ there is a process $\pi_{2}$ of $\gamma_{2}$ such that $\pi_{1}\cong\pi_{2}$ , and
vice versa. We say that $\gamma_{1}$ and $\gamma_{2}$ are partial word equivalent, abbreviated $\gamma_{1}\approx_{PW}\gamma_{2}$ ,
if $PW(\gamma_{1})=PW(\gamma_{2})$ . Thus we have obtained two equivalence relations on nets: $\approx_{P}$

(process equivalence) $\mathrm{a}\mathrm{n}\mathrm{d}\approx_{PW}$ (partial word equivalence).

2 Replacements of Petri Nets

The operation that we will consider in this section has its roots in various transformations
of Petri nets. These transformations may be simply described by ”replace the subnet $\Sigma_{1}$

of $\Sigma$ by the net $\Sigma_{2}$ ”, that means the subnet $\Sigma_{1}$ will be removed from $\Sigma$ and the net $\Sigma_{2}$ is
inserted in its place. Clearly, some fitting conditions must be satisfied and if one wants
to preserve the behaviour of the original net, some more conditions are needed, and this
is what we want to discuss in the next two subsections.

2.1 Subnets, Connecting Places, and Replacements
In our paper the subnets that are considered will always be generated by subsets of
transitions. That is, if $\Sigma=(S, T,F, W)$ is a net and $T_{1}\subseteq T$ then the subnet generated by
$T_{1}$ is $\Sigma_{1}=(s_{1}, \tau_{1}, F1, W_{1})$ , where $S_{1}=\cdot\tau \mathrm{i}$ and $F_{1}$ and $W_{1}$ are the restrictions of $F$ and
$W$ to $S_{1}$ and $T_{1}$ . Let $\Sigma_{1}$ be such a subnet of $\Sigma$ . The set of places $S_{1}$ can be partitioned
in two disjoint subsets (not necessary both of them non-empty) $S_{1}=S_{1}^{\mathrm{c}}\cup S_{1}^{i}$ , where

$S_{1}^{c}=\{s\in S|\exists t\in T-T_{1},$ $\exists t_{1}\in T_{1}$ : $s\in t\cdot\cap t_{\mathrm{i}\}}$ .
We will call the places in $S_{1}^{c}$ ( $S_{1}^{i}$ , resp.) connecting (internal, resp.) places of $\Sigma_{1}$ . The
terminology is clear, the connecting places assure the connection of $\Sigma_{1}$ to $\Sigma$

. and the
internal places are specific only for $\Sigma_{1}$ , that is no transition in $T-T_{1}$ is connected to any
place in $S_{1}^{\check{l}}$ .
Definition 2.1.1 Let $\Sigma$ be a net and $\Sigma_{1}$ a subnet of $\Sigma$ . We say that $\Sigma’$ is the difference
of $\Sigma$ and $\Sigma_{1}$ , abbreviated $\Sigma’=\Sigma-\Sigma_{1}$ , if $S’=S-S\dot{\mathrm{i}},$ $\tau’=T-T_{1}$ and the flow relation
and the weight function of $\Sigma’$ are the corresponding restrictions of $F$ and $W$ to $S’$ and $T’$ .

Specifying $\Sigma_{1}$ the set $S_{1}^{c}$ is implicitly specified. Our intention is to replace $\Sigma_{1}$ by a new
net $\Sigma_{2}=(S_{2}, \tau_{2}, F2, W_{2})$ (suppose $(S\cup T)\cap(S_{2}\cup T_{2})=\phi$). To do that we have first to
specify a set of connecting places of $\Sigma_{2},$ $S_{2}^{c}$ , and an $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence between
$S_{1}^{c}$ and $S_{2}^{c}$ . Therefore we consider an $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ mapping $h$ from $S_{1}^{\mathrm{c}}$ into $S_{2}$ and denote
$S_{2}^{c}=h(S_{1}^{c})$ and $S_{2}^{i}=S_{2}-S^{C}2$ . This one-to-one mapping says us how to connect $\Sigma_{2}$ to
$\Sigma-\Sigma_{1}$ . Now the replacement of $\Sigma_{1}$ by $\Sigma_{2}$ can be described as follows: connect the nets
$\Sigma-\Sigma_{1}$ and $\Sigma_{2}$ by identifying the places $s\in S_{1}^{c}$ and $h(s)\in S_{2}$ ; the resulting net is denoted
$\Sigma[\Sigma_{1}arrow\Sigma_{2}]h$ .
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Definition 2.1.2 Let $\Sigma_{1}$ and $\Sigma_{2}$ be nets, $S_{1}^{c}\subseteq S_{1}$ , and $h$ an $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ mapping from
$S_{1}^{\mathrm{c}}$ into $S_{2}$ (suppose $(S_{1}\cup T_{1})\cap(S_{2}\cup T_{2})=\emptyset$ ). We say that the net $\Sigma’$ is obtained by
$h$ -catenation of $\Sigma_{1}$ and $\Sigma_{2}$ , abbreviated $\Sigma’=\Sigma_{1}0_{h^{\Sigma_{2}}}$ , if the following properties hold:

