Note on representations of generalized inverse *-semigroups¹

Teruo IMAOKA and Takahide OGAWA (今岡 輝男,尾川 孝英)

Department of Mathematics, Shimane University Matsue, Shimane 690, Japan

Abstract

The Munn representation of an inverse semigroup S, in which the semigroup is represented by isomorphisms between principal ideals of the semilattice E(S), is not always faithful. By introducing a concept of a presemilattice, Reilly considered of enlarging the carrier set E(S) of the Munn representation in order to obtain a faithful representation of S as an inverse subsemigroup of a structure resembling the Munn semigroup $T_{E(S)}$.

The purpose of this paper is to obtain a generalization of the Reilly's results for generalized inverse *-semigroups.

1 Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular *-semigroup if it satisfies

- $(x^*)^* = x,$
- $(ii) (xy)^* = y^*x^*,$
- $(iii) xx^*x = x.$

Let S be a regular *-semigroup. An idempotent e in S is called a *projection* if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively.

Let S be a regular *-semigroup. It is called a *locally inverse* *-semigroup if, for any $e \in E(S)$, eSe is an inverse subsemigroup of S. If E(S) is a normal band, then S is called a *generalized inverse* *-semigroup.

Let S and T be regular *-semigroups. A homomorphism $\phi: S \to T$ is called a *-homomorphism if $(a\phi)^* = a^*\phi$. A congruence σ on S is called a *-congruence if

¹This is the abstract and the details will be published elsewhere

 $(a\sigma)^* = a^*\sigma$. A *-congruence σ on S is said to be *idempotent-separating* if $\sigma \subseteq \mathcal{H}$, where \mathcal{H} is one of the Green's relations. Denote the maximum idempotent-separating *-congruence on S by μ_S or simply by μ . If μ_S is the identity relation on S, S is called *fundamental*. The following results are well-known, and we use them frequently throughout this paper.

Result 1.1 [2]. Let S be a regular *-semigroup. Then we have the following:

- (1) $E(S) = P(S)^2$;
- (2) for any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$;
- (3) each \mathcal{L} -class and each \mathcal{R} -class have one and only one projection;
- (4) $\mu_S = \{(a, b) \in S \times S : a^*ea = b^*eb \text{ and } aea^* = beb^* \text{ for all } e \in P(S)\}.$

For a mapping $\alpha: A \to B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C.

As a generalization of the Preston-Vagner representations, one of the authors gave two types of representations of locally [generalized] inverse *-semigroups in [3], [4] and [5]. In this paper, we follow [5]. A non-empty set X with a reflexive and symmetric relation σ is called an ι -set, and denoted by $(X; \sigma)$. If σ is transitive, that is, if σ is an equivalence relation on X, $(X; \sigma)$ is called a transitive ι -set.

Let $(X; \sigma)$ be an ι -set. A subset A of X is called an ι -single subset of $(X; \sigma)$ if it satisfies the following condition:

for any $x \in X$, there exists at most one element $y \in A$ such that $(x, y) \in \sigma$.

We consider the empty set to be an ι -single subset. We remark that if $(X; \sigma)$ is a transitive ι -set, a subset A of X is an ι -single subset if and only if, for $x, y \in A$, $(x, y) \in \sigma$ implies x = y. A mapping α in \mathcal{I}_X , the symmetric inverse semigroup on X, is called a *partial one-to-one* ι -mapping on $(X; \sigma)$ if $d(\alpha), r(\alpha)$ are both ι -single subsets of $(X; \sigma)$, where $d(\alpha)$ and $r(\alpha)$ are the domain and the range of α , respectively. Denote the set of all partial one-to-one ι -mappings of $(X; \sigma)$ by $\mathcal{LI}_{(X; \sigma)}$.

