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On Riemann’s Period matrix of Y2 = X"+l — 1

YOSHIAKI TASHIRO*  SEISHI Yamazaki®  MINORU ITof
HABE GREELX) LKET (LUELK - EE) FlEE (BEEKX - %F)

TEnCcH! Higucur
WOH— (BikEX - &5)

Abstract

We are deeply interested in the theory of Abelian integrals which have an ample
data concerning the moduli space of the Riemann surfaces. The theta-function is a
clue to connect the defining equation to the moduli space and the properties of the
theta-function are well-known, but the concrete examples of such functions are not
known so much.

On the Riemann’s period matrix of the Riemann surface y*> = z2**! — 1, the
determinant of the above matrix of the general type n (see [7]) and the above matrix
of the type n = 3 (see [8]) are done.

In this paper, we have the Riemann’s period matrix of the Riemann surface y: =
2n+1
z - 1.

1 Introduction

In §2, we have the well-known general theorems of Riemann’s period matrix of hyper-elliptic
functions.

In §3, we show the ways of getting the Riemann’s period matrix of hyper-elliptic func-
tions.

The first is to choose a base of the vector spaces of holomorphic 1-form on the Riemann
surface X for y?> = z?"*! — 1. The second is to make a model of y* = z?**! — 1. As a

"Tokyo University of Agriculture and Technology
"Yamanashi University

}Yokohama National University

$Yokohama National University



125

topological pace, X is a compact orientable 2-manifold, it’s genus is » by Riemann-Roch
theorem and it’s branch points are (2n + 1)* root of 1 and oo. The third is to analyze the
periods of homology ( 2n disjoint simple closed paths with all beginning and ending at the
same base point).

Since the periods have to be decided so that Riemann’s period relations hold, we deter-
mine five rules to get the correct periods from a polygon with 4n sides ( one side each for
the left and right sides of each path).

In 84, by using the above five rules and Cauchy integral formula, we get the Period

matrix of the Riemann surface y* = z?**! — 1 by the values of the branch points.

2 General Theory of Hyper-Elliptic Function

2.1 Period Matrix and Quasi-Period Matrix

Let C be the following hyper-elliptic curve
C: y¥=X+hz+he®+ - +hpnz™ N eC (i=0,1,---,2n+1)

Since the genus of C' is n, the vector space of holomorphic 1-forms is an n-vector space by
Riemann-Roch theorem. In fact the following is such a base.

1 T z? n-1
wy = —dz, wy=—dz, w3=—dz, -+ ,W,=
y Y

And also, homology group on the Riemann’s surface for the hyperelliptic curve C has 2n

generator A;, B; (¢ =1,---,n) which satisfy the following conditions.
1)AiXA]'—_-B.;XB]’:0 (2#])
2)AiXBj:5ij (z,g:l,,n)

where X means intersection number. So we have a Riemann’s period matrix Q = (II, IT')

from the above.

Definition 2.1 (Riemann’s period matrix) For a base of holomorphic I-forms w;(i =
1,...,n) and a base of homology A;, B;(i = 1,...,n) on C. Riemann’s period matriz Q is
gwen as follows,

Period matriz: Q= (I, II')
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T11 Tin 1 T1in
II = : I =
Tni -+ Tnn Ty . T
T = / W; 7T£J- = / Wi
A; B

Lemma 2.1 (Riemann’s period relation 1) Let X be a compact Riemann surface of
genus n, with canonical dissection X = XoU Ay U---U A, U Bly U---UB,.
For any holomorphic I-form wi,w; (4,j = 1,...,n), the periods satisfy the following equa-

; _ ; 1 =0
S e Bk“’-/A;’“‘J] ,

Proof. Since X, is simply connected, there is a holomorphic function f on X, such that

tion.

w; = df namely, f(z) = [; w; then fw; is a closed 1-form, so by Green’s theorem

0 = /Xod(fw]‘)
= o

8Xo
= zn:[—/+fwj+/_fw1'—/3:fwg'+/3;fwj]
= 3 [ [ on 4D = (on AD) w20 [ 1700 B) = (fon B) ]

As df has no discontinuity on Ay or By, f on A} must differ from f on A7 by constant,
and likewise for Bi+, By,—. But the path A; lead from Aj to Af and the path Ay lead
from B} to Bj.

Thus
0 = é/f{k[f(zv—f(f)]wﬁg/&[f<c->—f(<+>1w;
- éAk(—/zi+df)wj+é/lak(—/i df) w;

n

= ;/Ak(_ wi—/ w; — w;) w;

n

+ 2/

k=1 :
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Lo e e S U e
(=, w1+ L e, )]

k=1
= 1=k
which proves the lemma.

