Note on representations of generalized inverse *-semigroups¹ Teruo IMAOKA and Takahide OGAWA (今岡 輝男,尾川 孝英) Department of Mathematics, Shimane University Matsue, Shimane 690, Japan #### **Abstract** The Munn representation of an inverse semigroup S, in which the semigroup is represented by isomorphisms between principal ideals of the semilattice E(S), is not always faithful. By introducing a concept of a presemilattice, Reilly considered of enlarging the carrier set E(S) of the Munn representation in order to obtain a faithful representation of S as an inverse subsemigroup of a structure resembling the Munn semigroup $T_{E(S)}$. The purpose of this paper is to obtain a generalization of the Reilly's results for generalized inverse *-semigroups. ## 1 Introduction A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies - $(x^*)^* = x,$ - $(ii) (xy)^* = y^*x^*,$ - $(iii) xx^*x = x.$ Let S be a regular *-semigroup. An idempotent e in S is called a *projection* if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively. Let S be a regular *-semigroup. It is called a *locally inverse* *-semigroup if, for any $e \in E(S)$, eSe is an inverse subsemigroup of S. If E(S) is a normal band, then S is called a *generalized inverse* *-semigroup. Let S and T be regular *-semigroups. A homomorphism $\phi: S \to T$ is called a *-homomorphism if $(a\phi)^* = a^*\phi$. A congruence σ on S is called a *-congruence if ¹This is the abstract and the details will be published elsewhere $(a\sigma)^* = a^*\sigma$. A *-congruence σ on S is said to be *idempotent-separating* if $\sigma \subseteq \mathcal{H}$, where \mathcal{H} is one of the Green's relations. Denote the maximum idempotent-separating *-congruence on S by μ_S or simply by μ . If μ_S is the identity relation on S, S is called *fundamental*. The following results are well-known, and we use them frequently throughout this paper. Result 1.1 [2]. Let S be a regular *-semigroup. Then we have the following: - (1) $E(S) = P(S)^2$; - (2) for any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$; - (3) each \mathcal{L} -class and each \mathcal{R} -class have one and only one projection; - (4) $\mu_S = \{(a, b) \in S \times S : a^*ea = b^*eb \text{ and } aea^* = beb^* \text{ for all } e \in P(S)\}.$ For a mapping $\alpha: A \to B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C. As a generalization of the Preston-Vagner representations, one of the authors gave two types of representations of locally [generalized] inverse *-semigroups in [3], [4] and [5]. In this paper, we follow [5]. A non-empty set X with a reflexive and symmetric relation σ is called an ι -set, and denoted by $(X; \sigma)$. If σ is transitive, that is, if σ is an equivalence relation on X, $(X; \sigma)$ is called a transitive ι -set. Let $(X; \sigma)$ be an ι -set. A subset A of X is called an ι -single subset of $(X; \sigma)$ if it satisfies the following condition: for any $x \in X$, there exists at most one element $y \in A$ such that $(x, y) \in \sigma$. We consider the empty set to be an ι -single subset. We remark that if $(X; \sigma)$ is a transitive ι -set, a subset A of X is an ι -single subset if and only if, for $x, y \in A$, $(x, y) \in \sigma$ implies x = y. A mapping α in \mathcal{I}_X , the symmetric inverse semigroup on X, is called a *partial one-to-one* ι -mapping on $(X; \sigma)$ if $d(\alpha), r(\alpha)$ are both ι -single subsets of $(X; \sigma)$, where $d(\alpha)$ and $r(\alpha)$ are the domain and the range of α , respectively. Denote the set of all partial one-to-one ι -mappings of $(X; \sigma)$ by $\mathcal{LI}_{(X; \sigma)}$. For any ι -single subsets A and B of $(X; \sigma)$, define $\theta_{A,B}$ by $$\theta_{A,B} = \{(a,b) \in A \times B : (a,b) \in \sigma\} = (A \times B) \cap \sigma.