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Abstract

The Munn representation of an inverse semigroup S, in which the semigroup
is represented by isomorphisms between principal ideals of the semilattice E(S),
is not always faithful. By introducing a concept of a presemilattice,” Reilly
considered of enlarging the carrier set E(S) of the Munn. representation in
order to obtain a faithful representation of § as an inverse subsemigroup of a
structure resembling the Munn semigroup Tgs).

The purpose of this paper is to obtain a generalization of the Reilly’s results
for generalized inverse -semigroups.

1 Introduction

A semigroup S with a unary operation * : § — S is called a regular %-semigroup if it

satisfies
() @y ==,
(ii) (zy)* = y*z*,
(iii) Tt = 7.

Let S be a regular *-semigroup. An idempotent e in S is called a projection if it
satisfies e* = e. For any subset A of S, denote the sets of idempotents and projections
of A by E(A) and P(A), respectively. ; ‘

Let S be a regular *-semigroup. It is called a locally inverse x-semigroup if, for
any e € F(S), eSe is an inverse subsemigroup of S. If E(S) is a normal band, then
S is called a generalized inverse x-semigroup.

Let S and T be regular *-semigroups. A homomorphism ¢ : § — T is called a
x-homomorphism if (ad)* = a*@. A congruence o on S is called a *-congruence if

1This is the abstract and the details will be published elsewhere
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(aoc)* = a*c. A x-congruence ¢ on S is said to be idempotent-separating if o C H,
where H is one of the Green’s relations. Denote the maximum idempotent-separating
x-congruence on S by pg or simply by u. If ug is the identity relation on S, S is
called fundamental. The following results are well-known, and we use them frequently
throughout this paper.

Result 1.1 [2]. Let S be a reqular x-semigroup. Then we have the following:
(1) E(S) =P(S)%
(2) foranya €S and e € P(S),a*ea € P(S);

(3) each L-class and each R-class have one and only one projection;

(4) ps={(a,b) € SxS:a*ea="b*eb and aea* = beb* for all e € P(S)}.

For a mapping a : A — B, denote the domain and the range of a by d(a) and
r(a), respectively. For a subset C of A, a|¢ means the restriction of a to C.

As a generalization of the Preston-Vagner representations, one of the authors gave
two types of representations of locally [generalized] inverse *-semigroups in (3], [4] and
[5]. In this paper, we follow [5]. A non-empty set X with a reflexive and symmetric
relation ¢ is called an t-set, and denoted by (X; o). If ¢ is transitive, that is, if o is
an equivalence relation on X, (X; o) is called a transitive t-set.

Let (X;0) be an t-set. A subset A of X is called an t-single subset of (X o) if it
satisfies the following condition:

for any z € X, there exists at most one element y € A such that (z,y) € 0.

We consider the empty set to be an t-single subset. We remark that if (X;o) is a
transitive (-set, a subset A of X is an t-single subset if and only if, for z,y € A4,
(z,y) € o implies z = y. A mapping « in Tx, the symmetric inverse semigroup on
X, is called a partial one-to-one -mapping on (X; o) if d(a),r(c) are both ¢-single
subsets of (X; o), where d(a) and r(a) are the domain and the range of «, respectively.
Denote the set of all partial one-to-one ¢-mappings of (X;0) by LZ(x.).

For any t-single subsets A and B of (X; ), define 04 g by
0ap={(a,b) e AxB:(a,b)ec}t=(AxB)No

Since a subset of an ¢-single subset is also an ¢-single subset, 04 5 € LI(x; i) For any
a,B € ,CI(X ) define Baﬁ by Haﬂ = 9,.(0,) d(B)> and let M = {00,,@ Lo ,6 S L:I(X,a)}
an indexed set of one-to-one partial functions. Now, define a multlphcatlon oand a
unary operation * on LZx,s) as follows:

aof=ab,p and a'=a"’,
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where the multiplication of the right side of the first equality is that of ZTx. Denote
(LI (x;0), 0, %) by LI(x;0)(M) or simply by LI(x;,). In this paper, we use LZ(x;0)
rather than LZ(x,qs)(M).

Result 1.2 [5]. For any t-set (X;0), LLx;0), ‘deﬁn'ed above, is a locally inverse
x-semigroup. If (X;0) is a transitive t-set, then LI x,) is a generalized inverse *-
semigroup. In this case, we denote it by GI(x,s) instead of LI x,s)-

Moreover, if o is the identity relation on X, then LI x.s) 1s the symmetric inverse
semigroup ITx on X.