For any ι -single subsets A and B of $(X; \sigma)$, define $\theta_{A,B}$ by

$$\theta_{A,B} = \{(a,b) \in A \times B : (a,b) \in \sigma\} = (A \times B) \cap \sigma.$$

Since a subset of an ι -single subset is also an ι -single subset, $\theta_{A,B} \in \mathcal{LI}_{(X;\sigma)}$. For any $\alpha, \beta \in \mathcal{LI}_{(X;\sigma)}$, define $\theta_{\alpha,\beta}$ by $\theta_{\alpha,\beta} = \theta_{r(\alpha),d(\beta)}$, and let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in \mathcal{LI}_{(X;\sigma)}\}$, an indexed set of one-to-one partial functions. Now, define a multiplication \circ and a unary operation * on $\mathcal{LI}_{(X;\sigma)}$ as follows:

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta$$
 and $\alpha^* = \alpha^{-1}$,

where the multiplication of the right side of the first equality is that of \mathcal{I}_X . Denote $(\mathcal{L}\mathcal{I}_{(X;\sigma)}, \circ, *)$ by $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$ or simply by $\mathcal{L}\mathcal{I}_{(X;\sigma)}$. In this paper, we use $\mathcal{L}\mathcal{I}_{(X;\sigma)}$ rather than $\mathcal{L}\mathcal{I}_{(X;\sigma)}(\mathcal{M})$.

Result 1.2 [5]. For any ι -set $(X;\sigma)$, $\mathcal{LI}_{(X;\sigma)}$, defined above, is a locally inverse *-semigroup. If $(X;\sigma)$ is a transitive ι -set, then $\mathcal{LI}_{(X;\sigma)}$ is a generalized inverse *-semigroup. In this case, we denote it by $\mathcal{GI}_{(X;\sigma)}$ instead of $\mathcal{LI}_{(X;\sigma)}$.

Moreover, if σ is the identity relation on X, then $\mathcal{LI}_{(X;\sigma)}$ is the symmetric inverse semigroup \mathcal{I}_X on X.

We call $\mathcal{LI}_{(X;\sigma)}$ [$\mathcal{GI}_{(X;\sigma)}$] the ι -symmetric locally [generalized] inverse *-semigroup on the ι -set [the transitive ι -set] $(X;\sigma)$ with the structure sandwich set \mathcal{M} .

Let S be a regular *-semigroup, and define a relation Ω on S as follows:

$$(x,y) \in \Omega \iff \text{there exists } e \in E(S) \text{ such that } x\rho_e = y,$$

where $\rho_a(a \in S)$ is the mapping of Sa^* onto Sa defined by $x\rho_a = xa$.

Result 1.3 [5]. Let S be a locally inverse *-semigroup. For each $a \in S$, let

$$\rho_a: x \mapsto xa \quad (x \in d(\rho_a) = Sa^*).$$

Then a mapping

$$\rho: a \mapsto \rho_a$$

is a *-monomorphism of S into $\mathcal{LI}_{(S;\Omega)}(\mathcal{M})$.

For a partial groupoid X, if there exist a semilattice Y, a partition $\pi: X \sim \sum \{X_e : e \in Y\}$ of X and mappings $\varphi_{e,f}: X_e \to X_f$ ($e \ge f$ in Y) such that

- (1) for any $e \in Y$, $\varphi_{e,e} = 1_{X_e}$,
- (2) if $e \geq f \geq g$, then $\varphi_{e,f}\varphi_{f,g} = \varphi_{e,g}$,
- (3) for $x \in X_e$, $y \in X_f$, xy is defined in X if and only if $x\varphi_{e,ef} = y\varphi_{f,ef}$, and in this case $xy = x\varphi_{e,ef}$,

then X is called a *strong* π -groupoid with mappings $\{\varphi_{e,f}: e, f \in Y, e \geq f\}$, and it is denoted by $X(\pi; Y; \{\varphi_{e,f}\})$ or simply by $X(\pi)$.

Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. A subset A of X is called a π -singleton subset of $X(\pi; Y; \{\varphi_{e,f}\})$, if there exists $e \in Y$ such that

$$|A \cap X_f| = \begin{cases} 1 & \text{if } f \in \langle e \rangle, \\ 0 & \text{otherwise,} \end{cases}$$

$$(A \cap X_f)\varphi_{f,g} = A \cap X_g$$
 for any $f,g \in \langle e \rangle$ such that $f \geq g$,

where $\langle e \rangle$ is the principal ideal of Y generated by e. In this case, we sometimes denote the π -singleton subset A by A(e). If A(e) is a π -singleton subset, then $|A \cap X_f| = 1$ for any $f \in \langle e \rangle$. We denote the only one element of $A \cap X_f$ by a_f . We remark that, for any π -singleton subset A(e), $A(e) = \{a_e \varphi_{e,f} : f \in \langle e \rangle\}$. Denote the set of all π -singleton subsets of $X(\pi; Y; \{\varphi_{e,f}\})$ by \mathcal{X} .

