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1 Introduction

Let n € N and denote its binary expansion by n = Z ag(n)2* with ag(n) € {0,1}. We define

k>0 :
s(n) = Z ag(n) (the binary digital sum),
k>0
N-1
F(¢,N)= Z efs(m) (the exponential sum),
n=0
N-1
Sp(N) = Z s(n)? (the power sum)
n=0

for N € N and p, € € R. We first review some fundamental results on these sums. If N is a power of 2,
we immediately have F(€, N) = Nlosa(1+¢°) and G, (N) = Nlogy N/2. However it is not so easy to obtain

explicit formulas for arbitary N € N. In early times the asymptotic behavior of S; (N) was studied:
S(N) ~ Nl"g—;N- (N >o00)  (Bush [1]),
1
S1(N) = N%ﬁN +O(N) (N—oo)  (Mirsky [8]).

Finally, Trollope [18] obtained a precise formula for S;(N) and Delange [4] gave its elegant proof. Let F'

be a nowhere differenetiable continuous periodic function of period 1 given by

1

Flz)=1-z - 21"’”T(21_3

), 0<z<l

with T the Takagi function. Then

logz N

Si(Ny=N 5

N
+ 7F(log2 N) (Trollope , Delange ).
Coquet [3] obtained a precise formula for positive integer powers.

Theorem 1.1 (Coquet [3]) There are periodic functions G, :R —R, 0 <7 < p, of period 1, such
that

log, N
Sp(N) = N(ZEZ=)" + N} (log, N)" Gy, - (log, N).
0<7<p
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for every integer p > 1. Furthermore Gp,r verify

o e Qo()e

Y 2 <z> Gayg

T<p<d 7<g<d
ford>2and T <d-2.
Theorem 1.2 (Coquet [3])
log, N log, N 1
Sa(N) = N(BE=)? 4+ N B2 (> + F(log, N)} + NG(log; N),

where G is a nowhere differentiable continuous periodic function of period 1.

An explicit form of the function G is stated in Osbaldestin [13]. However, for p > 3, we cannot get
such an explicit formula via induction formulae (1) and the continuity of G - is unknown.
Concerning F(&, N), Stolarsky [17] proved that F(log2, N)/N'°€23 is not well-behaved asymptotically.

Harborth [6] obtained the following estimates:

_ F(log2,N)
e o5 =
. . . F(log2,N)
(2) 0.812556 < 1}\1[11)1({1} W < 0.812557.

We now introduce a functin Ge¢ by

F(¢ N)

Ge(logy N) = o~ ireey-

Coquet [3] and Stein [16] investigated the properties of G¢. Stein proved that G¢ is a continuous periodic
function of period 1 by giving a formula of 7. However, it is unknown if G is differentiable. In this note,
we get a simple explicit formula of F (£, N) by the use of the connection between s(n) and the binomial
measure p,. And using the results obtained in Hata-Yamaguti [7] and Sekiguchi-Shiota [15], we derive
explicit formulas of the power sum S,(/N). We notice that the higher order derivatives of the distribution

function of y, with respect to r play an improtant rule in the explicit formula of Sp(N). The results in

this note can be extended to the sum of g-adic digits by the use of multinomial measures (see M-O-S-S

[90)-
2 Hata-Yamaguti’s result
Let I = Io’o = [0, 1] and

 j+1 . m _ 1
In,j = [2%’]271 )7 J :0’1’.“,211_2’ In,zn—l = [2—”

1]

forn=1,2,3,...
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Define the binomial measure p, (0 < r < 1) by a probability measure on I such that

pr(Ing1,2i) = roe(Ing);  pr(Ing12541) = (1 =1)pr(In,;)

forn=20,1,2,---,7=0,1,---,2" — 1.

We denote the distribution function of u, by L:

L(r,2) = ([0, 2])-

It is well-known that L(r,.) is a strictly increasing continuous and singular function except for r = 1/2
(see Salem [14]). It immediately follows that L(r,.) satisfies the system of infinitely many difference
equations:

L(r, 2,,+1) — (1 =r)L(r, 2,, - rL(r, o ) =0,
L(r,0)=0, L(r,1) =1,
n=012...,7=01,...,2" - 1.

