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Quantum Jacobi Trudi formula and analytic Bethe ansatz

WRHEWE EHEE (Atsuo Kuniba)

1. Introduction

The main message of this note. which is based on the works [KS1,.KS2.KOS] with Y.Ohta
and J.Suzuki. is. "Analytic Bethe ansatz is a character theory of finite dimensional repre-
sentations of quantum affine algebras’. Analytic Bethe ansatz originates in solvable lattice
models in statistical mechanics [B1]. It is a hypothetical preseription to produce an eigen-
value formula for row-to-row transfer matrices of the models. As for its validity, no general
proof is known neither any counter example. It was invented by Reshetikhin in [R] by
extracting the idea from Baxter's solution of the 8-vertex model [B2]. Let us explain it
with a simplest example from si(2).

- Consider the 6-vertex model on a square lattice [B1] with the Boltzmann weights
R (£ £ £ %) =2+, B(£, F.£.F) = [u] and R, (£. F, F. %) = [2]. where the local
states + or — are ordered anti-clockwise from the left edge of the vertex. The function [u]
is defined by

[1] = i (1.1)

Here u is a spectral parameter and g is a generic constant (not a root of unity). The
Boltzmann weights can be arranged in an R-matrix Ry, w, (v) satisfying the Yang-Baxter
equation and the model is solvable. Here the indices indicate that it is an intertwiner of
the tensor product of the 2-dimensional Uq(A(ll)) module W;. (We let W, denote the
m + 1 dimensional irreducible one.) The row-to-row transfer matrix of the 6-vertex model

is the m =1 case of the following more general matrix
T,.(u) = Trw,, (RW,H,WI (w—wy)--- Bw,, w,(u— 'wN)). (1.2)

Here N is the system size, wy,...,wy are complex parameters representing the inhomo-
geneity of local interactions. m € Zsq. Following the QISM terminology [QISM], we say
that (1.2) is the row-to-row transfer matrix with the auwiliary space W, that acts on the

quantum space W1® N (More precisely, W,, (u) and ®§V=1W1('wj)., respectively.) Due to the
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Yaung-Baxter equation, [T, (u). Ty (u')] = 0 holds. So they can be simultancously diago-
nalized and we shall often write their eigenvaluces also by the same symbol T, (u). One of
the main subject in statistical mechanics is to study the spectrumn of T, (u) (especially in

the limit N — oc). Let us quote an cigenvalue formula for Ty (w) [B1];

o Qu=1) Q(u+3) . ‘
Tl(u)————_Q(u—l-l)d)(u—'—m 2(l1+1)¢)(l,). (1.3a)
n N
Q(u) = H[u — 5], H [ — wj]. (1.3b)
j=1 g=1

Here, 0 < n < N/2 is the number of the — states in the eigenvector, which is preserved
under the action of Ty(u). u; € C are any solution of the Bethe ansatz equation (BAE)
S t+1)  Qug+2)

T —1)  Qon=2)° (1.4)

On the result (1.3-4), one makes a few observations.

(i) The eigenvalue has the “dressed vacuum form (DVF)”. which mecans the following. The

“vacuum vector” +.4..... + is the obvious eigenvector with the vacuum cigenvalue
N N |
H R'u,—w,' (+» +.+. +) + H R'u.—'u.[,'(_* +.—. +) = Q/)('“' + 2) + f/)(ll) (15)
J=1 7=1

Eq.(1.3) tells that general eigenvalues can still be expressed with the modifying “dress”
factors Q/@Q which is certainly 1 when n» = 0. In particular, the nmmber of the terms in
Ti(u) is the dimension of the auxiliary space dimW; = 2.

(i1) The BAE (1.4) cusures that the eigenvalues are free of poles for finite u. The apparent
pole at w = v, — 1 in (1.3a) is spurious as the residucs from the two terms cancel due
to (1.4). The eigenvalues must actually be pole-free because the local Boltzmann weight,
hence the matrix elements of T (w) are so.

(iii) Properties inherited from the asymptotic behavior in |u| — oc and the first/second
inversion relations of the R-matrix (vertex Boltzmann weights). For example, one has

(q_q—l)Nq—N+zj Wiy lim q NuTl(“) 1N—2n+q2n—-N‘ (16)

qY —0

which is certainly an expected result from the definition of Ty (u).
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The analytic Bethe ansatz is the hypothesis that the postulates (i)-(iii) essentially
determine a function of u uniquely and that the so obtained is the actual transfer matrix
eigenvaluc. As the input data, it only uses the BAE and the special components of the
R-matrix (or the vacuum eigenvalue (1.5)) which should be normalized to be an entire
function of u. Its validity can only be assured in gencral by a proper diagonalization, most
notably. };y the algebraic Bethe ansatz which yiclds the cigenvectors as well.