Two π -singleton subsets A(e) and B(f) are said to be π -isomorphic to each other, if there exists an isomorphism $\overline{\alpha}: \langle e \rangle \to \langle f \rangle$ as semilattices. In this case, the mapping $\alpha: A(e) \to B(f)$ defined by $a_g \alpha = b_{g\overline{\alpha}} \ (g \in \langle e \rangle)$ is called a π -isomorphism of A(e) to B(f). It is obvious that α is a bijection of A(e) onto B(f), and hence $\alpha \in \mathcal{I}_X$.

Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. Define an equivalence relation $\mathcal U$ on $\mathcal X$ by

$$\mathcal{U} = \{(A(e), B(f)) \in \mathcal{X} \times \mathcal{X} : \langle e \rangle \cong \langle f \rangle \text{ (as semilattices)} \}.$$

For $(A(e), B(f)) \in \mathcal{U}$, let $T_{A(e),B(f)}$ be the set of all π -isomorphisms of A(e) onto B(f), and let

$$T_{X(\pi)} = \bigcup_{(A(e),B(f))\in\mathcal{U}} T_{A(e),B(f)}.$$

For any $\alpha, \beta \in T_{X(\pi)}$, define a mapping $\theta_{\alpha,\beta}$ as follows:

$$\begin{split} d(\theta_{\alpha,\beta}) &= \{a \in r(\alpha) : \text{there exist } e \in Y \text{ and } b \in d(\beta) \text{ such that } a,b \in X_e\}, \\ r(\theta_{\alpha,\beta}) &= \{b \in d(\beta) : \text{there exist } e \in Y \text{ and } a \in r(\alpha) \text{ such that } a,b \in X_e\}, \\ a\theta_{\alpha,\beta} &= b \quad \text{if } r(\alpha) \cap X_e = \{a\} \text{ and } d(\beta) \cap X_e = \{b\}. \end{split}$$

Then $\theta_{\alpha,\beta} \in T_{X(\pi)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{X(\pi)}\}$, and define a multiplication \circ and a unary operation * on $T_{X(\pi)}$ by

$$lpha \circ eta = lpha heta_{lpha,eta} eta, \ lpha^* = lpha^{-1}.$$

Then $T_{X(\pi)}(\circ, *)$ is a regular *-semigroup. We denote it by $T_{X(\pi)}(\mathcal{M})$.

Result 1.4 [4]. A regular *-semigroup $T_{X(\pi)}(\mathcal{M})$ is a generalized inverse *-semigroup whose set of projections is partially isomorphic to X.

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. Then $\pi : P \sim \sum \{P_i : i \in I\}$ is a partition of P. For any $i, j \in I$ ($i \geq j$), define a mappig $\varphi_{i,j} : P_i \to P_j$ by

$$e\varphi_{i,j} = efe$$
 for some (any) $f \in P_j$.

Then $P(\pi; I; \{\varphi_{i,j}\})$ is a strong π -groupoid.

Result 1.5 [4]. Let S be a generalized inverse *-semigroup. For each $a \in S$, let

$$\tau_a: e \mapsto a^*ea \quad (e \in d(\tau_a) = P(Sa^*)).$$

Then a mapping $\tau : a \mapsto \tau_a$ is a *-homomorphism of S into $T_{P(\pi)}(\mathcal{M})$ such that $\tau \circ \tau^{-1} = \mu$.

A regular *-subsemigroup T of a regular *-semigroup S is said to be \mathcal{P} -full if P(T) = P(S).

