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This is an interim report of a joint work with Rancois Jaeger about

nonsymmetric spin models and their link invariants. We mention here

some of our results without their proofs.

1 Introduction

Spin modefs were introduced by Vaughan Jones [8] to obtain invariants of

links and knots.

Definition. A spin model is a pair $S=(X, W)$ of a finite set $X,$ $|X|=$

$n>0,$ and a function

$W$ : $X\cross Xarrow \mathrm{C}^{*}$

such that (for all $a,$ $b,$ $c\in X$ )

$\sum_{x\in X}\frac{W(a,x)}{W(b,x)}=0$ if $a\neq b$ ,

$\frac{1}{\sqrt{n}}\sum_{x\in X}\frac{W(a,x)W(b,x)}{W(c,x)}=\frac{W(a,b)}{W(a,c)W(c,b)}$ .

The above two conditions are called the type II and type III condition

respectively.
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Remark. The function $W$ can be viewed as an $n\cross n$ matrix indexed by

$X\cross X$ .

For each spin model $S=(X, W)$ and for each oriented link diagram $L$ ,

there corresponds a complex number $Z_{L}^{S}$ , and the correspondence

$Z^{S}$ : $L\text{ト}arrow z_{L}^{S}\in \mathrm{c}$

gives a link invarinat, i.e.

$L_{1}\approx L_{2}\Rightarrow z_{L_{1}}^{S}=z_{L2}^{s}$ ,

where $L_{1}\approx L_{2}$ means that two link diagrams $L_{1},$ $L_{2}$ represent isotopic

links in 3-space.

Remark. The above definition of a spin model originally due to Vaughan

Jones (for symmetric $W$). The definition was generalized to the general

case (including nonsymmetric $W$) by Kawagoe-Munemasa-Watatani [9].

There exist many examples of nonsymmetric spin models. However, for

each known nonsymmetric spin model $S$ , we can find a symmetric spin

model $S’$ with $Z^{S}=Z^{S’}$ This leads to the following natural question.

Question. Does there exist a nonsymmetric spin model $W$ whose link

invariant does not come from any symmetric spin model?

Here we study nonsymmetric structure of spin models and give an answer

to the above question.
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2 Main Results

Theorem A. For every spin model $S=(X, W)$ , there exists a partition

$X=x_{1}\cup\cdots\cup Xm$

with $|X_{1}|=\cdots=|X_{m}|$ such that for all $i,$ $j\in\{1, \ldots, m\}$ and for all

$x\in X_{i},$ $y\in xj$ ,

$W(x,y)=7^{\dot{\oint}^{-}(}iWy,x)$

holds, where $\eta=\exp(2\pi\sqrt{-1}/m)$ .

Remark. From Theorem $\mathrm{A}$ , it is clear that

$W(x, y)=W(y, x)\Leftrightarrow x,$ $y\in X_{i}$ for some $i$

Hence $X_{1},$
$\ldots$ , $X_{m}$ are the equivalence classes of the equivalence relation

$\sim$ which is defined by $x\sim y$ iff $W(x, y)=W(y, x)$ . In particular, $m$

(The number of classes) is uniquely determined by $S$ . We call $m$ the

(nonsymmetric) index of $S$ . Obviously,

$S$ has index 1 $\Leftrightarrow W$ is symmetric.

Theorem B. If a spin model $S=(X, W)$ has odd index, then the link

invariant of $S$ agrees with th$e$ link invariant of some symmetric assciation

scheme.

We obtained new nonsymmetric spin models in the case of index 2:
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Theorem C. Let $H$ be a Hadamard matrix of size $k\geq 4$ , and let $A$ be a

$\mathrm{s}q$uare matrix ofsize $k$ given by $A=(\alpha-\beta)I+\beta J$ with complex numbers

$\alpha,$
$\beta$ such that $\beta^{2}+\beta^{-2}+\sqrt{k}=0,$ $\alpha=-\beta^{-3}$ . Le$\mathrm{t}W$ be a $sq$uare matrix

of size $n=4k$ given by

$W=$
where $\eta$ is a primitive $8^{\mathrm{t}\mathrm{h}}$-root of unity Then

(1) $W$ satisfies type II and type III conditions, so that we have a non-

symmetric spin model $S=(X, W)$ of index 2, where $X=\{1, \ldots, n\}$ .

(2) The link invariant of the ab$ove$ spin model $S$ does not agree with th$\mathrm{e}$

link invariant of any symmetric spin model.

Thus the answer of the Question in the introduction is YES.

Remark. Jaeger and I are now trying to determine the $1$ink- invariant of

the above nonsymmetric spin model $S$ .