$-S’=s1\cup(s2^{-}h(s\mathrm{C})1)$ ;
$-T’=^{\tau_{1^{\cup}}\tau;}2$

$-(x, y)\in F’$ iff $((x, y)\in F_{1}$ A $W’(X, y)=W_{1}(x, y))$ or $((h(X), y)\in F_{2}$ A $W’(x, y)=$
$W_{2}(h(X),y))$ or $((x, h(y))\in F_{2}$ A $W’(x, y)=W_{2}(x, h(y)))$ or $((.x, y)\in F_{2}$ A
$W’(x, y)=W_{2}(x, y))$

(this defines both $F’$ and $W’$ ).

We allow the case $S_{1}^{c}=\emptyset$ as well: the net $\Sigma’$ consists of two. disjoint subnets, $\Sigma_{1}$ and $\Sigma_{2}$ .

Definition 2.1.3 Let $\Sigma$ and $\Sigma_{2}$ be nets, $\Sigma_{1}$ a subnet of $\Sigma$ and $h$ an one-to-one mapping
from $S_{1}^{c}$ into $S_{2}$ (suppose $(S\cup T)\cap(S_{2}\cup T_{2})=\emptyset$). We say that the net $\Sigma’$ is obtained by
$h$ -replacement of $\Sigma_{1}$ by $\Sigma_{2}$ in $\Sigma$ , abbreviated $\Sigma’=\Sigma[\Sigma_{1}arrow\Sigma_{2}]h$ , if $\Sigma’=(\Sigma-\Sigma 1)\mathrm{o}h\Sigma 2$ .

The above definitions are naturally extended to nets $\gamma=(\Sigma, M_{0}, l)$ . For instance, the
difference $\gamma-\gamma_{1}$ is simply defined by restricting the components of $\gamma$ to $\Sigma-\Sigma_{1}(\gamma_{1}$ is a
subnet of $\gamma$ ). If $\gamma_{1}$ and $\gamma_{2}$ are nets such that $M_{0}^{1}(S)=M_{0}^{2}(h(s))$ for all $s\in S_{1}^{c}(S_{1}^{c}\subseteq S_{1}$

and $h$ is an $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{t}_{0}$-one mapping from $S_{1}^{c}$ into $S_{2}$ ) then the $h$-catenation of $\gamma_{1}$ and $\gamma_{2}$ is
the net $\gamma’$ given by:

$-\Sigma’=\Sigma_{1^{\circ}h}\Sigma_{2}$ ;
$-M_{0}’=M_{0}^{1}|s\mathrm{i}^{+}0|M^{1}S_{1}^{\mathbb{C}}+M_{0}^{2}|s\cdot.$ ;

$2$

$-l’=l_{1}\cup l_{2}$ .
The $h$-catenation of processes (labelled occurrence nets) needs a supplementary condition:
the function $h$ should preserve the labels of places, that is $p_{1}(s)=p_{2}(h(s))$ for all $s\in S_{1}^{\mathrm{c}}(p_{1}$

and $p_{2}$ are the corresponding labelling functions). Now, the extension of the h-replacement
to $\gamma_{1}$ by $\gamma_{2}$ follows from the above extensions of the difference and h-catenation.

Example 2.1.1 In Figure $2.1.1(\mathrm{a})$ is picturially represented a net $\gamma$ and a subnet $\gamma_{1}$ of
it; the net $\gamma-\gamma_{1}$ is given in Figure 2.1.1(b). Consider the net $\gamma_{2}$ in Figure 2.1.1(c) and
the mapping $h(s_{i})=s_{i}’,$ $i=2,3$ . The net $\gamma[\gamma_{1}arrow\gamma_{2}]h$ is given in Figure $2.1.1(\mathrm{d})$ .
As we have seen the replacement operation on $\gamma=(\Sigma, M_{0}, l)$ requires the specification of a
subnet $\Sigma_{1}$ of $\Sigma$ and an one-to-one mapping $h$ . The subnet $\Sigma_{1}$ will be the subnet generated
by a non-empty set of transitions $T_{1}\subset T$ , and therefore to specify $\Sigma_{1}$ is to specify $T_{1}$ .
The mapping $h$ will be specified considering $s_{1^{--}}^{c}S_{2}^{C}(h$ is the identity, $S\cap S_{2}=S_{1}^{c}$ , and
$T\cap T_{2}=\emptyset)$ . Then we will simply write $\gamma[\gamma_{1}arrow\gamma_{2}]$ ( $0$ , resp.) instead of $\gamma[\gamma_{1}arrow\gamma_{2}]h(0_{h}$ ,
resp.). Let $PN(S^{c})$ denote the class of Petri nets having in common only the set $S^{c}$ of
places and