In (1.6). one notices already that the RHS is an $/(2) character of the 2-dimensional
representation space Wi, Thus Ti(u) is a u-dependent version of it. This view point
becomes even more natural if one considers the eigenvalues for general T, (u) and observes

the following functional relations that generalize the usual character identities.

T,,,,('IL + 1)T'n'z.(u - 1) = Tm+1 (U)Tm—l ('“') + ‘(].,,,,(‘U,)I(l.

m—1
1.7
gm(u) = H o(u + 2k —m)p(u+ 4 + 2k —m). (17)

k=0
‘where m > 0. Regarding (1.7) as an equation for the cigenvalues one can easily solve it

under the initial condition (1.3a) and Ty(u) =1 to find

m—1 m

L _— on Q(u — m)Q(u+m + 2)p(u +m + 1 —2j)
Tnlu) = (g Plutm+1 21")) jgo Q(u+m—27)Q(u+m + 2 —2j) - (1.8)

To obscrve a representation theoretical content, we now sct

CQu-1) CQ(u+3)
1]= Q(u—+1)¢(u+2). [2]= OmTD) 1)¢(u). (1.9)

where we assume on the LHS that the spectral parameter « is implicitly attached to the
single box as well. In this notation (1.3a) reads as Aj(u) =1 |+ . Moreover, the result

(1.8) for general m can be expressed as follows.

m—j J
A\ A

To(w) =Y T = 12— T2 (1.10)
7=0

Here we interpret the tableau as the product of the m functions (1.9) with the spectral
paramcter u shifted to u — m + 1, u —m +3..... w4+ m — 1 from the left to the right.
Notice that the tableaux appearing in (1.10) are exactly the semi-standard ones that label

the weight vectors in the (m + 1)-dimensional irreducible representation Wy, of Uq(§1(2))
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(plainly, the spin % representation of sl(2)). In this sense Ty, (u) is an analogue (“Yang-

Baxterizations™) of the character of the auxiliary space W,,,. which may be natural from
(1.2). The functional relation (1.7) thereby plays the role of a character identity. Under
the BAE (1.4). is T),,(u) pole-free for general mn > 1?7 This is a crucial check for (1.10) be

a correct DVF. To answer it, solve (1.7) keeping T3 («). The result reads

Ty(u—m+1) g(u—m+2) 0 e 0
1 Ti(u—m+3)
To(u) = det 0 1 0
Ti(u+m—=3) gr(u+m—2)
0 0 1 Ty(u+m—1)
(1.11)

which expresses Ty, in terms of the fundamental T;. Obviously. this reduces to a Jacobi
Trudi formula [M] for Schur functions if the u-dependence is absent (or in the limit « — o).
In this sense (1.11) may be called a quantum Jacobi Trudi formula. It manifestly tells that
T (u) is pole-free, which is by no means so obvious from the expression (1.10). One
can also check the character limit (¢ — ¢—1)™¥ q_"""N""v‘""’Ej U limgu e g7V (1) =

Zm 0 q( N—=2n)(m—2j) .
j:

To summarize so far, the functional relation (1.7). the tableau representation (1.10)
and the quantum Jacobi Trudi formula (1.11) are typical features in transfer matrices and

analytic Bethe ansatz in solvable lattice models.
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2. Bethe ansatz equation

Having seen the sl(2) example, a natural question is a generalization to other algebras. For
simplicity, we shall consider vertex models associated with the Yangian Y (X, ) for X, =
A,.B,.C,.D,. FEgrg.Fy and Gy. Let W) 1 <4 < N be a finite dimensional irreducible
Y (X)) module and pY (¢), 1 < a < r be the characterizing Drinfel’d polynomials [D]. The
BAE relevant to the transfer matrices acting on the quantum space @, W) has been

conjectured as follows.

N (’) , (u) (aa aa)
Py (v, + Y
-1I oy ||Q” tloulw) o cr1<k<n, (2.1)
| (D, (a) aalaa
i=1 Pa (v, — b=1 O‘u|ab

Here «,'s are the simple roots (normalization | long root | = 2), Qa(u) =TT} —1[“ e )]
and we understand that ¢ — 1in (1.1). (Oun the other hand. for generic ¢. we suppose tha,t
(2.1) is valid if P,,(,i‘)(C ) is replaced by a natural ¢-analogue.) The RHS of the conjecture
(2.1) is due to [RW] and the LHS is due to [KOS] and [ST)]. It has been formulated purely
from the representation theoretical data, the root system and the Drinfel'd polynomial.
As for the functional relations, an analogue of (1.7). called T-system, has been proposed
for arbitrary X, in [KNS].