Result 1.6 [4]. A generalized inverse *-semigroup S is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{X(\pi)}(\mathcal{M})$ on a strong π -groupoid $X(\pi; I; \{\varphi_{i,j}\})$ such that $P(T_{X(\pi)}(\mathcal{M}))$ is partially isomorphic to P(S).

In § 2, by introducing the concept of partially ordered ϱ -set $(X(\unlhd); \{\phi_x\})$, we construct a fundamental generalized inverse *-semigroup $T_{X(\unlhd)}(\mathcal{M})$. Also, we shall see that $T_{X(\unlhd)}(\mathcal{M})$ has similar properties with $T_{X(\pi)}(\mathcal{M})$, where $T_{X(\pi)}(\mathcal{M})$ has been given by T. Imaoka, I. Inata and H. Yokoyama [4]. And we shall show that two concepts, strong π -groupoids and partially ordered ϱ -sets, are equivalent.

In § 3, we shall introduce the notion of ω -set $(X(\preccurlyeq);\sigma)$, and construct a generalized inverse *-semigroup $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$. Furthermore, let S be a generalized inverse *-semigroup with the set of projections P, we shall make two generalized inverse *-semigroups $T_{P(\preceq)}(\mathcal{M})$ and $T_{(S(\preccurlyeq);\Omega)}(\mathcal{M})$, where the former is obtained in § 2, and the latter is constructed in this section. Then we shall show that these three semigroups make a commutative diagram.

2 Fundamental generalized inverse *-semigroups

2.1 $T_{X(\unlhd)}(\mathcal{M})$

Let $X(\unlhd)$ be a partially ordered set and , for each $x \in X$, consider an order-preserving mapping $\phi_x: X \to X$. If a relation $\varrho = \{(x,y) \in X \times X : y\phi_x = x, x\phi_y = y\}$ is an equivalence relation on X such that

- (P1) $x \leq y \Longrightarrow$ for each $y' \in y\varrho$, there exists $x' \in x\varrho$ such that $x' \leq y'$,
- (P2) a relation $\leq = \{(x\varrho, y\varrho) \in X/\varrho \times X/\varrho : \text{ there exists } x' \in x\varrho \text{ such that } x' \leq y\}$ is a partial order and $X/\varrho(\leq)$ is a semilattice,
- (P3) $x_1 \leq y, x_2 \leq y$ and $x_1 \varrho \leq x_2 \varrho \Longrightarrow x_1 \leq x_2$,

then $(X(\unlhd); \{\phi_x\})$ is called a partially ordered ϱ -set.

Let $(X(\unlhd); \{\phi_x\})$ be a partially ordered ϱ -set. Define an equivalence relation \mathcal{U} on \mathcal{X} by

$$\mathcal{U} = \{ (\langle a \rangle, \langle b \rangle) \in \mathcal{X} \times \mathcal{X} : \langle a \rangle \simeq \langle b \rangle (order\ isomorphic) \},$$

where \mathcal{X} is the set of all principal ideals of $(X(\unlhd); \{\phi_x\})$. For $(\langle a \rangle, \langle b \rangle) \in \mathcal{U}$, let $T_{\langle a \rangle, \langle b \rangle}$ be the set of all (order) isomorphisms of $\langle a \rangle$ onto $\langle b \rangle$, and let

$$T_{X(riangleleft)} = igcup_{(\langle oldsymbol{a}
angle, \langle oldsymbol{b}
angle) \in \mathcal{U}} T_{\langle oldsymbol{a}
angle, \langle oldsymbol{b}
angle}.$$

For any $\alpha, \beta \in T_{X(\underline{\triangleleft})}$, define a mapping $\theta_{\alpha,\beta}$ as follows:

$$heta_{lpha,eta}=\{(x,y)\in r(lpha) imes d(eta):\, (x,y)\in arrho\},$$

where ϱ is defined in $(X(\unlhd); \{\phi_x\})$.

Then $\theta_{\alpha,\beta} \in T_{X(\unlhd)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{X(\unlhd)}\}$, and define a multiplication o and a unary operation * on $T_{X(\unlhd)}$ by

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$

$$\alpha^* = \alpha^{-1}.$$

Then it is clear that $T_{X(\underline{\triangleleft})}(\circ, *)$ is a regular *-subsemigroup of the ι -symmetric generalized inverse *-semigroup $\mathcal{GI}_{(X;\varrho)}(\mathcal{M})$. Hence it is a generalized inverse *-semigroup and denoted by $T_{X(\underline{\triangleleft})}(\mathcal{M})$.