$PN(S^{c}, M_{0}^{c})=\{\gamma\in PN(s^{\mathrm{c}})|M_{01}S^{c}=M_{0}^{c}\}$

$(M_{0}^{\mathrm{c}}\in \mathrm{N}^{S^{c}})$ . Then, we have:

Proposition 2.1 $(PN(S^{c}, M^{c})0’ 0)$ is a commutative monoid.

Proof The associativity and commutativity directly follow from definitions; the net
$((S^{c}, \emptyset, \emptyset, \emptyset), M_{0}^{\mathrm{C}}, \phi)$ is the unity of this monoid. $\square$

182



(a) $T_{1}=\{t_{1},t_{2}, t_{3}\},$ $S_{1}^{c}=\{s2, s3\},$ $S_{1}^{i}=\{s_{1}\}$ (b) $\gamma-\gamma_{1}$

( $\mathrm{C}[]‘\supset_{\overline{2}}=\iota^{s_{2},s_{3}}f$ (d) $\gamma[\gamma_{1}arrow\gamma_{2}]J\iota$

Figure 2.1.1

2.2 Concurrent Behaviour and Replacements
Our interest is to find some equivalence rclations on nets, $\approx$ , such that from $\gamma_{1}\approx\gamma_{2}$ one
can infer $\gamma\approx_{P}\gamma[\gamma_{1}arrow\gamma_{2}]$ or $\gamma\approx_{PW}\gamma[\gamma_{1}arrow\gamma_{2}]$ . In what follows we will give two such
equivalence relations, as we shall see they are very close to the relations $\approx_{P}$ and $\approx_{PW}$ ,
the difference consisting in the interaction with the environment.

Let $\gamma$ be a net, $S^{c}\subseteq S$ , and $\pi$ a process of $\gamma$ . An $S^{c}$ -abstraction of $\pi$ is any labelled
partially ordered set $(B’\cup E’, A,p’)$ , where:

$-B’=$ { $b\in B|p(b)\in S^{c}$ A $(|b|=0|b|=0)$ }, $E’=\{e\in E|p(e)\neq\lambda\}$ , and
$p’=p|B’\cup E^{l}$ ;

$-(x, y)\in A$ iff there is a path in $\pi$ leading from $x$ to $y$ .
The equivalence class with respect to isomorphism induced by $(B’\cup\dot{E}’, A,p’)$ , denoted
$S^{c_{-}}PW(\pi)$ , is called the $S^{\mathrm{c}}$-partial word associated to $\pi$ . The class of all $S^{c}$-partial words
of $\gamma$ is denoted by $S^{\mathrm{c}_{-}}PW(\gamma)$ .

Let $\gamma\in PN(s^{c}, M_{0}c)$ and $M\in \mathrm{N}^{S^{\mathrm{c}}}$ . By $(\gamma+M)$ we denote the net $(\Sigma, M_{0}+M, l)\in$

$PN(S^{c}, M^{\mathrm{C}}0+M)$ . For any $\gamma_{1},$ $\gamma_{2}\in PN$ ( $S^{c}$ , A$I_{0}^{C}$ ) and $M\in \mathrm{N}^{S^{\mathrm{c}}}$ we have $(\gamma_{1^{\mathrm{O}}}\gamma_{2}+M)=$

$(\gamma_{1}+M)\mathrm{o}(\gamma 2+\mathrm{A}\phi)$ .

Definition 2.2.1 Let $\gamma_{1},$ $\gamma_{2}\in PN(S^{c}, M_{0}^{c})$ . We say that $\gamma_{1}$ and $\gamma_{2}$ are $m$-process equiv-
alent ( $m$-partial word equivalent, resp.), abbreviated $\gamma_{1}\approx_{mP}\gamma_{2}$ ( $\gamma_{1}\approx_{mPW}\gamma_{2}$ , resp.), if
for any $M\in \mathrm{N}^{S^{c}}$ we have $(\wedge(1+M)\approx_{P}(.\gamma_{2}+M)(S^{c}-PW(\gamma 1+M).=S^{c}- PW(\gamma 2+M)$ ,
resp.).