3 Methods

In the proof of the results in the previous section, we essentially used the

following results.
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Theorem 1 (Jaeger-Matsumot$\mathit{0}$-Nomura [7]). Let $S=(X, W),$ $|X|=$

$n$ , be a spin model. Then there exists a Bose-Mesner algebra $N(W)$ such

that

$\bullet W\in N(W)$ ,

$\bullet$ $N(W)$ has a duality $\Psi$ : $N(W)arrow N(W)$ given by

$\Psi(A)=\frac{1}{\sqrt{n}\alpha}{}^{t}W^{-}({}^{t}W^{+}\mathrm{o}(W^{-}A))$, $A\in N(W)$ ,

where $\alpha=W(x, x)$ (indepen$d$en$t$ of $x\in X$), A $\mathrm{o}B$ denotes the Hadamard

produ$ct:$ $(A\circ B)(X, y)=A(x,y)B(x,y)$ , and $W^{+}=W,$ $W^{-}(x, y)=$

$(W(y, x))^{-1}$ .

Remark. See $[2, 7]$ for definitions of Bose-Mesner algebras and their

dualities.

Remark. The above theorem says that every spin model is obtained as

a solution of modular invariance equations of some self-dual association

scheme. This fact was proved by Jaeger [6] in the symmetric case (by

topological methods). The algebra $N(W)$ was constructed for each sym-

metric type II matrix $W$ by the author [12].

Remark. It is not so difficult to show that the matrix $E= \frac{1}{n}W^{+}\mathrm{o}W^{-}$

becomes an idempotent of rank 1 in $N(W)$ . Hence $\Psi(E)$ is a permutation

matrix contained in $N(W)$ . This is one of the key obsevations of the proof

of Theorem $\mathrm{A},$
$\mathrm{B}$ , C.
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Remark. Let $E_{0},$ $E_{1},$
$\ldots,$

$E_{d}$ be the primitive idempotents of the Bose-

Mesner algebra $N(W).$ Then $\frac{1}{n}W+\mathrm{o}W-=E_{s}$ for some $s$ . Put $\Psi(E_{i})=A_{i}$ ,

$i=0,$ $\ldots,$
$d$ , and let $R_{\dot{4}}$ be the relation on $X$ with the adjacency matrix $A_{i}$

$(i=0, \ldots, d)$ . Then the relations $R_{0},$
$\ldots,$

$R_{d}$ form an association scheme on

X. In the proof of Proposision $\mathrm{D}$ below, we repeatedly used the folowing

Lemma:

Lemma. For every $x,$ $y\in X$ ,

$(x, y)\in R_{s}\Leftrightarrow W(x, z)=W(z,y)$ for all $z\in X$

In the proof of Theorem $\mathrm{B}$ , we need Bannai-Bannai’s generalization of

spin models: 4-weight spin model defined in [1]. Theorem $\mathrm{B}$ is implied by

Theorem 1 and the following result concerning “Gauge transformation” of

4-weight spin models.

Theorem 2 (Jaeger). Le$\mathrm{t}S=(X, W1, W_{2}, W_{3}, W4)$ be a 4-weight spin

model. Let $P$ be a permutation matrix on $X$ with $PW_{2}=W_{2}P$ , let $\triangle$

be an invertible diagonal matrix and let $\lambda$ be a non-zero complex number.

Then

(X, $\lambda\Delta W_{1}\Delta^{-}1,$ $\lambda-1PW2,$ $\lambda-1\Delta W3\Delta-1,$ $\lambda W_{4}tP$)

$is$ a 4-weight spin model which gives the same link invariant as $S$ .
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Remark. A slightly weaker version of the above Theorem 2 was ob-

tained independently by Deguchi [3].

Remark. In the case of odd index, we can find a permutation matrix

$A_{i}\in N(W)$ with $A_{i}^{2}=\Psi(E)$ , where $E= \frac{1}{n}W+\mathrm{o}W^{-}$ This is the reason

why Theorem $\mathrm{B}$ holds in the case of odd index.

The spin model given in Theorem $\mathrm{C}$ is a nonsymmetric variation of the

symmetric Hadamard model:

Theorem 3 (Nomura [12]). Let $H,$ $A$ be matrices of size $k$ defined in

Theorem C. Let $W$ be the $sq$uare matrix of size $n=4k$ given by

$W=$,

where $\omega^{4}=1$ . Put $X=\{1, \ldots, n\}$ . Then $S=(X, W)$ is a symmetric spin

model.

Remark. For a simpler proof of Theorem 3, see [11]. The link invariant

$Z^{S}$ of the above spin model $S$ was determined by Jaeger $[5, 6]$ .

Theorem $\mathrm{C}$ is obtained from Theorem 3 and the following fact.

Proposition D.

(1) Let $S=(X, W)$ be a spin model with in$dex2$ . Then there is a

partition

$X=\mathrm{Y}_{1}\cup\cdots \mathrm{U}\mathrm{Y}_{4}$
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with $|\mathrm{Y}_{i}|=(n/4)$ , and $W$ splits into blocks, corresponding to $\mathrm{Y}_{1},$

$\ldots$ ,

Y4, as follows:

$W=$ .

Moreover $A,$ $B,$ $C$ satisfy type II condition, and $A,$ $C$ satisfy type III

condition.

(2) A matrix of the above form defines a spin model if and only if

$W’=$,

defines a spin model, where $\eta$ is a primitive 8-root of unity.
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