We call £LZ(x,5) [GZ(x,)) the t-symmetric locally [generalized] inverse x-semigroup
on the t-set [the transitive t-set] (X;o) with the structure sandwich set M.

Let S be a regular x-semigroup, and define a relation (2 on S as follows:
(z,y) € @ < there exists e € E(S) such that zp. =y,

where p,(a € S) is the mapping of Sa* onto Sa defined by zp, = za.

Result 1.3 [5]. Let S be a locally- inverse x-semigroup. For each a € S, let
pa:z—za (z€d(py) = Sa*).
Then a mapping |
p:asp,

is a x-monomorphism of S into LILs.0)(M).

For a partial groupoid X, if there exist a semilattice Y, a partition 7 : X ~ 3{X :
e € Y} of X and mappings . s : X = Xy (¢ > f in Y)) such that

(1) for any e €Y, e = 1x,,

(2) if e > f > g, then @e,rp5,g = P,
(3) for x € X, y € X, zy is defined in X if and only if @e ey = y@yses, and
in this case zY = Ty,
then X is called a strong m-groupoid with mappings {¢. s :e,f € Y,e > f}, and it is
denoted by X (m;Y; {,s}) or simply by X ().
Let X(m;Y’; {(e,r}) be astrong m-groupoid. A subset A of X is called a 7-singleton
subset of X(m;Y';{ees}), if there exists e € Y such that
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1 if f € {e),
0 otherwise,

lAﬂXf|={

(ANXg)psg=ANX, forany f,g € (e) such that f > g,

where (e) is the principal ideal of Y generated by e. In this case, we sometimes denote
the m-singleton subset A by A(e). If A(e) is a m-singleton subset, then |A N Xf| = 1
for any f € (e). We denote the only one element of AN X; by a;. We remark that,
for any m-singleton subset A(e), A(e) = {acpes : f € (€)}. Denote the set of all
m-singleton subsets of X (m;Y’; {¢e,s}) by X.

Two m-singleton subsets A(e) and B(f) are said to be m-isomorphic to each other,
if there exists an isomorphism @ : (¢) — (f) as semilattices. In this case, the mapping
a: A(e) — B(f) defined by aga = by5 (g € (€)) is called a m-isomorphism of A(e) to
B(f). It is obvious that a is a bijection of A(e) onto B(f), and hence o € Tx.

Let X(m;Y; {¢e,s}) be a strong m-groupoid. Define an equivalence relation I/ on
X by '

U={(A(e), B(f)) € X x X : (e) 2 (f) (as semilattices)}.

For (A(e), B(f)) € U, let Te),B(s) be the set of all m-isomorphisms of A(e) onto
B(f), and let

Tx(m) = U T'ate),B(s)-
(A(e),B(f))eu

For any a, 8 € Tx(r), define a mapping 6,4 as follows:
d(fa,3) = {a € r(a) : there exist e € Y and b € d(B) such that a,b € Xe},

7(0a,8) = {b € d(B) : there exist e € Y and a € r(a) such that a,b € X,},
abops =b if r(a) N X, = {a} and d(B) N X. = {b}.

Then ba 5 € Tx(x). Let M = {bap: o, 8 € Tx(r)}, and define a multlphcatmn o and
a unary operation * on T'x(r) by

ao = albysP,
o =a L.

Then Tx(r)(o, *) is a regular *-semigroup. We denote it by Tx(x)(M).
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Result 1.4 [4]. A regular x-semigroup Tx(x)(M) is a generalized inverse x-semigroup
whose set of projections is partially isomorphic to X.

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S)
simply by E and P, respectively. Let E ~ Y>-{E; : ¢ € I} be the structure decompo-
sition of F, and let P; = P(E;). Then w: P ~ 3 {P;: ¢ € I} is a partition of P. For
any 1,j € I (1 > j), define a mappig ¢, ; : Pi — P; by

ep;; =efe  for some (any) f € P;.
Then P(m; I; {y;;}) is a strong m-groupoid.
Result 1.5 [4]. Let S be a generalized inverse x-semigroup. For each a € S, let
T.: e a‘ea (e € d(r,) = P(Sa*)).

Then a mapping T : a — T, 1S a x-homomorphism of S into Tp(r)(M) such that
Tor l=p.