This definition says that no matter how the initial marking on $S^{c}$ is increased that two
nets have the same processes (up to an isomorphism) or the same $S^{c}$-partial words. It is
easy to see that $\approx_{mP}$ and $\approx_{mPW}$ are equivalence relations on nets (in order to simplify
the writing we will use, in what follows, the next notations and conventions: $\approx_{m}$ denotes
one of the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}\approx_{mP}\mathrm{o}\mathrm{r}\approx_{mPW},$ $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{e}\approx \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}\approx P\mathrm{o}\mathrm{r}\approx_{PW}$. Moreover, when we use
$\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{h}\approx_{m}\mathrm{a}\mathrm{n}\mathrm{d}\approx \mathrm{a}\mathrm{n}\mathrm{d}\approx m\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}\approx \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}mp\approx \mathrm{W}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\approx p$ , and similar for the other
case). $\mathrm{L}\mathrm{e}\mathrm{t}\approx_{m}M$ be the binary relation

183



$\gamma_{1}\approx_{m}\gamma_{2}M$ iff $(\gamma_{1}+M)\approx_{m}(\gamma 2+M)$ ,

where $M\in \mathrm{N}^{S^{\mathrm{c}}}$ . That is, $\gamma_{1}\approx_{m}\gamma_{2}M$ iff $(\gamma_{1}+M’)\approx(\gamma_{2}+M’)$ for all $M’\geq M(M’\in \mathrm{N}^{S^{\mathrm{c}}})$ .
We have:

Proposition 2.2.1 (1) $\approx_{m}\subseteq\approx$ ;

(2) $\approx_{m}\subseteq M\approx_{m}\subseteq M’\approx_{m}$ for all $M,$ $M’\in \mathrm{N}^{S^{c}}$ with $M\leq M’$ .

The next theorem represents the main result of this section.

Theorem 2.2.1 Let $\gamma_{1},\gamma_{2}\in PN(S^{c}, M_{0}^{\mathrm{C}})$ . If $\gamma_{1}\approx_{m}\gamma_{2}$ then $\gamma_{0}0\gamma_{1}\approx\gamma_{0}0\gamma_{2}$ for all
$\gamma_{0}\in PN(S\mathrm{C}, M)0^{c}$ .

Corollary 2.2.1 Let $\gamma_{1},$
$\gamma_{2}\in PN(S^{\mathrm{C}}, M_{0}c)$ . If $\gamma_{1}\approx_{m}\gamma_{2}$ then $\gamma_{0}0\gamma_{1}\approx_{m}\gamma_{0}0\gamma_{1}$ for all

$\gamma_{0}\in PN(S^{c}, M_{0}^{\mathrm{C}})$ . Therefore, $\approx_{mP}and\approx_{mPW}$ are congruences on $(PN(s^{C}, M_{0}^{C}),$ $0)$ .

$\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{y}2.2.2$ Let $\gamma_{1}$ be a subnet of $\gamma$ generated by a subset $T_{1}$ of transitions, and
$\gamma_{2}\in PN(S^{c}, M_{0^{C}})$ , where $M_{0}^{c}=M_{0}|s_{1}^{\mathrm{c}}$ . If $\gamma_{1}\approx_{m}\gamma_{2}$ then $\gamma\approx\gamma[\gamma_{1}arrow\gamma_{2}]$ .

From practical point of view we are interested in Corollary 2.2.2. The difficulty in using
this corollary consists in the fact that we have to decide whether or not $\gamma_{1}\approx_{m}\gamma_{2}$ , that is
we have to decide whether or not $(\gamma_{1}+M)\approx(\gamma_{2}+M)$ for all $M\in \mathrm{N}^{S^{\mathrm{c}}}$ . A favourable
particular case would be when there is a marking $M\in \mathrm{N}^{S^{\mathrm{c}}}$ such that the processes of
nets $(\gamma+M’)$ , where $M’\in \mathrm{N}^{S^{\mathrm{c}}}$ and $\neg(M’\leq M)$ , can be reduced to processes of $(\gamma+M)$ .
Let us introduce first a few notations. Let $\pi=(N,p)$ be a labelled occurrence net and $A$

a subset of the range of $p$ . If $C\subseteq p^{-1}(A)\cap^{\mathrm{o}\mathrm{o}}\pi,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\pi\circ 0=0\pi\cap\pi^{\mathrm{o}}$, then we will denote
by $(\pi-C)$ the labelled occurrence net obtained from $\pi$ by removing all the conditions in
$C$ .
Definition 2.2.2 Let $\gamma\in PN(S^{c}, M_{0}^{c}),$ $M_{1},$ $M_{2}\in \mathrm{N}^{S^{c}},$ $\pi_{1}\in\Pi(\gamma+M_{1})$ , and $\pi_{2}\in$

$\square (\gamma+M_{2})$ . We say that $\pi_{1}$ and $\pi_{2}$ are almost isomorphic, abbreviated $\pi_{1}\cong_{a}\pi_{2}$ , if there
are $C_{1}\subseteq p_{1}^{-1}(S^{c})\cap\circ\pi_{1}^{\mathrm{o}}$ and $C2\subseteq p_{2}^{-1}(S^{c})\cap^{\mathrm{O}}\pi_{2}^{\mathrm{o}}$ such that $(\pi_{1}-C_{1})\cong(\pi_{2}-C_{2})$ .

