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ABSTRACT. The object of the present paper 4is to derive several
interesting propérties of the class 2:’ ék(a,ﬁ,p) consisting of
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l.Introduction
Let:z denbfebthe class of functions of the form

n

f(z)= 2 ' (1.1)

mlp
+
1]

which are régular in U = ¢ z :0< |z|<1l } with a simple pole at the
origin with residue 1 there.And let Zp denote the subclass of

Y. consisting of functions of the form

[ o]
+ }: a z" a_ =0 _ (1.
n . n .

f(z)=

Nl)-"

n=1

that are analytic and univalent in U*.Recently Nunokawa , Aouf and Owa

*
[2] investigated the class Zp(a,ﬁ,u) which is a subclass of Zp,defined

as follows :

*
A function f(z) e Ep is in the class {b(a,ﬁ,u) if it satisfies

the condition

=f" (=)
(=) * X
e (z el 2 (1.3

~
2

=f’ (=)

H—FTD

-1+ (1+) @

for some a (0% a 41),3¢0< 3 <13, and p 0= pu =12

For the class {;(a,ﬁ,y) Munokawa , Aouf and Owa [2] showed the

following lemma .

LEMMA 1. Let the function f¢(z) be defined by (1.2). Then f(z) is

in the class E:(a,ﬁ,u) if and only if

w .
}: {(n+1lﬂ?@nﬂ%1+y)a—1 ] } anS (1+u)pRCL-ad . (1.4)
n=1

.The result is sharp. .



' %
In view of Lemma 1, all functions belonging to the class Z%(a,ﬁ,p)
satisfy the coefficient inequality

a < 1+ 301 -
n. (n+l) + 3 Lun + (1+p)a -11

Making wuse of (1.5), we now introduce the following class of

(n=1). , (1.5)

functions:

* * e
Let Ep c(a,ﬁ,p) denote the subclass of Ep(a,ﬁ,p) consisting of
? Tk

functions of the form

_ ®

1 Z 1+ BECl-c0C., . Z n

. 1 1 a 4 -
z)= - z- o+ | ! .
fe = " Lo, (FDY ¥ p tal ¥ (drpa -13 oy (1.8

where K
a x0, 02 ¢, =1, and 0< ¥, . =1 .
n i =1 i

For k=1, the class Z:,C Ca,ﬁ,y)=E:,C(a,B,p) was introduced by Aouf and
: i

Nuncokawa [11].

In this paper,we obtain coefficient estimates and closure theorems

for the class Zércta,ﬁ,p ). Further the radius of convexity is obtained
k

*
for the class Zﬁ’c(a,ﬁ,y). Techniques used are similar to those of
k

~Silverman and Silvia t4], Uralegaddi [5] and Owa and Srivastava [31 .

-~

2. Coefficient Estimates

THEOREM 1. Let the fﬁnction_f(z) be defined by (1.6).Then f(z)

is in the class T (a,3,u) if and only if
1
k .

had K

{ (n+)+RLun+ (1+pda-11 } ans 1+ 31 -ad (L - ci), : (2.1
1

n=k+ i=1



where
k
0< c.=1 and O< |,
i , .
i=1

c. < 1.
i

The result (2.1} is sharp.

Proor. Putting

(1+p)A1 -0 ¢

a;= (iI+D) + A Tol * (pa -11 (i=1,2,...,k) , (2.2)
in Lemma 1, we have
k @ ‘
E: (1+Hpdpl-edc, + E: {-(n+1f+ﬁfpn+(1+y)a—1] } a s (1+p)pl-o0,
i=1 : n=k+1
(2.3

which clearly implies (2.1). Further, by taking the function f(z) of

the form

a 1+ R(1-adc, .
feza=1 }: = =zt
=TT (i+1) + 3 Lpi + (+pa -11
1=1
k
(1+p) 3100 (1-F €,
‘ i=1 n

2]
)
B

(n+D+pLun+ 1+ a—11

for n 2 k+1 , we can see that the result (2.1) is sharp.

CoroLLARY 1. Let the function f(z) defined by (1.6) be in the

*
.class Y (o, 3, u}. Then

p’ ck.
: K
(1+u)BC1-c0 (1-F ;)
. s Zk+ . (2.5)
qn = (Nt +pLun+ (1+pda-11 (nxk+1)

The result (2.5) is sharp for the function f(z) given by (2.4).



3.Closure Theorems

TueoreMm 2. Let the functions

; K (14 ~e0 ¢ i ®
Fylzd==+ 2: (i+v1) + B ol + (v =171 2 7 E: 2
=1 n=k+1
(a_ .2 0) (2.1)
n,J

*
be in the class Ep c(a,ﬂ,u) for every j=1,2,...,m. Then the function
b4
k

F(z) defined by

f\/js
()

1\

o)

'

”~~

W
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-

F(z)= d.f . (z) | .