A regular *-subsemigroup T' of a regular *-semigroup S is said to be P-full if
P(T) = P(S). ‘

Result 1.6 [4]. A generalized inverse x-semigroup S is fundamental if and only' if
it is x-isomorphic to a P-full generalized inverse x-subsemigroup of Tx(x)(M) on a
strong w-groupoid X (m; I; {pi;}) such that P(Txx)(M)) is partially isomorphic to
P(S).

In § 2, by introducing the concept of partially ordered g-set (X(Q); {¢z}), we
construct a fundamental generalized inverse %-semigroup T’x(q)(M). Also, we shall
see that Tx(q)(M) has similar properties with T'x(x)(M), where Tx(x)(M) has been
given by T. Imaoka, I. Inata and H. Yokoyama [4]. And we shall show that two
concepts, strong m-groupoids and partially ordered p-sets, are equivalent.

In § 3, we shall introduce the notion of w-set (X (<); o), and construct a generalized
inverse *-semigroup T(x(x)s)(M). Furthermore, let S be a generalized inverse *-
semigroup with the set of projections P, we shall make two generalized inverse *-
semigroups Tp(q)(M) and T{s(<):)(M), where the former is obtained in § 2, and the
latter is constructed in this section. Then we shall show that these three semigroups
make a commutative diagram.



2 Fundamental generalized inverse *-semigroups

2.1 Tx(M)

Let X (<) be a partially ordered set and , for each z € X, consider an order-preserving
mapping ¢z : X — X. If a relation ¢ = {(z,y) € X x X : y¢, = z,z¢, = y} is an
equivalence relation on X such that '

(P1) z <y = for each y' € yp, there exists £ € zp such that z' < Y,

(P2) a relation <= {(zg,y0) € X/o x X/o : there exists z € zp such that
7' Ay} is a partial order and X /0(<) is a semilattice,

(P3) z1 dy,z2 Iy and 10 < 220 => 7, I 75,
then (X (J); {¢s}) is called a partially ordered p-set.
Let (X(<); {¢z}) be a partially ordered g-set. Define an equivalence relation U
on X by
U={((a),(b)) € X x X : (a) ~ (b)(order isomorphic)},

Wwhere X' is the set of all principal ideals of (X (<); {¢z}). For ((a), (b)) € U, let Tiay
be the set of all (order) isomorphisms of {a) onto (b), and let

o= U Tanm-
| (a)(B)eu

For any a, 8 € Tx(q), define a mapping 6, 4 as follows:
Oap = {(2,9) € () x d(B) : (z,9) € g},

where p is defined in (X(<); {¢:}).
Then bo5 € Tx(q). Let M = {lup : o, B € Tx ()}, and deﬁne a multiplication o
and a unary operation * on T'x(«) by

@O ,8 = a@a,pﬂ,
at =al

Then it is clear that Tx(q)(o, *) is a regular *-subsemigroup of the (-symmetric
generalized inverse *-semigroup GZ(x;q)(M). Hence it is a generalized inverse *-
semigroup and denoted by T'x(q)(M). _

Let S be a generalized inverse %-semigroup and P = P(S). We consider P as a
partially ordered set wﬂ:h respect to the natural order. Now, we have the following
results. ‘

59
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Theorem 2.1 A regular x-semigroup Tx(q)(M) is a generalized inverse x-semigroup
whose set of projections is order isomorphic to X (). ' '

Corollary 2.2 A partially ordered set X is order isomorphic to the set of projections
of a generalized inverse x-semigroup if and only if it is a partially ordered p-set.

2.2 Representations

Let S be a generalized inverse x-semigroup. Hereafter, denote E(S) and P(S) simply
by E and P, respectively. Let E ~ 3{E; : 1 € I} be the structure decomposition of
E, and let P, = P(E;). For any e € P, define a mapping ¢. : P — P by

fde = efe.
Let e, f € P, define a relation < on P by
ed f<=e=fef,
that is, < is the restriction of natural order on S to P.

Lemma 2.3 The set (P(<);{de}), defined above, is a partially ordered g-set.

Now, we can consider the generalized inverse *-semigroup Tp(q)(M), where M =
{6ap : @ and 3 are order isomorphisms among principal ideals of (P(J); {¢e})}-

Lemma 2.4 For anya € S, P(Sa) (= P(Sa*a)) is a principal ideal of (P(Q); {¢.})-

For any a € S, define a mapping 7, : {(aa*) — (a*a) by
eT, = a*eaq,

where e € (aa*). It follows from [4] that 7, € Tg(«) and 7; = To+. Moreover, for any
a,b €S, br,r, = Toratps- And we have the following theorem.