This definition wants to say that if we remove from $\pi_{1}$ and $\pi_{2}$ some conditions without
predecessors and succesors and labelled by places in $S^{c}$ we get two isomorphic labelled
occurrence nets.

Lemma 2.2.1 Let $\gamma\in PN(S^{C}, M_{0}c),$ $M_{1},$ $M_{2}\in \mathrm{N}^{S^{\mathrm{c}}},$ $\pi_{1}\in\Pi(\gamma+M_{1})$ , and $\pi_{2}\in\square (\gamma+M_{2})$ .
Then, $\pi_{1}\cong_{a}\pi_{2}$ iff $(\pi_{1}-(p_{1}^{-1}(S\mathrm{C})\cap\circ\circ\pi_{1}))\cong(\pi_{2}-(p_{2}^{-1}(s^{C})\cap^{\mathrm{O}}\pi_{2}^{\mathrm{o}}))$.

Definition 2.2.3 Let $\gamma\in PN(S^{C}, M_{0}c)$ and $M\in \mathrm{N}^{S^{\mathrm{c}}}$ . We say that $\gamma$ is process stable
$w.r.t$ . $M$ if for any marking $M’\in \mathrm{N}^{S^{\mathrm{c}}}$ with $\neg(M’\leq M)$ we have:

-for any process $\pi’$ of $(\gamma+M’)$ there is a process $\pi$ of $(\gamma+M)$ such that $\pi\cong_{a}\pi’$ ;
-vice versa.

As an example, the nets in Figure $3.2(\mathrm{a})(\mathrm{b})$ are process stable w.r.t. $M=(\mathrm{O}, \ldots, 0)$ . We
have:

Proposition 2.2.2 Let $\gamma_{1},\gamma_{2}\in PN(S^{c},M_{0}^{c})$ be two process stable nets $w.r.t$ . M. If
$(\gamma_{1}+M)\approx(\gamma_{2}+M)$ then $\gamma_{1}\approx_{m}\gamma_{2}$ .
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3 Applications

The Corollary and Proposition 2.2.2 may be used to prove the correctness of some trans-
formations of Petri nets. Their efficiency directly depends on the easiness of deciding the
equivalences $\approx_{mP}$ and $\approx_{mPW}$ . Intuitively, the simpler are $\gamma_{1}$ and $\gamma_{2}$ the easier we can
test $\gamma_{1}\approx_{mP}\gamma_{2}$ and $\gamma_{1}\approx_{mPW\gamma_{2}}$ and therefore the more efficient we can apply Corollary
2.2.2 and Proposition 2.2.2. In what follows will exemplify our discussion by some appli-
cations. First we recal the inductive definition of processes in terms of catenation of nets.
Let $\gamma=(\Sigma, M_{0})$ be a net and $t$ a transition of it. An elementary occurrence net associated
to $t$ is any labelled occurrence net $\pi=(N,p)$ with the properties: $\pi$ contains only an
event $e$ labelled by $t,$ $W(s,t)$ preconditions and $W(t, s)$ postconditions of $e$ labelled by $s$ ,
for all $s\in S$ ( $\pi$ does not contain other elements than those already specified). An initial
occurrence net of $\gamma$ is any occurrence net $(N,p)$ which does not contain any event and for
each $s\in S$ it contains exactly $M_{0}(s)$ conditions labelled by $s$ (it does not contain other
elements than those already specified). Define $\Pi(\gamma)$ as being the smallest set with the
properties:
(1) $\Pi(\gamma)$ contains all the initial occurrence nets associated to $\gamma$ ;
(2) if $\pi_{1}\in\Pi(\gamma)$ and $\pi_{2}$ is an elementary occurrence net such that $\pi_{1}$ and $\pi_{2}$ are disjoint,

and $h:B_{1}’arrow\circ\pi_{2}$ is a bijection $(B_{1}’\subseteq B_{1})$ such that $p_{1}(b)=p_{2}(h(b))$ for all $b\in B_{1}’$ ,

.then $\pi_{1}\circ h\pi_{2}\in\Pi(\gamma)$ .
Processes of $\lambda$-labelled $\mathrm{n}\mathrm{e}\mathrm{t}_{\mathrm{S}^{\vee}}\mathrm{m}\mathrm{a}\mathrm{y}$ be $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\dot{\mathrm{d}}$ as in the first $\dot{\mathrm{s}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ .

According to [10], a labelled marked Petri net is called normalized if the weight function
and the initial marking take values into $\{0,1\}$ . E. Pelz ([10]) showed that any Petri net
is process equivalent with a normalized one. Moreover an algorithm to transform a Petri
net into an equivalent normalized one was given. The Pelz’s algorithm works in two main
steps, denoted Transformation-A and Ransformation-B. In the first one the weight
function, and in the second the initial marking, is processed. Also the initial marking
is needed to be processed in the first step. The Pelz’s solution for processing the initial
marking was to add new places and transitions in order to ”simulate” it. This fact led to
an increasing almost double of the complexity of construction. In [18] another solution
was proposed. It consists of a distribution of the initial marking in the old places. No
place and transition is needed more. The complexity of Transformation-A is to the half
reduced. Therefore, we will describe the Pelz’s algorithm as in [18]. First, a few notations
and definitions are nedeed.

Let $\gamma=(\Sigma, M_{0}, l)$ be a net, $S_{1}\subseteq S$ , and $M$ a marking of $\gamma$ . We say that $M$ is uniformly
distributed over $S_{1}$ if $|M(S_{1})-M(S_{2})|\leq 1$ for all $s_{1},$ $s_{2}\in S_{1}$ . Let $s\in S$ and $\gamma’$ be a
net obtained from $\gamma$ replacing the place $s$ by a set of new places, $S’$ , and connecting the
places of $S’$ to transitions of $\gamma$ in an arbitrary but fixed way. Let $M$ and $M’$ be markings
of $\gamma$ and respectively $\gamma’$ . We say that $M$ and $M’$ are $s$ -compatible if $M’(x)=M(x)$ for all
$x\in S-\{s\}$ , and $M(s)=\Sigma_{s’\epsilon s\prime}M’(s)’$ .

Now, using the replacement operation we can describe the Pelz’s algorithm as follows.

Transformation-A: Let $\gamma=(\Sigma, M_{0}, l)$ be a net and $n_{s}= \max\{W(s,t), W(t, S)|t\in T\}$

for all $s\in S$ . For each $s$ with $n_{s}>1$ replace the subnet $\gamma_{S}$ generated by $T_{s}=\{t\in T|t\in$

$s\}$ , by the net $\gamma_{s}’$ defined as follows:
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$-\gamma_{s}’=(\Sigma_{Ss}’, M’, l’)S’=\Sigma_{S}’(S_{sSSs}’,\tau’, F’, W’)$;
$-S_{s}’=(S_{s}-\{s\})\cup C(s)$ , where $S_{s}$ is the set of places of $\gamma_{s}$ and $C(s)=\{s^{1}, \ldots , s^{n_{S}}\}$

is a set of $n_{s}$ new places (copies of $s$ );
$-T_{s}’:= \bigcup_{t\in}\cdot.{}_{s}C(t)$ , where for each $t\in$ $s,$ $C(t)=\{t_{A,B}|A,$ $B\subseteq C(s)$ A $|A|=$

$W(s, t)$ A $|B|=W(t,s).\}$ is a set of new transitions (copies of $t$ );
$-F’:=F_{1}\cup F_{2}$ , where:

$F_{1}$ $=$ $\{(s’,t_{A},B)|t_{A,B}\in C(s), (s’, t)\in F\}\cup$

$\{(t_{A,B}, S’)|tA,B\in C(.s.), (t, S’)\in F\}$ ,
$F_{2}$ $=$ $\{(s’,t_{A},B)|t_{A},B\in C(.S^{\cdot}), s’\in A\}\cup$

$\{(t_{A,B}, S’)|t_{A,B}\in c(.s.), s\in B’\}$ ,
and $C(s)$ is the union-extension of $C(\cdot)$ to the set $s$ ;

$-W_{s}’$ is given by:
$W_{s}’(S’,tA,B)$ $=$ $W(s’,t)$ for all $(s’,t_{A,B})\in F_{1}$ ,
$W_{S}’(t_{A,B}, s^{J})$ $=$ $W(t, S’)$ for all $(t_{A,B}, s’)\in F_{1}$ ,
$W_{s}’(f)$ $=$ 1 for all $f\in F_{2}$ ;

$-M_{s}’|c(S)$ is an arbitrary but fixed uniformly distributed marking over $C(s)$ and s-
compatible with $M_{0}|_{s};M_{s}’(s’):=M_{0}(s)$

’ for all $s’\in S_{s}-\{s\}$ ;
$-l_{s}’(tA,B)=l(t)$ for all $t_{A,B}\in T_{S}’$ .