Let S be a generalized inverse *-semigroup and P = P(S). We consider P as a partially ordered set with respect to the natural order. Now, we have the following results.

Theorem 2.1 A regular *-semigroup $T_{X(\unlhd)}(\mathcal{M})$ is a generalized inverse *-semigroup whose set of projections is order isomorphic to $X(\unlhd)$.

Corollary 2.2 A partially ordered set X is order isomorphic to the set of projections of a generalized inverse *-semigroup if and only if it is a partially ordered ϱ -set.

2.2 Representations

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. For any $e \in P$, define a mapping $\phi_e : P \to P$ by

$$f\phi_e = efe$$
.

Let $e, f \in P$, define a relation \leq on P by

$$e \trianglelefteq f \iff e = fef$$

that is, \leq is the restriction of natural order on S to P.

Lemma 2.3 The set $(P(\unlhd); \{\phi_e\})$, defined above, is a partially ordered ϱ -set.

Now, we can consider the generalized inverse *-semigroup $T_{P(\unlhd)}(\mathcal{M})$, where $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha \text{ and } \beta \text{ are order isomorphisms among principal ideals of } (P(\unlhd); \{\phi_e\})\}.$

Lemma 2.4 For any $a \in S$, $P(Sa) (= P(Sa^*a))$ is a principal ideal of $(P(\unlhd); \{\phi_e\})$.

For any $a \in S$, define a mapping $\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle$ by

$$e\tau_a = a^*ea$$

where $e \in \langle aa^* \rangle$. It follows from [4] that $\tau_a \in T_{S(\unlhd)}$ and $\tau_a^* = \tau_{a^*}$. Moreover, for any $a, b \in S$, $\theta_{\tau_a,\tau_b} = \tau_{a^*abb^*}$. And we have the following theorem.

Theorem 2.5 Let S be a generalized inverse *-semigroup such that E(S) = E and P(S) = P. Let $E \sim \sum \{E_i : i \in I\}$ be the structure decomposition of E and $P_i = P(E_i)$. Denote the restriction of the natural order on S to P by \subseteq . For any $e \in P$, define a mapping $\phi_e : P \to P$ by $f\phi_e = efe$. Then $(P(\subseteq); \{\phi_e\})$ is a partially ordered e-set and $T_{P(\subseteq)}(\mathcal{M})$ is a generalized inverse *-semigroup.

Moreover, for any $a \in S$, define a mapping $\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle$ by $e\tau_a = a^*ea$. Then a mapping $\tau : S \to T_{P(\unlhd)}(\mathcal{M})$ $(a \mapsto \tau_a)$ is a *-homomorphism and the kernel of τ is the maximum idempotent-separating *-congruence on S.

Now, we have the following theorem.

Theorem 2.6 A generalized inverse *-semigroup S is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{X(\unlhd)}(\mathcal{M})$ on a partially ordered ϱ -set $(X(\unlhd); \{\phi_x\})$ such that $P(T_{X(\unlhd)}(\mathcal{M}))$ is order isomorphic to P(S).

Denote the sets of all partially ordered ϱ -sets and the set of all strong π -groupoids by $\mathbb P$ and $\mathbb S$, respectively.

Remark 2.7 Let $(X(\unlhd); \{\phi_x\})$ be any element of \mathbb{P} . For any $x\varrho, y\varrho \in X/\varrho$ $(x\varrho \ge y\varrho)$, define a mapping $\overline{\varphi}_{x\varrho,y\varrho}: X_{x\varrho} \to X_{y\varrho}$ by

$$x'\overline{\varphi}_{x\varrho,y\varrho} = y'$$
, where $y' \in y\varrho$ such that $y' \leq x'$.