$$ Since a subset of an ι -single subset is also an ι -single subset, $\theta_{A,B} \in \mathcal{LI}_{(X;\sigma)}$. For any $\alpha, \beta \in \mathcal{LI}_{(X;\sigma)}$, define $\theta_{\alpha,\beta}$ by $\theta_{\alpha,\beta} = \theta_{r(\alpha),d(\beta)}$, and let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in \mathcal{LI}_{(X;\sigma)}\}$, an indexed set of one-to-one partial functions. Now, define a multiplication \circ and a unary operation * on $\mathcal{LI}_{(X;\sigma)}$ as follows: $$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta$$ and $\alpha^* = \alpha^{-1}$, where the multiplication of the right side of the first equality is that of \mathcal{I}_X . Denote $(\mathcal{L}\mathcal{I}_{(X;\sigma)}, \circ, *)$ by $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$ or simply by $\mathcal{L}\mathcal{I}_{(X;\sigma)}$. In this paper, we use $\mathcal{L}\mathcal{I}_{(X;\sigma)}$ rather than $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$. Result 1.2 [5]. For any ι -set $(X;\sigma)$, $\mathcal{LI}_{(X;\sigma)}$, defined above, is a locally inverse *-semigroup. If $(X;\sigma)$ is a transitive ι -set, then $\mathcal{LI}_{(X;\sigma)}$ is a generalized inverse *-semigroup. In this case, we denote it by $\mathcal{GI}_{(X;\sigma)}$ instead of $\mathcal{LI}_{(X;\sigma)}$. Moreover, if σ is the identity relation on X, then $\mathcal{LI}_{(X;\sigma)}$ is the symmetric inverse semigroup \mathcal{I}_X on X. We call $\mathcal{LI}_{(X;\sigma)}$ [$\mathcal{GI}_{(X;\sigma)}$] the ι -symmetric locally [generalized] inverse *-semigroup on the ι -set [the transitive ι -set] $(X;\sigma)$ with the structure sandwich set \mathcal{M} . Let S be a regular *-semigroup, and define a relation Ω on S as follows: $$(x,y) \in \Omega \iff \text{there exists } e \in E(S) \text{ such that } x\rho_e = y,$$ where $\rho_a(a \in S)$ is the mapping of Sa^* onto Sa defined by $x\rho_a = xa$. Result 1.3 [5]. Let S be a locally inverse *-semigroup. For each $a \in S$, let $$\rho_a: x \mapsto xa \quad (x \in d(\rho_a) = Sa^*).$$ Then a mapping $$\rho: a \mapsto \rho_a$$ is a *-monomorphism of S into $\mathcal{LI}_{(S;\Omega)}(\mathcal{M})$. For a partial groupoid X, if there exist a semilattice Y, a partition $\pi: X \sim \sum \{X_e : e \in Y\}$ of X and mappings $\varphi_{e,f}: X_e \to X_f$ ($e \ge f$ in Y) such that - (1) for any $e \in Y$, $\varphi_{e,e} = 1_{X_e}$, - (2) if $e \geq f \geq g$, then $\varphi_{e,f}\varphi_{f,g} = \varphi_{e,g}$, - (3) for $x \in X_e$, $y \in X_f$, xy is defined in X if and only if $x\varphi_{e,ef} = y\varphi_{f,ef}$, and in this case $xy = x\varphi_{e,ef}$, then X is called a *strong* π -groupoid with mappings $\{\varphi_{e,f}: e, f \in Y, e \geq f\}$, and it is denoted by $X(\pi; Y; \{\varphi_{e,f}\})$ or simply by $X(\pi)$. Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. A subset A of X is called a π -singleton subset of $X(\pi; Y; \{\varphi_{e,f}\})$, if there exists $e \in Y$ such that $$|A \cap X_f| = \begin{cases} 1 & \text{if } f \in \langle e \rangle, \\ 0 & \text{otherwise,} \end{cases}$$ $$(A \cap X_f)\varphi_{f,g} = A \cap X_g$$ for any $f,g \in \langle e \rangle$ such that $f \geq g$, where $\langle e \rangle$ is the principal ideal of Y generated by e. In this case, we sometimes denote the π -singleton subset A by A(e). If A(e) is a π -singleton subset, then $|A \cap X_f| = 1$ for any $f \in \langle e \rangle$. We denote the only one element of $A \cap X_f$ by a_f . We remark that, for any π -singleton subset A(e), $A(e) = \{a_e \varphi_{e,f} : f \in \langle e \rangle\}$. Denote the set of all π -singleton subsets of $X(\pi; Y; \{\varphi_{e,f}\})$ by \mathcal{X} . Two π -singleton subsets A(e) and B(f) are said to be π -isomorphic to each other, if there exists an isomorphism $\overline{\alpha}: \langle e \rangle \to \langle f \rangle$ as semilattices. In this case, the mapping $\alpha: A(e) \to B(f)$ defined by $a_g \alpha = b_{g\overline{\alpha}} \ (g \in \langle e \rangle)$ is called a π -isomorphism of A(e) to B(f). It is obvious that α is a bijection of A(e) onto B(f), and hence $\alpha \in \mathcal{I}_X$. Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. Define an equivalence relation $\mathcal U$ on $\mathcal X$ by $$\mathcal{U} = \{(A(e), B(f)) \in \mathcal{X} \times \mathcal{X} : \langle e \rangle \cong \langle f \rangle \text{ (as semilattices)} \}.$$ For $(A(e), B(f)) \in \mathcal{U}$, let $T_{A(e),B(f)}$ be the set of all π -isomorphisms of A(e) onto B(f), and let $$T_{X(\pi)} = \bigcup_{(A(e),B(f))\in\mathcal{U}} T_{A(e),B(f)}.$$ For any $\alpha, \beta \in T_{X(\pi)}$, define a mapping $\theta_{\alpha,\beta}$ as follows: $$\begin{split} d(\theta_{\alpha,\beta}) &= \{a \in r(\alpha) : \text{there exist } e \in Y \text{ and } b \in d(\beta) \text{ such that } a,b \in X_e\}, \\ r(\theta_{\alpha,\beta}) &= \{b \in d(\beta) : \text{there exist } e \in Y \text{ and } a \in r(\alpha) \text{ such that } a,b \in X_e\}, \\ a\theta_{\alpha,\beta} &= b \quad \text{if } r(\alpha) \cap X_e = \{a\} \text{ and } d(\beta) \cap X_e = \{b\}. \end{split}$$ Then $\theta_{\alpha,\beta} \in T_{X(\pi)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{X(\pi)}\}$, and define a multiplication \circ and a unary operation * on $T_{X(\pi)}$ by $$lpha \circ eta = lpha heta_{lpha,eta} eta, \ lpha^* = lpha^{-1}.$$ Then $T_{X(\pi)}(\circ, *)$ is a regular *-semigroup. We denote it by $T_{X(\pi)}(\mathcal{M})$. Result 1.4 [4]. A regular *-semigroup $T_{X(\pi)}(\mathcal{M})$ is a generalized inverse *-semigroup whose set of projections is partially isomorphic to X. Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. Then $\pi : P \sim \sum \{P_i : i \in I\}$ is a partition of P. For any $i, j \in I$ ($i \geq j$), define a mappig $\varphi_{i,j} : P_i \to P_j$ by $$e\varphi_{i,j} = efe$$ for some (any) $f \in P_j$. Then $P(\pi; I; \{\varphi_{i,j}\})$ is a strong π -groupoid. Result 1.5 [4]. Let S be a generalized inverse *-semigroup. For each $a \in S$, let $$\tau_a: e \mapsto a^*ea \quad (e \in d(\tau_a) = P(Sa^*)).