JJ .

J=1
is also in the same class Zg (ay 3, ), where
’ = k
" m |
}: d. =1 . (2.3
J B

J=1

Proor. Combining the definitions (3.1) and (3.2), we have

1 k 1+ 01~ c. .
F(z)=—+ = =t
= (1+1) + 3 Lui + (1+pla -1
i=1
o T m
n .
+ [ d. a . ] =z, (3.4
J Nyl
n=k+1 J=1
where we have also used the relationship (3.3). Since fj(z) e

*
Ep C(a,ﬁ,u) for every j=1,2,...,m, Theorem 1 yields
b4
k

®
ke

E { (n+1)+B[un+(1+u)a—1]} a . = (1+)p1-ad(1-F < ), (3.5
n=k+1 o 1=1



for every j = 1,2, . . . ,m . Thus we obtain
el m ‘
(n+)+RLun+ 1+ a-13 d. a .
Z{ Prunrtixie }[ZJ i)
n=k+1 J=1

™15

(n+D)+pLun+ 1+ a-11 } a . ]
ny J
+1

o
5 [
J
=1 n=k

.

k
(1+p)3C1-a) (1-F c.)
i=1

IA

*
which (in view of Theorem 1) implies. that Fi(zle L c(a,ﬁ,p) -
y
k

TueoreM 3. Let the functions fj(z) defined by (3.1) be 1in the
class Zp (a + By ) for each j=1,2,...ym , then the function hiz)

defined by

) K SERYISTS TN . .

_— A = (b =20)
hizi=—-= }: GFy F 3 il F (e -1 © T E: B by
1=1 n=k+1

(2.8)
is also in the same class [g (o, 3,13, where
y Ck
m .
b = L }E: a_ . . 2.7
n m Ny Jj
Jj=1
ProorF. Since fJ(z) ] E: C(a,ﬁ,u) it follows from Theovem 1,that
'k
had k
(n+1)+B0un+ (1+) a-11 } a . % (1aBE-a (1-F ¢ ). (3.8)
n=k+1 'J it

Hence



N+ +RLun+ 1+ a—11]

bt Ay

m

}b
n
1
{ i+ +RLun+ 1+ a—-11 } —E_EE%“'J
1

=1

3
i~ I

o o]
Z { N+ +RLun+ 1+ a-113 } a . ]
n, Jg
1

n=k+

s
:.[v] ;

k
< (1+pl-a) (1= ci) ‘ (3.
i=1 ‘

and the result fallows.

THEOREM 4. The class Z: c(a,ﬁ,p) is closed under convex
L

linear combination .

Proor. Let the functions fj(z) (j=1,2) defined by (3.1) be in the

class {% ’(a Byr), it is sufficient to prove that the function H(z)

defined by
H(z)= Kf (=) + =N f (20 (0O AN =1 (3.10)

is also in the class Ep (a,ﬁ,u).

Since

(i+1) + B L[ui + (I+da —-11

. K 1+ p(1-a0c. : 2 : .
H(z)=-—+z : 1 z +Z{?\a + (1-2NYa_ ¥z,
z n, 1 n,2
i=1 n=k+1

(3.11)

we observe that



© -
}: { n+I+RLun+(1+wa-11] } { kan,1+ (1—)\)an’2 }
n=k+1
k
S (+RU-) (1-F ¢, (3.12)
i=1

with the aid of Theorem 1. Hence H(z) < E: c(a,B,y). This completes the
'k

proof of Theorem 4.

THEOREM 5. Let

k

1 (1+y)ﬁ(L—a)ci i
Flzd=—4 + }: (i+v1) + 3 [pl + (i+gja -17 (3.13
i=1
and
K
1 (1+u)p1-adc, .
f (z)=—+ 1 =t
n = (i+1) + 3 [ui + (1+da -11
1=1
k
(1 BCL-ed (1-F c.)
i=1 z" (n2k+1).  (3.14)

(n+)+pLun+ 1+ a-11

Then f(z) is in the class }? c(a,ﬂ,p) if and only 1if it can be expressed
?
k
in the form

©
f(z) = E: A f (2 (3.15
n=

where an 0 (n2k ) and

Proor. We suppose that f(z) can be expressed in the form (3.135).