This transformation is exemplified in Example 2.1.1. It is clear that the arcs of the net
yielded by it have the weight $0$ or 1.

Theorem 3.1 ([10], [18])
The net $\gamma’$ yielded by Transformation-A on the input $\gamma$ satisfies $\gamma\approx_{P}\gamma’$ .
Proof In the view of Corollary 2.2.2 we have to prove that $\gamma_{s}\approx_{mP}\gamma_{s}’$ , for all $s$ with
$n_{s}>1$ . To prove this it is enough to show that:

-any initial occurrence net of $(\gamma_{s}+M)$ is isomorphic with any initial occurrence net
of $(\gamma_{S^{+}}’M)$ ,

-any elementary occurrence net of $(\gamma_{S}+M)$ associated to a transition $t$ is isomorphic
with any elementary occurrence net of $(\gamma_{s}’+M)$ associated to any copy of $t$ ,

where $M$ is an arbitrary marking on the connecting places. But these facts follows directly
from the definition of $\gamma_{S}’$ . $\square$ .

Transformation-B: Let $\gamma=(\Sigma, M_{0}, l)$ be a net such that $W(f)=1$ for all $f\in F$ . Let
$m_{s}=M_{0}(s)$ for all $s\in S$ . For each $s$ with $m_{s}>1$ replace the subnet $\gamma_{s}$ of $\gamma$ generated
by $T_{s}=\{t\in T|s\}$ , by the net $\gamma_{s}’$ defined as follows:

$-\gamma_{s}’=(\Sigma_{s’ s}\prime M’, l’)S’=\Sigma_{S}’(s’,T_{S}’, F’, W’)sSS$;
$-S_{s}’=(S_{S}-\{s\})\cup C(s)$ , where $S_{s}$ is th. $\mathrm{e}$ set of,places of $\gamma_{s}$ and $C(s)=\{s^{1}, \ldots, S^{m}S\}$

is a set of new places (copies of $s$ );
$-T_{s}’:= \bigcup_{t\in\tau_{s}}C(t)$ , where for each $t\in\tau_{s},$ $C(t)=\{t^{1}, \ldots, t^{m_{s}}\}$ is a set of new transitions

(copies of $t$ );
$-F_{s}’:=F_{1}\cup F_{2}$ , where:

$F_{1}$ $=$ $\{(s’,t^{i})|t^{i}\in T_{s}’, s’\in S_{s}-\{s\}, (s’,t)\in F\}\cup$

$\{(t^{i}, s)’|t^{i}\in T_{s}’, S’\in S_{s}-\{s\}, (t, s’)\in F\}$ ,
$F_{2}$ $=$ $\{(s^{ii},t)|t^{j}\in T_{s}’, s^{i}\in C(s), (s,t)\in F\}\cup$

$\{(t^{i}, s^{i})|t^{i}\in T_{s}’, s^{i}\in C(s), (t,s)\in F\}$ ;
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$-W_{s}’(f)=1$ for all $f\in F_{s}’$ ;
$-M_{s}’(S^{i})=1$ for all $1\leq i\leq m_{S)}M_{s}J(s’):=M_{0}(S’)$ for all $s’\in S_{s}-\{s\}$ ;
$-l_{s}’(t^{i})=l(t)$ for all $t^{i}\in T_{s}’$ .

This transformation is exemplified in Example 3.1 for the case of the place $s_{1}$ . Clearly,
the net yielded hv $\mathrm{T}_{\Gamma \mathrm{a}.\Pi}.\mathrm{s}\mathrm{f}_{\cap}r\mathrm{m}\mathrm{a}\dotplus \mathrm{i}\mathrm{n}\mathrm{n}- \mathrm{R}\mathrm{i}_{\mathrm{q}\mathrm{n}\mathrm{n}}r\mathfrak{m}21\mathrm{i}7oA$

Theorem 3.2 ([10])
The net $\gamma’$ yielded by Transformation-B on the input $\gamma$ satisfies $\gamma\approx_{P}\gamma’$ .
Proof A similar argument as in the proof of the above theorem works in this case too:
any elementary occurrence net of $\gamma_{s}$ whose evcnt is labelled by $a$ is isomorphic to any
elementary occurrence net of $\wedge(_{S}’$ whose cvent is labelled by $a$ too. $\square$

The above two theorems assure the correctness of the Pelz’s algorithm.