$$ Then a mapping $\tau : a \mapsto \tau_a$ is a *-homomorphism of S into $T_{P(\pi)}(\mathcal{M})$ such that $\tau \circ \tau^{-1} = \mu$. A regular *-subsemigroup T of a regular *-semigroup S is said to be \mathcal{P} -full if P(T) = P(S). Result 1.6 [4]. A generalized inverse *-semigroup S is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{X(\pi)}(\mathcal{M})$ on a strong π -groupoid $X(\pi; I; \{\varphi_{i,j}\})$ such that $P(T_{X(\pi)}(\mathcal{M}))$ is partially isomorphic to P(S). In § 2, by introducing the concept of partially ordered ϱ -set $(X(\unlhd); \{\phi_x\})$, we construct a fundamental generalized inverse *-semigroup $T_{X(\unlhd)}(\mathcal{M})$. Also, we shall see that $T_{X(\unlhd)}(\mathcal{M})$ has similar properties with $T_{X(\pi)}(\mathcal{M})$, where $T_{X(\pi)}(\mathcal{M})$ has been given by T. Imaoka, I. Inata and H. Yokoyama [4]. And we shall show that two concepts, strong π -groupoids and partially ordered ϱ -sets, are equivalent. In § 3, we shall introduce the notion of ω -set $(X(\preccurlyeq);\sigma)$, and construct a generalized inverse *-semigroup $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$. Furthermore, let S be a generalized inverse *-semigroup with the set of projections P, we shall make two generalized inverse *-semigroups $T_{P(\preceq)}(\mathcal{M})$ and $T_{(S(\preccurlyeq);\Omega)}(\mathcal{M})$, where the former is obtained in § 2, and the latter is constructed in this section. Then we shall show that these three semigroups make a commutative diagram. # 2 Fundamental generalized inverse *-semigroups ## 2.1 $T_{X(\unlhd)}(\mathcal{M})$ Let $X(\unlhd)$ be a partially ordered set and , for each $x \in X$, consider an order-preserving mapping $\phi_x: X \to X$. If a relation $\varrho = \{(x,y) \in X \times X : y\phi_x = x, x\phi_y = y\}$ is an equivalence relation on X such that - (P1) $x \leq y \Longrightarrow$ for each $y' \in y\varrho$, there exists $x' \in x\varrho$ such that $x' \leq y'$, - (P2) a relation $\leq = \{(x\varrho, y\varrho) \in X/\varrho \times X/\varrho : \text{ there exists } x' \in x\varrho \text{ such that } x' \leq y\}$ is a partial order and $X/\varrho(\leq)$ is a semilattice, - (P3) $x_1 \leq y, x_2 \leq y$ and $x_1 \varrho \leq x_2 \varrho \Longrightarrow x_1 \leq x_2$, then $(X(\unlhd); \{\phi_x\})$ is called a partially ordered ϱ -set. Let $(X(\unlhd); \{\phi_x\})$ be a partially ordered ϱ -set. Define an equivalence relation \mathcal{U} on \mathcal{X} by $$\mathcal{U} = \{ (\langle a \rangle, \langle b \rangle) \in \mathcal{X} \times \mathcal{X} : \langle a \rangle \simeq \langle b \rangle (order\ isomorphic) \},$$ where \mathcal{X} is the set of all principal ideals of $(X(\unlhd); \{\phi_x\})$. For $(\langle a \rangle, \langle b \rangle) \in \mathcal{U}$, let $T_{\langle a \rangle, \langle b \rangle}$ be the set of all (order) isomorphisms of $\langle a \rangle$ onto $\langle b \rangle$, and let $$T_{X(riangleleft)} = igcup_{(\langle oldsymbol{a} angle, \langle oldsymbol{b} angle) \in \mathcal{U}} T_{\langle oldsymbol{a} angle, \langle oldsymbol{b} angle}.$$ For any $\alpha, \beta \in T_{X(\underline{\triangleleft})}$, define a mapping $\theta_{\alpha,\beta}$ as follows: $$heta_{lpha,eta}=\{(x,y)\in r(lpha) imes d(eta):\, (x,y)\in arrho\},$$ where ϱ is defined in $(X(\unlhd); \{\phi_x\})$. Then $\theta_{\alpha,\beta} \in T_{X(\unlhd)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{X(\unlhd)}\}$, and define a multiplication o and a unary operation * on $T_{X(\unlhd)}$ by $$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$ $$\alpha^* = \alpha^{-1}.