Lemma 2.2 (Riemann’s period relation 2) Let X be a compact Riemann surface of
genus n, with canonical dissection X = XqU A, U---UA, UByU---UB,. For any
holomorphic 1-forms w; (1 =1,...,n), the period satisfy the following equation

n
1 w; w; — w; w; | >0
kz[/A f o= [ e f @]

mé(Lkdiékwi)>0

Proof. Likewise proof of lemma 2.1.

_i/XOd(fwi) = —i| fui

— /fwl—i—/ fuw; — /fw1+/ fw; ]

n.

= —ZZ /Ak@i‘/Bkwi— Bkt—ui/Akwi]

On the other hand, d(fw) = df A df. Wherever f is a local analytic coordinates, let

f =2z 414y and z,y are real coordinates, then

namely,

;r.

df A df = (dz — idy) A (dz + idy) = 2idz A dy

—q _i i — ‘1- : :2/dAd >0
zkz:l[/Akw/Bkw /Bkw/Akw] Xo?: Yy

So we have

which proves lemma 2.2. q.e.d.



Theorem 2.1 (Riemann) For the Riemann’s period matriz Q = (IL,II') of C
Modular matriz T =II"'I' is symmetric matriz

Proof. By lemma 2.1, for all 4,5 (3,7 =1,---,n), we have

n
> [ mamy = mhmie ] =0

k=1
] T
T J1
. ! i —
( i Tin ) . - ( i1 Tin ) =0
/
7rjn Tin
(7[" .. 7T~ t ’n“l . e ! —_— 7{" ... 7"', t . v .. . _O
i1 in 71 Tin il in i Tjn | =
. ] ' '
T Tim \ P ™11 Tin T ™, VY f T11 0 Tin
—~— ' i 7 s
Tnl Tnn T Toan Tl Tonn Tl Ton
I = 0 (%)
Here, let *wy, - - -, *w, be another base of holomorphic 1-forms which differ from wy, - - -
such that
*wy Wy M1 A w1
= A =t
*wn Wy )‘nl e /\nn Wy,

then the period matrix *Q = (*II,*I') for a base *wy, - - -, *w, is the following:

n n n
* *
Wij——-/ wi:/ Z/\izwz*—‘Z/\ﬂ/ w =Y Aam;
Aj A; Aj =1

3 =1 =1

n n n
*__1 /
Wij‘—‘/ *wi=/ Z)\iluﬁ:Z)\u/ wp =y Ay
B; B; B; =1

1 =1 =1
7
1 T1j
* —_ . * I __ .
Wij-()\ﬂ /\m) : Wij-()\il )\m) :
Tnj Toj

128
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% *
i1 " T An ot A 11 " T
: Pl = : : P | ¢ "I=AT
*7rn1 Tt *7rnn )\nl /\nn Tnl Tnn
* _/ * / /
i1 o T A A T Tin
={": : : : ;= AT
*,__/ *x,_/ / ’
T Tan A"ﬂ /\nn Th1 Ton

“Q = (*I1,"I) = (ATL, AIl') = A(IL, IT') = AQ
If A=1I"" (detIl #0), then
“Q = (IL,"II) = (I,,17'I) = (I, T)
Using equation (*) in lemma 2.2 for *{2
*Ht(*nl) — *Hlt(*n) V
By *II = I, (unit matrix) and *II' = T
‘T=T

Theorem 2.1 means that there is a suitable base of holomorphic 1-forms so that A-period
matrix II is a unit matrix I, and B-period matrix II' is a symmetric matrix T

Thus, T = II7!I is a symmetric matrix. ; q.e.d.

Theorem 2.2 (Riemann) For the Riemann’s period matriz Q0 = (II, I') of hyper-elliptic

curve C
ImT = Im(II"'I')  is a real symmetric matriz of positive definite
Proof.
—QJ 0 =—i (T 17 ) ( _(;n IO” ) ( :IIII, ) = §(I7*"11 - T

From the above equation, —iQ0J!Q) is Hermite matrix. Making a following Hermite form

for this matrix,
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77—;1 ce ﬁ-;n Ty - Tin A
7l T Tni Tan An
7_1‘11 7‘1'1.,,, ‘/T;l ﬂ-;n AI
—l( /—\1 j\n ) :
7—rm 7'_rnn 7T;,” 7'—:m /\TL
- [T - S )
k=1 | =1 j=1 1=1 7=1
B[S S S e [ 2
k=1 | i=1 k j=1 Bs =1 By j=1 Ak
=iy / (O Aw) [ (S hw) = [ (0w | (Z)\th)}
k=1 Ak =1 Br i1 Be o1 Ar =1

Let *w;,*@; be (T2, \wi), (Xi;Aiw;) by lemma 2.2.