Theorem 2.5 Let S be a generalized inverse x-semigroup such that E(S) = E and
P(S) = P. Let E ~ Y{E; : i € I} be the structure decomposition of E and F; =
P(E;). Denote the restriction of the natural order on S to P by J. For any e € P,
define a mapping ¢. : P — P by f¢. = efe. Then (P(Q);{de}) is a partially ordered
o-set and Tp(q)(M) is a generalized inverse x-semigroup.

Moreover, for any a € S, define a mapping 7, : {aa*) — (a*a) by e1, = a’ea.
Then a mapping 7 : S — Tp(a)(M) (a — 7a) s a x-homomorphism and the kernel of
T is the maximum idempotent-separating *-congruence on S.

Now, we have the following theorem.



Theorem 2.6 A generalized inverse x-semigroup S is fundamental if and only if it
s x-isomorphic to a P-full generalized inverse *-subsemigroup of T: x(@)(M) on a
partially ordered g-set (X (Q);{¢:}) such that P(Txq)(M)) is order isomorphic to
P(S).

Denote the sets of all partially ordered g-sets and the set of all strong m-groupoids
by P and S, respectively.

Remark 2.7 Let (X(J);{¢s}) be any element of P. For any zg,y0 € X/o (z0 >
yo), define a mapping Proye - Xzo — Xyo by

T Popye =Y, Wherey' € yo such thaty <z’

Moreover, we define a partial product on X as follows:

xy — x¢ze’(zg)(ye) if x(—pmg,(a:g)(yg) = yay@;(l‘e)(yg)
undefined otherwise.

Then (X (2); {$=H)A = X(7g; X/ 0;{@upyo}) s a strong m-groupoid, where m, is the
partition of X induced by p.
Conversely, let X(m;Y;{¢es}) be any element of S. For any z € X, define a

mapping ¢, : X — X by
y¢a: = TPeef)

where z € X, and y € X;. If we define € = {(z,y) € X x X : ngby = z}, then
X(mY;{pe,rHr = (X(«); {;52}) s a partially ordered p-set. :

Hence the mappings A\, p from P to S and from S to P, respectively, are well-deﬁned.
Moreover p) = 1s, and for any (X (<);{¢s}) € P, if (X(2); {d=}) e = (X () {¢:}),
then < = «. :

By the above argument, for any (X(); {¢#:}) in P, without loss of generality, we
can consider (X (Q); {#.}) as a member of PAp.

Now, let X(m;Y’; {¢e,r}) be any element of S. If X (m;Y’; {@e, s} = (X(L); {d=})-
Then we can construct two generalized inverse x-semigroups T'x () (M) and Tx(«)(M).
In this case, these two generalized inverse x-semigroups are x-isomorphic.

61
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3 Extensions of Tx(<)(M)
3.1 Tix(=)0)(M)

By a pre-order on a set X we shall mean a reflexive and transitive relation. Let X (<)
be a pre-ordered set and let v = {(a,b) € X x X : a < band b < a}. Thenv is
an equivalence relation on X and X/v is a partially ordered set with respect to the
induced relation

(C1) av < by if and only if a < b.

We call < the naturally induced order on X/v from <. Clearly v is the smallest
equivalence relation on X for which (C1) defines a partial order on X/v. We call v
the minimum partial order congruence (mpo-congruence) on X from <.

A subset A of X is an ideal of X provided that z < y and y € A implies z € A.
For a € X, we call {z € X: z < a} the principal ideal generated by a and denote it
by (a).

A bijection « of one pre-ordered set X onto another Y will be called an tsomor-
phism provided that, for a,b € X, a < b if and only if aa < ba. In particular, if
vx and vy denote the respective mpo-congruences then (a,b) € vx if and only if
(ac, ba) € vy.

‘Let X(<) be a pre-ordered set and v the mpo-congruence from <. Then X is a
partially pre-ordered p-set if and only if X/v is a partially ordered p-set with respect
to the naturally induced order < from <.

Let X (<) be a partially pre-ordered g-set and o an equivalence relation on X such
that

(01) for any z in X, (z) is an t-single subset with respect to o,

(02) for z,y in X, if (z,y) € o then (zv,yv) € o,

- (03) for z,y,zin X, if (zv)o A (yv)e = (2v)e, z1v Jd zv and 2y Jyv (z1v, 20V €
(z1)g), then for any a € (z), there exists b € (z;) such that (a, b) € o, where
1<4,j<2.