$$ Then it is clear that $T_{X(\underline{\triangleleft})}(\circ, *)$ is a regular *-subsemigroup of the ι -symmetric generalized inverse *-semigroup $\mathcal{GI}_{(X;\varrho)}(\mathcal{M})$. Hence it is a generalized inverse *-semigroup and denoted by $T_{X(\underline{\triangleleft})}(\mathcal{M})$. Let S be a generalized inverse *-semigroup and P = P(S). We consider P as a partially ordered set with respect to the natural order. Now, we have the following results. **Theorem 2.1** A regular *-semigroup $T_{X(\unlhd)}(\mathcal{M})$ is a generalized inverse *-semigroup whose set of projections is order isomorphic to $X(\unlhd)$. Corollary 2.2 A partially ordered set X is order isomorphic to the set of projections of a generalized inverse *-semigroup if and only if it is a partially ordered ϱ -set. #### 2.2 Representations Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. For any $e \in P$, define a mapping $\phi_e : P \to P$ by $$f\phi_e = efe$$. Let $e, f \in P$, define a relation \leq on P by $$e \trianglelefteq f \iff e = fef$$ that is, \leq is the restriction of natural order on S to P. Lemma 2.3 The set $(P(\unlhd); \{\phi_e\})$, defined above, is a partially ordered ϱ -set. Now, we can consider the generalized inverse *-semigroup $T_{P(\unlhd)}(\mathcal{M})$, where $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha \text{ and } \beta \text{ are order isomorphisms among principal ideals of } (P(\unlhd); \{\phi_e\})\}.$ Lemma 2.4 For any $a \in S$, $P(Sa) (= P(Sa^*a))$ is a principal ideal of $(P(\unlhd); \{\phi_e\})$. For any $a \in S$, define a mapping $\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle$ by $$e\tau_a = a^*ea$$ where $e \in \langle aa^* \rangle$. It follows from [4] that $\tau_a \in T_{S(\unlhd)}$ and $\tau_a^* = \tau_{a^*}$. Moreover, for any $a, b \in S$, $\theta_{\tau_a,\tau_b} = \tau_{a^*abb^*}$. And we have the following theorem. Theorem 2.5 Let S be a generalized inverse *-semigroup such that E(S) = E and P(S) = P. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E and $P_i = P(E_i)$. Denote the restriction of the natural order on S to P by \subseteq . For any $e \in P$, define a mapping $\phi_e : P \to P$ by $f\phi_e = efe$. Then $(P(\subseteq); \{\phi_e\})$ is a partially ordered e-set and $T_{P(\subseteq)}(\mathcal{M})$ is a generalized inverse *-semigroup. Moreover, for any $a \in S$, define a mapping $\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle$ by $e\tau_a = a^*ea$. Then a mapping $\tau : S \to T_{P(\unlhd)}(\mathcal{M})$ $(a \mapsto \tau_a)$ is a *-homomorphism and the kernel of τ is the maximum idempotent-separating *-congruence on S. Now, we have the following theorem. Theorem 2.6 A generalized inverse *-semigroup S is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{X(\unlhd)}(\mathcal{M})$ on a partially ordered ϱ -set $(X(\unlhd); \{\phi_x\})$ such that $P(T_{X(\unlhd)}(\mathcal{M}))$ is order isomorphic to P(S). Denote the sets of all partially ordered ϱ -sets and the set of all strong π -groupoids by $\mathbb P$ and $\mathbb S$, respectively. Remark 2.7 Let $(X(\unlhd); \{\phi_x\})$ be any element of \mathbb{P} . For any $x\varrho, y\varrho \in X/\varrho$ $(x\varrho \ge y\varrho)$, define a