)\( zQJt é:Lka/IBkwl/E!kwILsz]>o

Likewise theorem2.1, if we choose a suitable base of holomorphic 1-forms, such that the

period matrix Q= (II,II') is (I,,T). Thus we have

~i( I T)(_(; g) (f}):i(T—T)zzfme

which proves lemma2.2 q.e.d.
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3 Period Matrix of y? = z?"* — 1

3.1 The Way of Deciding Period Matrix of y? = z?"*! — 1
3.1.1 STEP 1: A base of holomorphic 1-forms for y* = 2% —1

Lemma 3.1 Let N be the dimension of vector space of holomorphic 1-form ;—:dac for y? =
z?—1 (p;Q):I'
yo=lg-1)
y , 9
Proof. (a) (z,y) = (e;,0) (z=1,...,q)
o; is q-th root of 1. By py?~'dy = g9 'dz, Order of dz’s zero point iny =0 is p — 1

b
dz s holomorphic in (a) <= 1<a<p—1
ya

(b) (2,y) = (00,0)

As we can view y? = 29—1 as y? = 2%in (b), we can put z, y ont~?,¢7? By doz = —pt=Pldt,
z° $-bp '
Zdr = Pl aq—bp—(p+1)
yadar-—t_aq( pt™P ) dt = —pt dt
.’Z?b . o
y—ada: is holomorphic in (b) <= ag—bp—(p+1) >0
= OS()S[M]
p
From (a),(b)
N = Z[q—_w]+1
a=1 L
15 ag—(p+1 12 (p—a)g—(p+1)
= 52[ — )]+1+ Z[ )| J+1
a=1 P p
1P—1 1°P= -1
= 52( m—1)+1+ - Zq—m 2)+1 ag=mp+r (0<r<p-1)
“ a=1 a=1
1222 1
( = 23 (g-1)=z(p—-1)(g-1
| 2a=1(q )= 5 —-1g-1)

which proves the lemma. q.e.d.
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3.1.2 STEP2: Riemann Surface of y? = z?"*! —1

At first, let think about Riemann Surface of 3% = z i.e. y = /z. We put the value of y for
2, = rei? ) 2, = ref*+2 on y. y,. As we can get y; = —y; by easy calculation, y = \/z is
one-to-two mapping from z-surface to y-surface i.e. 2-valued-function which is showed by

the below figure.

.1 oi/x‘ 2 |/x2 /}O/Y' FIG 1

| o T

But y = 1/ is not 2-valued-function in z = 0 which satisfy y = /z = 0.And As we
can get t = /5 again by putting z, y on 1/s,1/t. y = /= is not 2-valued-function in
z = 0o too. Thus z = 0 and z = co are branch points of Ry. Ry is the thing which joined
up-side of z;-surface to under-side of z,-surface and under-side of zi-surface to up-side
of zy-surface formally by cutting two surface z;, 2, along segment connecting two branch
points z = 0, c0.

Next let think about Riemann Surface R, of y? = 2?"*! —1 likke y = /z. R,
has two sheets y; = Vz?* —1 and y, = —y1 = 2+l 1. As we can get ¥ =
s2H1(1 — s2+1)~1 by putting z,y on 1/s,1/t in y? = «*"*! — 1 branch points of R, are
(2n 4+ D*-root of 1z =p; (1 =1,--2n+1) and co. To see the model of R, ,we cut

two sheets following so that the sheet can change by rounding each branch points one time.

BB | 5
e T 1]

B il P — il FIG 2
RBRRER B B |

LB
P Bl

let join x, — surface to zo — surface like y = /.
This is Riemann surface R, of y? = z2**! — 1. Its genus ¢ is the dimension of the vector
space of holomorphic 1-forms by Riemann-Roch theorem. Therefore, by lemma 3.1.1 g =

2{(2n+1)=1}/2 =n.
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- |
B, oB°  aomaE, 38

FIG 3 ' FIG 4

3.1.3 STEP 3: Five Rules of Deciding Period Matrix

We decide a base of homology for R, which is made in Step 2. The following figure

shows it.

Ay A ] An o '
A; x B;=1 i:l,---,n ’v i
(i=1,-n) == FIG 5

AiXAj:BiXBjZO (2#]) B, B~—2 K
Here, let’s put the cross points of A;,B; on T; (i =,---,n) and we get together T; to
branch point co from same direction.

. Ay AZ 1 Al'\

"‘ -\
(RN -
TN N~ FIG 6

82/\42

Next, we cut and open R, along the base of homology A;, B;. It becomes a sheet of
simple connected domain namely, 4n-polynomial which has 4g-side A}, A7, B, Bf (i =
1,---,n) provided that A}, Bf shows right side of A;, B; and A], B]" shows left side A;, B;.
At last, we have to write difference of two sheet of complex surface z,,z, and arrangement
of branch points in 4n-polynomial.