In the rest of the paper we shall also consider the case X, = A, exclusively. See [KOS]
for B, case and [KS2] for the twisted quantum affine algebra case. For simplicity, we shall
further concentrate on the case where the quantum space is formally trivial (N = 0 or
‘V’P,Si') = 1) and set the LHS of the BAE (2.1) to —1. This corresponds to considering the
dress part only, which does not lose the essential features. To recover the vacunm part for a
given LHS is easy. In the next section, we shall introduce a wide class of the DVFs T)\¢,,(u)
associated with any skew Young diagrams A C j. According to the analytic Bethe ansatz, it
is natural to expect that the T, (u) is the eigenvalue formula for a certain transfer matrix
whose auxiliary space is labelled by A C g and «. Denoting it by Wy <,.(u). one should be
able to characterize it completely as an irreducible finite dimensional module over Y (4,).
As is well known, this can be done by specifying the associated Drinfel'd polynomial. In
section 4, we shall explain our empul( al prescription to extract the Drinfel'd polynomial
from a given DVF. This is yet hypOthethd.l but works for all the known (xamples We will

actually apply it to our Tx\c,(u) and give the conjectural Drinfel’d polynomial.
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3. Construction of the DVF T, (u)
Put

J={1.2..... r+1}. (3.1)
For a € .J, define the function

_ Qu(u+a+1)Q,(u+a~2)
— Qu_i(u+a—1)Qu(u+a)

where we have set Qp(u) = Q,+1(1) = 1. We shall often suppress the argument .

Let o= (pr1.pia....). i1 2> pg 2> --- > 0 be a Young diagram and g/ = (g, ph....)
be its transposc. By a skew-Young diagram we mean a pair of Young diagrams A C pu.
It is depicted by the region corresponding to the subtraction g — A. For definiteness, we
assume that ’\;m = Ay, = 0. A Young diagram 4 is naturally identificd with a skew-Young
diagram ¢ C p. By a semi standard tableau b on a skew-Young diagram A C g we mean
an assignment of an element b(i.j) € J to the (. 7)-th box in A C g under the f'()ll()wilig
rule: (We locate (1.1) at the top left corner of pi. (i +1.7) and (i.j + 1) to the below and
the right of (4. 7). respectively.)

b(i,7) < b(ij+1). b(i.7) < b(i +1.7). (3.3)
Denote by SST'(A C p) the set of semi standard tableaux on A C .
Given a skew-Young diagram A C p, we define a function Thc,(u) as the following
sum over the semi standard tableaux.

Taculw) = ) IT o) . (3.4)

bESST(ACK) (i.5)E(ACH) hidpa| =gy = 20424

This actually gives 0 unless pu; — AL < 7+ 1 for all ¢ since SST(A C ) = ¢ otherwise.
In the Limit v — oo, Thcp(u) is just the skew Schur function S, \(r; = q Ny =

2N,—2N,

q ity = @V 72N = @2NP) M) Ton () in (1.10) corresponds to the case

A; and A = ¢, . = (m). For later convenicnce we introduce the notation
er(u) = Tiqxy(u).
hi(u) = Tigy(u).

By the definition, eg(u) and hi(u) are non-zero only for 0 < A < r+1 and & > 0,

(3.5)

respectively.

Now we proceed to the pole-freeness of the DVFs introduced above.
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Proposition. For any k € Z. ¢;(u) is pole-free under the BAE (2.1) (LHS sct to —1).

This can be proved as in [KS1]. Namely, for cach 1 < a < 7. one just has to keep
track of the “color a poles ™ (--+)/Qq(u + - - ), hence the appearance of the boxes |a | and

ey

Theorem (Quantum Jacobi Trudi formula).

Tacp(u) = deti<i j<u, (e,,,:,_,\g_.,;_l_j('u, + g = g — ol — )\_'7- +i4+5-=1)). (3.6a)

= dety<ij<p, (hp—xi+i-j(u + py— i+ A —i—j+1)).  (3.6b)

Eq.(3.6a) can be verified. for example, by induction on p;. i.e.. by showing the same
recursive relation for the tableau sum (3.4) as an expansion of the determinant. Then
(3.6b) can be derived by a similar argument to [M]. Obviously. (3.6) is a quantum (Y (A,.)
or Uq(As.l)) analogue of the classical Jacobi Trudi formula [M]. For the usual Young diagram
casc A = ¢ C p. it first appeared in [BR]. A representation theoretical account in terms of

resolutions is available in [C]. From Proposition and Theoreny. one has
Corollary. T\c,(u) is pole-free provided the BAE (2.1) (LHS set to —1) holds.