mapping $\overline{\varphi}_{x\varrho,y\varrho}: X_{x\varrho} \to X_{y\varrho}$ by $$x'\overline{\varphi}_{x\varrho,y\varrho} = y'$$, where $y' \in y\varrho$ such that $y' \leq x'$. Moreover, we define a partial product on X as follows: $$xy = egin{cases} x\overline{arphi}_{xarrho,(xarrho)(yarrho)} & if\ x\overline{arphi}_{xarrho,(xarrho)(yarrho)} = y\overline{arphi}_{yarrho,(xarrho)(yarrho)} \ undefined & otherwise. \end{cases}$$ Then $(X(\unlhd); \{\phi_x\})\lambda = X(\pi_\varrho; X/\varrho; \{\overline{\varphi}_{x\varrho,y\varrho}\})$ is a strong π -groupoid, where π_ϱ is the partition of X induced by ϱ . Conversely, let $X(\pi; Y; \{\varphi_{e,f}\})$ be any element of S. For any $x \in X$, define a mapping $\overset{\sim}{\phi}_x : X \to X$ by $$y\widetilde{\phi}_{m{x}} = x \varphi_{m{e},m{e}m{f}},$$ where $x \in X_e$ and $y \in X_f$. If we define $\blacktriangleleft = \{(x,y) \in X \times X : x\widetilde{\phi}_y = x\}$, then $X(\pi;Y;\{\varphi_{e,f}\})\mu = (X(\blacktriangleleft);\{\widetilde{\phi}_x\})$ is a partially ordered ϱ -set. Hence the mappings λ , μ from \mathbb{P} to \mathbb{S} and from \mathbb{S} to \mathbb{P} , respectively, are well-defined. Moreover $\mu\lambda = 1_{\mathbb{S}}$, and for any $(X(\unlhd); \{\phi_x\}) \in \mathbb{P}$, if $(X(\unlhd); \{\phi_x\})\lambda\mu = (X(\blacktriangleleft); \{\widetilde{\phi}_x\})$, then $\unlhd = \blacktriangleleft$. By the above argument, for any $(X(\unlhd); \{\phi_x\})$ in \mathbb{P} , without loss of generality, we can consider $(X(\unlhd); \{\phi_x\})$ as a member of $\mathbb{P}\lambda\mu$. Now, let $X(\pi; Y; \{\varphi_{e,f}\})$ be any element of \mathbb{S} . If $X(\pi; Y; \{\varphi_{e,f}\})\mu = (X(\unlhd); \{\phi_x\})$. Then we can construct two generalized inverse *-semigroups $T_{X(\pi)}(\mathcal{M})$ and $T_{X(\unlhd)}(\mathcal{M})$. In this case, these two generalized inverse *-semigroups are *-isomorphic. # 3 Extensions of $T_{X(\unlhd)}(\mathcal{M})$ # 3.1 $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$ By a *pre-order* on a set X we shall mean a reflexive and transitive relation. Let $X(\leq)$ be a pre-ordered set and let $\nu = \{(a,b) \in X \times X : a \leq b \text{ and } b \leq a\}$. Then ν is an equivalence relation on X and X/ν is a partially ordered set with respect to the induced relation (C1) $$a\nu \leq b\nu$$ if and only if $a \leq b$. We call \leq the naturally induced order on X/ν from \leq . Clearly ν is the smallest equivalence relation on X for which (C1) defines a partial order on X/ν . We call ν the minimum partial order congruence (mpo-congruence) on X from \leq . A subset A of X is an *ideal* of X provided that $x \leq y$ and $y \in A$ implies $x \in A$. For $a \in X$, we call $\{x \in X : x \leq a\}$ the *principal ideal generated* by a and denote it by $\langle a \rangle$. A bijection α of one pre-ordered set X onto another Y will be called an *isomorphism* provided that, for $a, b \in X$, $a \leq b$ if and only if $a\alpha \leq b\alpha$. In particular, if ν_X and ν_Y denote the respective mpo-congruences then $(a,b) \in \nu_X$ if and only if $(a\alpha,b\alpha) \in \nu_Y$. Let $X(\preccurlyeq)$ be a pre-ordered set and ν the mpo-congruence from \preccurlyeq . Then X is a partially pre-ordered ϱ -set if and only if X/ν is a partially ordered ϱ -set with respect to the naturally