Moreover, we define a partial product on X as follows:

$$xy = egin{cases} x\overline{arphi}_{xarrho,(xarrho)(yarrho)} & if\ x\overline{arphi}_{xarrho,(xarrho)(yarrho)} = y\overline{arphi}_{yarrho,(xarrho)(yarrho)} \ undefined & otherwise. \end{cases}$$

Then $(X(\unlhd); \{\phi_x\})\lambda = X(\pi_\varrho; X/\varrho; \{\overline{\varphi}_{x\varrho,y\varrho}\})$ is a strong π -groupoid, where π_ϱ is the partition of X induced by ϱ .

Conversely, let $X(\pi; Y; \{\varphi_{e,f}\})$ be any element of S. For any $x \in X$, define a mapping $\overset{\sim}{\phi}_x : X \to X$ by

$$y\widetilde{\phi}_{m{x}} = x \varphi_{m{e},m{e}m{f}},$$

where $x \in X_e$ and $y \in X_f$. If we define $\blacktriangleleft = \{(x,y) \in X \times X : x\widetilde{\phi}_y = x\}$, then $X(\pi;Y;\{\varphi_{e,f}\})\mu = (X(\blacktriangleleft);\{\widetilde{\phi}_x\})$ is a partially ordered ϱ -set.

Hence the mappings λ , μ from \mathbb{P} to \mathbb{S} and from \mathbb{S} to \mathbb{P} , respectively, are well-defined. Moreover $\mu\lambda = 1_{\mathbb{S}}$, and for any $(X(\unlhd); \{\phi_x\}) \in \mathbb{P}$, if $(X(\unlhd); \{\phi_x\})\lambda\mu = (X(\blacktriangleleft); \{\widetilde{\phi}_x\})$, then $\unlhd = \blacktriangleleft$.

By the above argument, for any $(X(\unlhd); \{\phi_x\})$ in \mathbb{P} , without loss of generality, we can consider $(X(\unlhd); \{\phi_x\})$ as a member of $\mathbb{P}\lambda\mu$.

Now, let $X(\pi; Y; \{\varphi_{e,f}\})$ be any element of \mathbb{S} . If $X(\pi; Y; \{\varphi_{e,f}\})\mu = (X(\unlhd); \{\phi_x\})$. Then we can construct two generalized inverse *-semigroups $T_{X(\pi)}(\mathcal{M})$ and $T_{X(\unlhd)}(\mathcal{M})$. In this case, these two generalized inverse *-semigroups are *-isomorphic.

3 Extensions of $T_{X(\unlhd)}(\mathcal{M})$

3.1 $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$

By a *pre-order* on a set X we shall mean a reflexive and transitive relation. Let $X(\leq)$ be a pre-ordered set and let $\nu = \{(a,b) \in X \times X : a \leq b \text{ and } b \leq a\}$. Then ν is an equivalence relation on X and X/ν is a partially ordered set with respect to the induced relation

(C1)
$$a\nu \leq b\nu$$
 if and only if $a \leq b$.

We call \leq the naturally induced order on X/ν from \leq . Clearly ν is the smallest equivalence relation on X for which (C1) defines a partial order on X/ν . We call ν the minimum partial order congruence (mpo-congruence) on X from \leq .

A subset A of X is an *ideal* of X provided that $x \leq y$ and $y \in A$ implies $x \in A$. For $a \in X$, we call $\{x \in X : x \leq a\}$ the *principal ideal generated* by a and denote it by $\langle a \rangle$.

A bijection α of one pre-ordered set X onto another Y will be called an *isomorphism* provided that, for $a, b \in X$, $a \leq b$ if and only if $a\alpha \leq b\alpha$. In particular, if ν_X and ν_Y denote the respective mpo-congruences then $(a,b) \in \nu_X$ if and only if $(a\alpha,b\alpha) \in \nu_Y$.

Let $X(\preccurlyeq)$ be a pre-ordered set and ν the mpo-congruence from \preccurlyeq . Then X is a partially pre-ordered ϱ -set if and only if X/ν is a partially ordered ϱ -set with respect to the naturally induced order \preceq from \preccurlyeq .