This system is equivalent to the following functional equation

_ [ rL(r,2z), 0<
Lr,z) = { (1-r)L(r,2c—-1)+r, <
Let

R(.’L’) = 111 u(m) - 111,1(:6)7 0<z<1,

0<z<1/2,
#(z) = {Q:c 1, 1/2<z<1,

P(z) =/ 2R(t)dt, 0<z<1.
0
The Takagi function T is defined by

1
It is well-known that T is a nowhere differentiable continuous function. And T satisfies the system of

infinitely many difference equations:

= 5
T(0) = 0, T(1) =0,

T(341) - 3T (&) - 1T(5E
n=01,2,...,j=01,...,2" -1,

Hata—Yamaguti [7] have obtained the following formula which connects the Takagi function 7" with
the function L.

Theorem 2.1 (Hata~Yamaguti [7]) We have

1 9 L(r :1:) LT T(z).
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Remark 2.1 We have

S L(r, 35 = (1= 1) & L(r, ) = v L(r, ) = L(r, 55) ~ L(r, &),
2L(r,0)=0, ZL(r,1)=0,
n=0,1,2,..., 7=0,1,...,2" — 1.

Above system has a unique continuvous solution (Hata-Yamaguti [7] , S-S [15]).

More generally we have the following:

Theorem 2.2 (S-S [15]) L(r,z) is a continuous function valued analytic function of r € I and the

equality
OFL(r,z)

ark = le%'k({C)

r=1

holds for k =1,2,3,... Here
T%’I(.’c) = 2T(z),
1 )
—_ 7 n+1
T%’k(:c) = nE=0 o R(2 .r)T%_yk_l(2 ).

Remark 2.2 It also follows that T, ; satisfies the system of infinitely many difference equations:

T, x(0) =0, T, x(1) =0,

Tk (3557) = (1= NTri() = rTop(55) = Topm1(5) = Top-1(55),
n=29012,..., 7=0,1,...,2" — 1.

3 An explicit formula of exponential sums

We first give a lemma which suggests a close connection between the distribution functin L and digital

sums. Set ¢t = log, N for N € N and denote by [t] its integer part and by {¢} its decimal part.

Lemma 3.1 We have

N-1
1 -8 s(n
(3) L(r, W): Z plthi=s(n)(q _ pys(m),
n=0
Taking r = H_Leg in (3) , we immediately have next theorem.

Theorem 3.1 We have

1 1

— N1oBa(1+e8)g(1—{1}) logy(1+ef)
(4) F(§,N)=N 2 i3 5=@)

for £ €R.

Remark 3.1 By (4), we know that G¢ is differentiable for almost every t € R...
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4 Asymptotic behavior of F(£,N) /N1°g2(1+65)

Theorem 4.1 We have

: (5 N) _ log, 7
Imsup o, reny = j02%, &7 L(r,2),
liminf F(E N) min :clOg?rL(r z).

Neoo Nlogs(l+et) — 1 1<n<t

Hence, to obtain the precise values on the left-hand sides of these equations, it suffices to estimate
the function g(z) = z!°82" L(r,z). However, it is very hard to get the maximum and the minimum of the

function g.

Proposition 4.1 we have

. F(¢,N
lim sup W(f_(ﬁz—e) =1 for€>0,
Iiminf FEN) =1 foré<0.

N—oo ]\/vl ogy(1+et)

These estimations are obtained by Stein [16].

Proposition 4.2 Fork=1,2,...,2" "' —1,n=1,2,..., we have

% +1 ak+1, ,dk+3 . 1
( 2n+1 ) {g( 2n+2 ); ( 2n+2 )}, Zf 0 <r< §,
2k +1 4k +1, ,4k+3 L1

g( on+1 ) < max{g( n+2 )lg( on+2 )}’ lf 5 <r<l.