induced order \preceq from \preccurlyeq . Let $X(\preceq)$ be a partially pre-ordered ϱ -set and σ an equivalence relation on X such that - (O1) for any x in X, $\langle x \rangle$ is an ι -single subset with respect to σ , - (O2) for x, y in X, if $(x, y) \in \sigma$ then $(x\nu, y\nu) \in \varrho$, - (O3) for x, y, z in X, if $(x\nu)\varrho \wedge (y\nu)\varrho = (z\nu)\varrho$, $z_1\nu \leq x\nu$ and $z_2\nu \leq y\nu$ $(z_1\nu, z_2\nu \in (z\nu)\varrho)$, then for any $a \in \langle z_i \rangle$, there exists $b \in \langle z_j \rangle$ such that $(a, b) \in \sigma$, where $1 \leq i, j \leq 2$. Then $(X(\preccurlyeq); \sigma)$ is called an ω -set. Let $(X(\preceq); \sigma)$ be an ω -set and let $T_{(X(\preceq);\sigma)}$ denote the set of all isomorphisms from a principal ideal onto another one. For any α , $\beta \in T_{(X(\preceq);\sigma)}$, define a mapping $\theta_{\alpha,\beta}$ as follows: $$\theta_{\alpha,\beta} = \{(a,b) \in r(\alpha) \times d(\beta) : (a,b) \in \sigma\}.$$ Then $\theta_{\alpha,\beta} \in T_{(X(\preccurlyeq);\sigma)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{(X(\preccurlyeq);\sigma)}\}$, and denote a multiplication \circ and a unary operation * on $T_{(X(\preccurlyeq);\sigma)}$ by $$lpha \circ eta = lpha heta_{lpha,eta} eta, \ lpha^* = lpha^{-1}.$$ Clearly, $\alpha \circ \beta$ is an isomorphism from $\langle z_1 \alpha^{-1} \rangle$ onto $\langle z_2 \beta \rangle$. It is obvious that $T_{(X(\preccurlyeq);\sigma)}(\circ, *)$ is a regular *-semigroup. Hence it is a generalized inverse *-semigroup and denoted by $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$. Theorem 3.1 A regular *-semigroup $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$ is a generalized inverse *-subsemi-group of $\mathcal{GI}_{(X;\sigma)}(\mathcal{M})$ whose set of projections is order isomorphic to X/ν . Remark 3.2 In $T_{(X(\preceq);\sigma)}(\mathcal{M})$, if $\preceq = \subseteq$ and $\sigma = \varrho$ then $T_{(X(\unlhd);\varrho)}(\mathcal{M}) = T_{X(\unlhd)}(\mathcal{M})$. Let $(X(\preceq); \sigma)$ be an ω -set and let $Y = X/\nu$, where ν is the mpo-congruence from \preceq . For any element α in $T_{(X(\preceq);\sigma)}$, assume that $d(\alpha) = \langle a \rangle$. Then we can define a new mapping $\alpha' \in T_{Y(\preceq)}$ as follows: $$d(lpha') = \{x u : x \in d(lpha)\}, \ (x u)lpha' = (xlpha) u.$$ Then $\alpha' \in T_{Y(\underline{\triangleleft})}$. Now, define a mapping $\xi : T_{(X(\underline{\triangleleft});\sigma)}(\mathcal{M}) \to T_{Y(\underline{\triangleleft})}(\mathcal{M})$ by $\alpha \xi = \alpha'$. Then, it is easy to see that ξ is a *-homomorphism. Proposition 3.3 The mapping $\xi : \alpha \mapsto \alpha'$ of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ into $T_{Y(\unlhd)}(\mathcal{M})$ is a *-homomorphism of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ onto a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{Y(\unlhd)}(\mathcal{M})$ such that $\xi \circ \xi^{-1} = \mu$, where μ is the maximum idempotent separating *-congruence on $T_{(X(\preceq);\sigma)}(\mathcal{M})$. Hereafter, we shall refer to ξ as the *natural projection* of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ to $T_{Y(\preceq)}(\mathcal{M})$. ## 3.2 Inflated representations Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Define