Let $X(\preceq)$ be a partially pre-ordered ϱ -set and σ an equivalence relation on X such that

- (O1) for any x in X, $\langle x \rangle$ is an ι -single subset with respect to σ ,
- (O2) for x, y in X, if $(x, y) \in \sigma$ then $(x\nu, y\nu) \in \varrho$,
- (O3) for x, y, z in X, if $(x\nu)\varrho \wedge (y\nu)\varrho = (z\nu)\varrho$, $z_1\nu \leq x\nu$ and $z_2\nu \leq y\nu$ $(z_1\nu, z_2\nu \in (z\nu)\varrho)$, then for any $a \in \langle z_i \rangle$, there exists $b \in \langle z_j \rangle$ such that $(a, b) \in \sigma$, where $1 \leq i, j \leq 2$.

Then $(X(\preccurlyeq); \sigma)$ is called an ω -set.

Let $(X(\preceq); \sigma)$ be an ω -set and let $T_{(X(\preceq);\sigma)}$ denote the set of all isomorphisms from a principal ideal onto another one.

For any α , $\beta \in T_{(X(\preceq);\sigma)}$, define a mapping $\theta_{\alpha,\beta}$ as follows:

$$\theta_{\alpha,\beta} = \{(a,b) \in r(\alpha) \times d(\beta) : (a,b) \in \sigma\}.$$

Then $\theta_{\alpha,\beta} \in T_{(X(\preccurlyeq);\sigma)}$. Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha,\beta \in T_{(X(\preccurlyeq);\sigma)}\}$, and denote a multiplication \circ and a unary operation * on $T_{(X(\preccurlyeq);\sigma)}$ by

$$lpha \circ eta = lpha heta_{lpha,eta} eta, \ lpha^* = lpha^{-1}.$$

Clearly, $\alpha \circ \beta$ is an isomorphism from $\langle z_1 \alpha^{-1} \rangle$ onto $\langle z_2 \beta \rangle$. It is obvious that $T_{(X(\preccurlyeq);\sigma)}(\circ, *)$ is a regular *-semigroup. Hence it is a generalized inverse *-semigroup and denoted by $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$.

Theorem 3.1 A regular *-semigroup $T_{(X(\preccurlyeq);\sigma)}(\mathcal{M})$ is a generalized inverse *-subsemi-group of $\mathcal{GI}_{(X;\sigma)}(\mathcal{M})$ whose set of projections is order isomorphic to X/ν .

Remark 3.2 In $T_{(X(\preceq);\sigma)}(\mathcal{M})$, if $\preceq = \subseteq$ and $\sigma = \varrho$ then $T_{(X(\unlhd);\varrho)}(\mathcal{M}) = T_{X(\unlhd)}(\mathcal{M})$.

Let $(X(\preceq); \sigma)$ be an ω -set and let $Y = X/\nu$, where ν is the mpo-congruence from \preceq . For any element α in $T_{(X(\preceq);\sigma)}$, assume that $d(\alpha) = \langle a \rangle$. Then we can define a new mapping $\alpha' \in T_{Y(\preceq)}$ as follows:

$$d(lpha') = \{x
u : x \in d(lpha)\}, \ (x
u)lpha' = (xlpha)
u.$$

Then $\alpha' \in T_{Y(\underline{\triangleleft})}$. Now, define a mapping $\xi : T_{(X(\underline{\triangleleft});\sigma)}(\mathcal{M}) \to T_{Y(\underline{\triangleleft})}(\mathcal{M})$ by $\alpha \xi = \alpha'$. Then, it is easy to see that ξ is a *-homomorphism.

Proposition 3.3 The mapping $\xi : \alpha \mapsto \alpha'$ of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ into $T_{Y(\unlhd)}(\mathcal{M})$ is a *-homomorphism of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ onto a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{Y(\unlhd)}(\mathcal{M})$ such that $\xi \circ \xi^{-1} = \mu$, where μ is the maximum idempotent separating *-congruence on $T_{(X(\preceq);\sigma)}(\mathcal{M})$.

Hereafter, we shall refer to ξ as the *natural projection* of $T_{(X(\preceq);\sigma)}(\mathcal{M})$ to $T_{Y(\preceq)}(\mathcal{M})$.