In [15] a systematic invcstigation of $\mathrm{o}\mathrm{p}\sigma_{\Gamma}\mathrm{a}\mathrm{h}$ thcorctic properties of Petri nets within the
framework of language theory was initiated. In other words, various subclasses of Petri
nets were introduced by imposing various restrictions on the in- and out- degree of nodes
in the graph of the underlying net structure. Further these restrictions were refined in
[17] by considering $(n, m)$ -transition restricted Petri nets as being Petri nets for which the
weight function takes values in $\{0,1\}$ and $1\leq|t|\leq n$ and $1\leq|t|\leq m$ for all transitions
$t$ . Thus, interesting hierarchies of Petri net languages was obtained, and in the case of
$\lambda$-labelled Petri nets, the above normal form was improved with respect to the finite
transition sequence behaviour. More precisely, it was shown that every $\lambda$-labelled Petri
net is equivalent to a $(2, 2)$-transition restricted net (with respect to the finite transition
sequence behaviour). This result was extended in [19] by showing that this new normal
form, called the super-normal form, preserves the partial words but not the processes of
Petri nets. We will give here short proofs of these.results. Let us recall first the basic
transformations.

Let $\gamma$ be a $\lambda$-labelled net. In the view of the Pelz’s theorem we may assume that $\gamma$ is
normalized. Now we have to do two basic transformations on $\gamma$ .
$\mathrm{T}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}_{0}\mathrm{r}\mathrm{n}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\mathrm{C}$ : Let $\gamma$ be a normalized net. For each transition $t$ of $\gamma$ such that
$|t|=0$ or $|t|=0$ replace the subnet $\gamma_{t}$ (generatcd by $t$ ) by the net $\gamma_{t}’=(\Sigma_{t}’, M^{J}, l_{t}^{J})l$ as
follows:
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-if $\Sigma_{t}$ is the net in Figure $3.2(\mathrm{a})$ then $\Sigma_{t}’$ is the net in Figure $3.2(\mathrm{b})$ ;
-if $\Sigma_{t}$ is the net in Figure $3.2(\mathrm{c})$ then $\Sigma_{t}$

’ is the net in Figure $3.2(\mathrm{d})$ ;
-the initial marking of $\gamma_{t}’$ on the places $s_{1},$ $\ldots$ , $s_{k}$ is the same as the initial marking of

$\gamma$ on these places;
-the labeling is that specified in diagrams.

(a) (D)

$(\mathbb{C}j$ $\mathrm{t}^{\mathrm{u}’}$

Figure 3.2

It is clear that the net $\gamma’$ yielded by Transformation-C is normalized and satisfies $|t|\geq 1$

and $|t\cdot|\geq 1$ for all transitions $t$ .

Theorem 3.3 ([19])
The net $\gamma’$ yielded by Transformation-C on the input $\gamma$ satisfies $\gamma\approx_{PW}\gamma’$ .
Proof In the view of Corollary 2.2.2 we have to prove that $\gamma_{t}\approx_{mPW}\gamma_{1}$

’ for all $t$ with

the property $|.t|=0$ or $|t\cdot|=0$ . But this job is as simple as minute it is, and therefore
it is omitted (for the nets in Figure $3.2(\mathrm{a})(\mathrm{b})$ we may use Proposition 2.2.2). $\square$

Transformation-D: Let $\gamma$ be a normalized net $\gamma$ satisfying $|t|\geq 1$ and $|t\cdot|\geq 1$ for all
$t\in T$ . For each transition $t\in T$ such that $|.t|\geq 3$ or $|t|\geq 3$ replace the subnet $\Sigma_{t}$ by the

net $\Sigma_{t}$
’ as given in Figure 3.3, but with the next remarks:

-in the case $n=1$ or $n=2$ the places $s_{1}$ or $s_{1}$ and $s_{2}$ respectively are directly

connected to $t^{n}$ ;
-in the case $m=1$ or $m=2$ the only successors of $t^{n}$ are $s_{n+1}$ or $s_{n+1}$ and $s_{n+2}$

respectively
(in Figure 3.3 it was assumed that $t=\{s_{1}, \ldots, S_{n}\},$ $t\cdot=\{s+1, \ldots, s+m\}nn’ 1’.,$$S_{n}’S’..+m-3$

are new places, and $t^{1},$
$\ldots$ , $t^{n+m-2}$ are new transitions. Moreover, it was assumed that

$.t\cap t\cdot=\emptyset$ ; the case $t\cap t\cdot\neq\emptyset$ case can be easily imagened).

Figure 3.3
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It is clear that the net $\gamma’$ yielded by Transformation-D is normalized and $(2, 2)$-transition
restricted, and the proof of the next theorem can be easily completed.

Theorem 3.4 ([19])
The net $\gamma’$ yielded by Transformation-D on the input $\gamma$ satisfies $\gamma\approx_{PW}\gamma’$ .

Conclusions

We have proposed a replacement technique of Petri nets and some congruences preserving
the process and partial word equivalence between the original net and the net yielded by
replacement. The ”power” of these congruences have been proved by reporting them to
different transformations of Petri nets known from literature.
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