a relation \leq on S by: $$a \leq b$$ if and only if $a^*a \leq b^*b$, for $a, b \in S$. Then clearly \preceq is a pre-order on S for which the mpo-congruence from \preceq is $\nu = \mathcal{L}$. Hence $S/\mathcal{L} = S/\nu$, under the naturally induced order \preceq from \preceq , is just the set of \mathcal{L} -classes of S under the usual partial ordering of the \mathcal{L} -classes of a generalized inverse *-semigroup and so is order isomorphic to the partially ordered ϱ -set P of S. Hence S is a partially pre-ordered ϱ -set under \preceq . Then $\varrho = \mathcal{J}^E|_P$ and hence $(a\nu)\varrho(b\nu) \iff a^*a\mathcal{J}^Eb^*b$. Hereafter, for any $a \in S$, we think $a\nu = L_{a^*a}$ as a^*a . For any $a \in S$, define a mapping $\rho_a : Sa^* \to Sa$ as follows: $$d(ho_a) = Sa^* (= Saa^*), \ x ho_a = xa.$$ Let $\rho: S \to \mathcal{GI}_{(S;\Omega)}(\mathcal{M})$ by $a\rho = \rho_a$, where the relation Ω defined by: for $x, y \in S$, $$(x,y) \in \Omega \iff x\rho_e = y \text{ for some } e \in E.$$ Since S is a regular *-semigroup, the representation ρ is faithful. Moreover, it follows from [6, Lemma 3.3] that it is a *-monomorphism. **Lemma 3.4** The set $(S(\preceq); \Omega)$, defined above, is an ω -set. Again, we consider $\rho_a: Sa^* \to Sa$. By Lemma 3.4, $d(\rho_a) = \langle a^* \rangle$ and $r(\rho_a) = \langle a \rangle$. For $x, y \in d(\rho_a)$, $x^*x, y^*y \leq a^*a$. Now $x \preccurlyeq y$ if and only if $x^*x \leq y^*y$ while $xa \preccurlyeq ya$ if and only if $a^*x^*xa = (xa)^*(xa) \leq (ya)^*(ya) = a^*y^*ya$. But, since $x^*x, y^*y \leq a^*a$ it follows that $x^*x \leq y^*y$ if and only if $a^*x^*xa \leq a^*y^*ya$. Therefore $x \preccurlyeq y$ if and only if $xa \preccurlyeq ya$. Thus $xa \preccurlyeq ya$ is an isomorphism of $xa \preccurlyeq ya$ onto $xa \preccurlyeq ya$, and hence $xa \preccurlyeq ya$. Now, we have the following theorem. Theorem 3.5 Let S be a generalized inverse *-semigroup and define the relation \preceq on S by $a \preceq b$ if and only if $a^*a \leq b^*b$. Then \preceq is a pre-order on S with respect to which S is a partially pre-ordered ϱ -set, moreover $(S(\preceq);\Omega)$ is an ω -set. The faithful representation ϱ of S embeds S as a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{(S(\preceq);\Omega)}(\mathcal{M})$. If ν is the mpo-congruence on S from \preccurlyeq , then $\nu = \mathcal{L}$ and S/ν is order isomorphic to the partially ordered ϱ -set P of S. Moreover, $\rho \xi = \tau$, where ξ is the natural projection and τ is the representation which is defined in Theorem 2.5. ### References [1] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976. - [2] T. Imaoka, On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14(1980), 19–23. - [3] T. Imaoka, Representations of generalized inverse *- semigroups, Acta Sci. Math. (Szeged) 61(1995), 171–180. - [4] T. Imaoka, I. Inata and H. Yokoyama, Fundamental generalized inverse *-semigroups, Mem. Fac. Sci. Shimane Univ. 29(1995), 11-17. - [5] T. Imaoka, I. Inata and H. Yokoyama, Representations of locally inverse *-semigroups, Internat. J. Algebra Comput., to appear. - [6] T. Imaoka and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum, to appear. - [7] N. R. Reilly, Enlarging the Munn representation of inverse semigroups, J. Austral. Math. Soc. 23(1977), 28-41.