Then it follows from (2.13), (2.14) and (3.16) that



) K (1+ 3L~ c. o
flz)=— + 1 zt
z (i+1) + 3 Lui + (+pa -11
1=1 . .
k.
- A+ AU -0 (1-F €.) A
i=1 1 n n
+ 1 =N . (2.17)
(n+)FpRCan+ 1+ a-13
n=k+1
Note that
. ' k
© (1+p01L-ad (1 -Y, ci))\n
¢ -
{ (n+D+ALun+ (1H0 a1 ] } { IS PETE AT IS N }
n=k+1
k it ok
=1+ 31~ (1-F c.)§: A = (1+B-o0 (1-F c.) (1-A, )
i=1 * n i=1 * .
n=k+1
k
< (1 A-ed (1-F €0 , (3.18)
i=

which implies that f(z) < z: LB
1 Ck

For the converse, assume that the function f(z) of the form

€1.6) belongs to the class 2: c(a,ﬁ,p).Since'f(z) satisfies (2.5) for
b4
k

n2k+1, we may set

_ L+ +BIun+ 1+ a-113

A - <1 (n=zk+1) (3.12)
n k n
(1+u3p1-c) (1-7, ci)
and i=1
ao
Me FL) Ay - (3.20)
n=k+1

Haence f(2z) has the representation (3.15). This evidéﬁtly Eompletes the

proof of Theorem 3.
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4.Radius of Convexity

Tueorem 6. Let the function f(z) defined by (1.8) be in the class

*
Zp c(a,ﬁ,u). Then f(z) is meromorphically convex of order p(0< p <1) in
1 4
k .

the disc O <|z|< r= r(a,ﬁ,y,ci,p), where r(a,ﬁ,p,ci,p) is the 1largest

value for which

i(i+2-p) (1) Al -ad ¢

|4
E: I+ +RLpi+ (I+pa-17 Y
=1 ;

i+l

k
nCn+2-p) (1) BC1-c) (1-F )
+ i=t *on+l ooy (4.1)
v (hr Y FpLan+ (1t a-11 v = Py -

for n > k+1 . The result is sharp for the function f(z) given by (Z2.4).

zf’’ (2)
fr (=)

Proor. It suffices to show that + 21< 1-p (0O 2 p < 1)

for 0{|z|<r(a,ﬁ,u,ci,p). Note that

=f2 () .

frozd

k.. . ©
LCi+1) (142 3C1 a)ci ri+1 . Ct1ra rn+1
(i+1)+pR0ui +(1+da—-11 n

< i=1 . n=k+1
- ke . ] ] )
L 1(1+u)ﬂ(1—a)ci ri*l ) . rn+1
(i+1) +pLui+(l+wa-11 n
i=1 n=k+1
< 1-p (4.3
for 0< |z| € v if and only if
ke } . ©
(1+u)p1l-a)i(i+2-plC, -
. ' i il N (nez-pra v lkipn aldd
(1+1) +pLui+(l+ura-11 Tn - |

1=1 n=k+1
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Since f(z) is in the class E: c(a;ﬁ,y), from (Z.3) we may take
Tk

K
1+ BCL-a0 (1-F c.) A
i=t * " (n = k+1) (4.5)
= 2 -+ - o)
a5 tnF D FAtun+ (1t a=11 - ’
where KnZO (nzk+1) and
oo}
A= 1. . (4.6)
n
n=k+1

For sach fixed r , we choose the positive integer n°=n°(r) for  which

N

+
nin+2-pJ r" t

(n+ix+pLlunt (1 a-11

is maximal. Then it follows that

k
2-p) ¢ ) (1-Y c,
noCno+h p).lfp)ﬁ(l a).i N cl)

i n+1i i=1 n *1
¢ - < = -
EZ"'“+‘ eap r = (n_+1)+pLpn_+ (1) -1 Y

n=k+1
(4.7)
Hence f(z) is meromorphically convex of aorder p in 0<|z|<r6a,ﬁ,p,ci,p)

provided that

|5

1(1+2~p)(1+p)ﬁ(1~a)ci i+1
E: (ivDpipit(lva-11 " )
i=1 ' "
( k
n_(n +2-0) (1+)B(1-0) (1-F c.)
o o P §
+ : i-1 rlotl <y - O - (4.8

(n0+1)+ﬁ[pn°+(1+u)a—1]

We find the value ro=Y°Ca,B,u,ci,p) and the corresponding integervr no(ro)

so that



12

K
koL . _ n (n +2-p) (1+0 31— (1= €.
i1(i+2-p) (1+03(1 ot)ci ri+1 . o o . i=1 rno+1
(L+ D +RLpd+ 1+ a-11] o (n°+1)+ﬁ[un°+(1+p)a—13
i=1 ‘
= 1-p . (4.9)

Then this value L is the radius of meromorphically convex of order

o for functions f(z) belonging to the class {g c (o, 3, 1) .
y
k
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