3.2 Inflated representations

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Define a relation \leq on S by:

$$a \leq b$$
 if and only if $a^*a \leq b^*b$,

for $a, b \in S$. Then clearly \preceq is a pre-order on S for which the mpo-congruence from \preceq is $\nu = \mathcal{L}$. Hence $S/\mathcal{L} = S/\nu$, under the naturally induced order \preceq from \preceq , is just the set of \mathcal{L} -classes of S under the usual partial ordering of the \mathcal{L} -classes of a generalized inverse *-semigroup and so is order isomorphic to the partially ordered ϱ -set P of S. Hence S is a partially pre-ordered ϱ -set under \preceq . Then $\varrho = \mathcal{J}^E|_P$ and hence $(a\nu)\varrho(b\nu) \iff a^*a\mathcal{J}^Eb^*b$. Hereafter, for any $a \in S$, we think $a\nu = L_{a^*a}$ as a^*a .

For any $a \in S$, define a mapping $\rho_a : Sa^* \to Sa$ as follows:

$$d(
ho_a) = Sa^* (= Saa^*), \ x
ho_a = xa.$$

Let $\rho: S \to \mathcal{GI}_{(S;\Omega)}(\mathcal{M})$ by $a\rho = \rho_a$, where the relation Ω defined by: for $x, y \in S$,

$$(x,y) \in \Omega \iff x\rho_e = y \text{ for some } e \in E.$$

Since S is a regular *-semigroup, the representation ρ is faithful. Moreover, it follows from [6, Lemma 3.3] that it is a *-monomorphism.

Lemma 3.4 The set $(S(\preceq); \Omega)$, defined above, is an ω -set.

Again, we consider $\rho_a: Sa^* \to Sa$. By Lemma 3.4, $d(\rho_a) = \langle a^* \rangle$ and $r(\rho_a) = \langle a \rangle$. For $x, y \in d(\rho_a)$, $x^*x, y^*y \leq a^*a$. Now $x \preccurlyeq y$ if and only if $x^*x \leq y^*y$ while $xa \preccurlyeq ya$ if and only if $a^*x^*xa = (xa)^*(xa) \leq (ya)^*(ya) = a^*y^*ya$. But, since $x^*x, y^*y \leq a^*a$ it follows that $x^*x \leq y^*y$ if and only if $a^*x^*xa \leq a^*y^*ya$. Therefore $x \preccurlyeq y$ if and only if $xa \preccurlyeq ya$. Thus $xa \preccurlyeq ya$ is an isomorphism of $xa \preccurlyeq ya$ onto $xa \preccurlyeq ya$, and hence $xa \preccurlyeq ya$.

Now, we have the following theorem.

Theorem 3.5 Let S be a generalized inverse *-semigroup and define the relation \preceq on S by $a \preceq b$ if and only if $a^*a \leq b^*b$. Then \preceq is a pre-order on S with respect to which S is a partially pre-ordered ϱ -set, moreover $(S(\preceq);\Omega)$ is an ω -set. The faithful representation ϱ of S embeds S as a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{(S(\preceq);\Omega)}(\mathcal{M})$.

If ν is the mpo-congruence on S from \preccurlyeq , then $\nu = \mathcal{L}$ and S/ν is order isomorphic to the partially ordered ϱ -set P of S. Moreover, $\rho \xi = \tau$, where ξ is the natural projection and τ is the representation which is defined in Theorem 2.5.

References

[1] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.

- [2] T. Imaoka, On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14(1980), 19–23.
- [3] T. Imaoka, Representations of generalized inverse *- semigroups, Acta Sci. Math. (Szeged) 61(1995), 171–180.
- [4] T. Imaoka, I. Inata and H. Yokoyama, Fundamental generalized inverse *-semigroups, Mem. Fac. Sci. Shimane Univ. 29(1995), 11-17.
- [5] T. Imaoka, I. Inata and H. Yokoyama, Representations of locally inverse *-semigroups, Internat. J. Algebra Comput., to appear.
- [6] T. Imaoka and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum, to appear.
- [7] N. R. Reilly, Enlarging the Munn representation of inverse semigroups, J. Austral. Math. Soc. 23(1977), 28-41.