Remark 4.1 The above inequalities are essential in Harborth’s algorithm concerned with the lower
bound of the function F(log2, N)/N'€23. Harborth’s algorithm is that, by starting with ng = 1 and
nr41 = 2n, &1 where + or — is chosen so that ¢,11 = F(log2 71r+1)/7l,~+1 becomes minimal. Then {g¢,}
is strictly decreasing and ¢ = limp .00 ¢r < 0.812556... (c.f. (2)). The question whether ¢ = lim,_ « ¢,

gives a true lower bound is still unknown.

5 From exponential sums to power sums

We set

B(r,t) =271 (r 0<r<1,teR.

1
Pl
Evidently E(r,0) = 2r, E(r,1-) = 1, E(%,t) =1, and F is continuous except for ¢ € Z and periodic of

period 1 as a function of ¢. Furthermore E is analytic in r € (0,1). By use of E(r,1),

1

F(&,N) = (1+€) (1+e ) {t}E(1+ e

t).



On the other hand, evidently the equality

Sp(N) = F(¢, N)

6{’“ -0
holds for £k =1,2,3,... Hence we can directly derive explicit formulas of power sums of lower order from
these equations. We set

E(’“)( t) = E(r B)],o1

Then we have

Sl(N):N(%-{-l—_zit—}- E<1> t)) (Trollope [18], Delange [4]),

So(N) =N ((%)%Hz,l(t)-i + Hz,o(t)) (Coquet [3], Osbaldestin [13])

where
Hyy = %+ 1-{t} - E(l)(— 1),
E{ﬂ__z 3ﬁi+{ﬂ2 “}E“R t)+ E@N ),
S3(N) = N ((5)™+Haa(t)(5) +Haa ()5 + Hso(t)
(Grabner, Kirschenhofer, Prodinger and Tichy [5], O-S-S [10])
where
Hyaft) = -2 - 20
Haa(t) = E(2)( 1)+ 6{t} 9E(l)( 8+ 3{t}* - L112{t} + 9’
Hyo(t) = g EO(L, 1) - 3“} LT
_Mﬂz1?ﬂ+4Eukﬁﬂ_{ﬂ3““”;+%”“47
Sa(N) = N((3) +Has () (5) +Ha(t) (5) +Has()3 + Hao(t) (0-55 [11)
where

Hys(t) = —E(l)(%, t) — 2{t} +5,

3{t} 6 EU)( t)+6{t}2 3£{t}+27,

3{t}2 —12{t} + 7
4

Haa(t) = §E<2>( )+
6{t} 9

Hya () = - E<3>( t) - E<2)( t) —

_2{t}3 - 15{t}2 + 27{t} —~13
4 H
2 _
E(4)(_ t) + {t} E(3)( 1) + ﬂﬂTg“}i_?Ew)(%,t)

1
EM(Z ¢
(2’ )

Hio®) = 555

+{ﬂ3—6{ﬂ;+7{ﬂ 2E“K§uﬂ-%{ﬂ4_10ﬁ}3+i2ﬁ}2_26“}+8.

78
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We now extend Theorem 1.1 and 1.2 and get a precise formula of S,.

Theorem 5.1 (O-S-S [10]) We have
u t
Sk(N) = NZHk,p(t)(i)p, k=0,1,2,...
=0
Here Hy, »() is a periodic continuous function of period 1, defined inductively as follows:

1
Ho’g(t) = E(E,t) = 1,

(-2 2)’c (1 kz_l ;
Hko(t)— Q_k];-TE (2 ) a(ka]71_{t})Hi,0(t)7
j=0
(- ) k=1 pA(k-j)

24 .
Hk,p(t) = Z 2 'q_‘a(q)(kyJ) 1- {t})Hj,P—Q(t)
7=0¢=0v(p—j)
for p=1,2,...,k,

where a(k, j,t) is defined by

2tlca s s
TECtr =)

= a(k,j,t)s,

r=z ]
SER, tER, k,j€Z, k>0, and aP)(k,j t) = OPa(k, j,1)/Ot?.

Furthermore the functions Hy ,(t) satisfies the induction formulas:

3 1( )H,,,,(t)-—w”rl Z 2- ’(I;)Hk,,-(t)

j=p j=p+1

fork>1,0<p<k-1.
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