Combining this with limy . Thcp(u) = 1SST(A C 1) (limgu oo Tacplu) = Sy in

1 . . ..
Uq(A(r )) case), we see that Thcp(u) is in fact a constant independent of u. This is a rather
special feature owing to the fact that vacuum part is taken trivially. In general, Thc,(u)
is a polynomial in » (Laurent polynomial in ¢* in Uq(Ag- )) case). By using Sylvester’s
theorem, one can further rewrite (3.6) into a determiant involving T3,k Young diagram
as well. The result can be viewed as a quantum analogue of the Giambelli formula. See

theorem 3.1 in [KOS] for the B, case.
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4. Drinfel’d polynomials

The analytic Bethe ansatz indicates that Thc,(u) (3.4) describes the spectrum of the
transfer matrix whose auxiliary space is labeled by the skew-Young diagram A C g and
u. Denote the space by Wic,(u). We suppose it is an irreducible finite dimensional
module over Y (B,) (or Uq(Bil)) in the trigonometric case) in view that all the terms in
(3.4) scem coupling to make the apparent poles spurious under BAE. Now we shall specify
the Drinfel’d polynomial P,(¢) [D] that characterizes Wy, (u) based on some empirical
procedure. Our convention slightly differs from the original one in Theorem 2 of [D] in

such a way that

1+ Y duco = el (41)

For any b € SST(A C p). the corresponding summand (3.4) has the form

H Qaluta3) -+ Qulu+at)

. 4.2
Qa u' + (/1 Qa(’”’ + ',I/;I(V, ) ( )
where §, y? and i, are specified from b. This summand carries the A,-weight
7 1 tq
wi(b) =S (5 Sy - :r:j;))Aa (4.3)
a=1 7=1
in the sense that limgu_, o (4.2) = (wtB) 32, _, Naex) . (Aq: a-th fundamental weight.)

From SST (A C u), take such by that wt(bo) is highest with respect to the root system. In

our case, such by is unique and given by
bo(ij) =i— A 1<) < Nj+1<i<pl (4.4)
It turns out that the corresponding ‘highest” term by in (4.2) can be expressed uniquely in

the form
r M,

Qulu+ 2] —1)
1 s
Qalu+ 27 +1)

for some M, and {z;|1 <j < M,} up to the permutations of z5's for cach a. We then

propose that the Drinfel’d polynomial P(YV’\C"("L)(C ) for Wycp(u) is given by

M,
2O =[le-u-2) 1<asr (4.6)

i=1
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In our case. it reads explicitly as follows.

)= T (C—u— i+ 14 a+2) - 25). (4.7)

For example, in the case of the rectangular Young diagmm A== mb). (4.7) reads

W, ,,,b)(“‘)

P, (¢)= ((C—u—}-'n'z,— IWC—u+m—=3)-((—u—m+ 1))6"6. (4.8)

Thus the modules W1sy(u) are the fundamental representations in the sense of [CP].

References

[B1] R.J. Baxter. Exactly Solved Models in Statistical Mechanics. London: Academic 1982
[B2] R.J. Baxter. Ann. Phys. 70 (1972) 193
[BR] V.V. Bazhanov, N.Yu. Rcshet.ikhin, J.Phys.A:Math.Gen. 23 (1990) 1477 »

[C] I. Cherednik, in Proc. of the XVII International Conference on Differential Geo-
metric Methods in Theoretical Physi(;s, Chester. ed. A.L Solomon. World Scientific,
Singapore. 1989 ‘

[CP] V. Chari and A. Pressley, J. reinc angew.Math. 417 (1991) 87
[D] V.G. Drinfel'd. Sov.Math.Dokl.36 (1988) 212 ,
[KNS] A. Kuniba. T. Nakanishi and J. Suzuki, Int.J.Mod.Phys. A9 (1994) 5215
[KOS] A. Kuniba, Y.Ohta and J. Suzuki, J. Phys. A:Math.Gen. 28 (1995) 6211
[KS1] A. Kuniba and J. Suzuki, Commun. Math. Phys. 173 (1995) 225
[KS2] A. Kuniba and J. Suzuki, J. Phys. A:Math.Gen. 28 (1995) 711

[M] I G. Macdonald, Symmetric functions and Hall polynomaials, 2nd ed., Oxford Univer-

sity Press. 1995
[QISM] E.K. Sklyanin, L.A. Takhtajan and L.D. Faddecv. Theor.Math.Phys.40 (1980) 688
P.P. Kulish and E.K. Sklyanin, Lect.Note.Phys. 151 61, Springer 1982 -

[R] N.Yu. Reshetikhin, Sov.Phys.JETP 57 (1983) 691, Theor.Math.Phys.63 (1985) 555,
Lett.Math.Phys.14 (1987) 235 . '

[RW] N.Yu. ‘Reslu‘,tikhinuandv P.B. Wiegmann, Phys.Lett. 3189 (1987) 125 |

[ST] E.K. Sklyanin and V.O. Tarasov, private communication