Then (X(x);0) is called an w-set.
Let (X (<); o) be an w-set and let T(x(<);r) denote the set of all isomorphisms from
a principal ideal onto another one.

For any a, B € T(x(<);s), define a mapping 0a, as follows:

80,5 = {(a,b) € r(a) x d(B) : (a,b) € 7}
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Then 0.5 € T(x(x)0)- Let M = {bap : 0,8 € Tx(x);r)}, and denote a multipli-
cation o and a unary operation * on Tx(x):s) by

ao ff=.0abqpp,
o =a L.

Clearly, aof3 is an isomorphism from (z;a~') onto (2 8). It is obvious that T{x <)) (°,
*) is a regular x-semigroup. Hence it is a generalized inverse *-semigroup and denoted
by Tix(<)0) (M)

Theorem 3.1 A regular x-semigroup T x(<),0c) (M) is a generalized inverse x-subsemi-
group of GI x,s)(M) whose set of projections is order isomorphic to X/v.

Remark 3.2 In CZ’(X(#);U) (M), tf# = S] and o = o then T(X(S);Q)(M) == Tx(g)(M).

' Let (X(<);0) be an w-set and let Y = X/v, where v is the mpo-congruence from
<. For any element a in Tix(g);s), assume that d(a) = (a). Then we can define a
new mapping o € Ty(q) as follows:

d(@) = {zv : £ € d(a)},

(zv)a' = (za)v.

Then @ € Ty(q). Now, define a mapping ¢ : T(X(,<);a)(M) — Tyq)(M) by
af = a'. Then, it is easy to see that ¢ is a *-homomorphism.

Proposition 3.3 The mapping £ : a — o of Tix(<)0)(M) into Ty(a)(M) is a *-
homomorphism of T(x(x);0)(M) onto a P-full generalized inverse x-subsemigroup of
Ty(a)(M) such that £ o €71 = p, where p is the mazimum idempotent separating
x-congruence on T(x(g);s)(M). '

Hereafter, we shall refer to £ as the natural projection of Tix (<)o) (M) to Ty (g)(M).

3.2 Inflated representations

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply
by E and P, respectively. Define a relation < on S by:

a < b if and only if a*a < b*b,
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for a,b € S. Then clearly < is a pre-order on S for which the mpo-congruence from
< is v = L. Hence S/L = S/v, under the naturally induced order < from <, is
just the set of L-classes of S under the usual partial ordering of the L-classes of a
generalized inverse *-semigroup and so is order isomorphic to the partially ordered
o-set P of S. Hence S is a partially pre-ordered g-set under <. Then ¢ = J%|p and
hence (av)o(bv) <= a*aJEb*b. Hereafter, for any a € S, we think av = L+, as a*a.

For any a € S, define a mapping p, : Sa* — Sa as follows:

d(ps) = Sa*(= Saa*),

| TP, = Za. |
Let p : S — GTL(s:0)(M) by ap = pa, where the relation {2 defined by: for z,y € S,
(z,y) € L < zp, =y for some e € E.

Since S is a regular *-semigroup, the representation p is faithful. Moreover, it follows
from [6, Lemma 3.3] that it is a *-monomorphism.

Lemma 3.4 The set (S(x); (), defined above, is an w-set.

Again, we consider p, : Sa* — Sa. By Lemma 3.4, d(pa) = (a*) and r(pa) = (a)-
For z,y € d(pa), *z,y*y < a*a. Now z < y if and only if z*z < y*y while za < ya
if and only if a*z*za = (za)*(za) < (ya)*(ya) = a*y*ya. But, since z*z,y*y < a*a it
follows that z*z < y*y if and only if a*z*za < a*y*ya. Therefore z < y if and only if
za < ya. Thus p, is an isomorphism of (a*) onto {a), and hence Sp C T(s(<)a)(M)-

- Now, we have the following theorem.

Theorem 3.5 Let S be a generalized inverse x-semigroup and define the relation <
on S by a < b if and only if a*a < b*b. Then < is a pre-order on S with respect to
which S is a partially pre-ordered p-set, moreover (S(x); Q) is an w-set. The faithful
representation p of S embeds S as a P-full generalized inverse x-subsemigroup of
Tis=ra) (M)

If v is the mpo-congruence on S from <, then v = L and S/v is order isomorphic
to the partially ordered o-set P of S. Moreover, p£ = T, where { is the natural
projection and T is the representation which is defined in Theorem 2.5.
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