On the above mentions, we decide the periods of holomorphic 1-forms for A;, B; by



134

On the above mentions, we decide the periods of holomorphic 1-forms for A;, B; by

FIG 7

making some simple closed path which pass branch poihts. At this time, Cauchy’s integral
theorem plays the leading role. But the periods of holomorphic 1-forms for A;, B; must
be decided uniquely so that they may satisfy Riemann’s period relations i.e., Theorem 2.1
and Theorem 2.2. Therefore, to realize this object, we state the following five rules.

In making a simple closed path which include the line A;, B;
o Rule 1: A simple closed path must include right side A;; B; .
e Rule 2: A simple closed path must include even branch point.

o Rule 3: The sign of holomorphic I-form in the path which get out from starting
points of A7, B must be same sign in the path which get into end points of A;, B;.

e Rule 4: The sign of holomorphic 1-form in the path which get out from a branch

point must be different from sign in the path which get into same branch point.

e Rule 5: The sign of holomorphic 1-form in the path which connect two branch points

must be unchangeable.



135

Remark 1: As the side of 4n-polynomial - B;- are enclosed by A} and A;. We can look
on the path of B as the path which connect a point m; on A} and B;f by Cauchy’s integral

theorem. Thus we decide the periods of B; for this new path by using above five rules.

Remark 2: As the side of 4n-polynomial: A; are enclosed by B and By (¢ # 7).
We cannot choose a common point from the points on B and B; . But at this case, we
can decide value of period by making simple closed path which some pair of the side of
4n-polynomial: AF, A7, B, B; .

By using above five rules and two remarks, we decided periods of holomorphic 1-form.

A base of holomorphic 1-forms for y? = z?"*! — 1 is following by lemma 3.1.1.

1 z z? vt
wy = —dz, wy;=—dz, wsz=—dz, -+ W, = dz
y y Yy Y
Namely,
£i-1 i1 B
w; = » d;L:\/W___Id:c (e2=1,---,n)
And let stand for w; on z,-surface, w; on z,-surface by wii, w;2.
£i-1 , i1
dz

Wil =W = ——————dy., W= —W = —ee
T o R T gt _ ]

3.2 Period matrix of y? = 22+ — 1
3.2.1 Calculation

1. A - PERIOD MATRIX
(1) Forj=1,2,---,n—1

By Remark 2, we make a simple closed path which start from oo in start point of
A7, pass the sides Af,, Bfi A7 Biiy, Afi o B2 A7 o Byyys - ALY BY AL By, arrive at oo
in start point of B and start from its oo, pass the branch points Py, Py, -+, Pyj_q, Paj,
come back oo in end point of A;. As the sum of the integrate values on sides of 4n
polynomial is 0 at this time, the integrate path of A; is following.

- + — + , + —
o0 P1 P2 P3 P4 P2j—1, Pz] o

—_ e s — _ T —
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(2) For j =n
We make the closed simple path which include A and pass the branch points P, Ps, P,
Py, -+, Py, Py,. Thus the integrate path of A, is the following.
00—P1+P2—P3+P4 P2n+1+P2n_00

_ s = — — _

We get period 7;; by the above integrate path

(1) Forj =1,2,---,n—1
Wij:/w'z w—}—/ w; + - +/ w;
' J+1 J+1 A B AJ+2BJ+2AJ+2BJ+2 AnBnAnBn
Py P Py Py Py;
+ n+/ w+/ w+fcm+ +/ um+/
[ee) 2] -1
P, P3 P, Py, Poo
:/ —w; + w,-{-/ ——w+/ w; + wi—i-/ -
o P2j—l P2J

:2(P{—P§+P’ Pit---+ P — P;j)/1 w;

J
=23 (P, — Pk
=1 ‘

(2) For j =n

Py P2 P3 Py Pan P
Tin = wi=/ —wi+/ wH—/ —w;—}—/ wi+"'+/ w; + —wj
Bn o P P P Pnga Pan

2}: 21 — Pa) K
=1

2. B- PERIOD MATRIX
(1) For j =1,2,--- ,n—1

By remark 1, we can view the path of B; as the new path which connect the point m;J
on A;’ and the point my; on A . Therefore, we make a simple closed paths which enclosed
the new path and pass the branch points Pyj, Pyj+1. At this time, the integrate path of B;

is following.

+ - +o
m3; Pyjn Py naj
—_ R



(2) For j=n
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We make a closed simple path which include B}, and pass the branch points Py, P,, P, P;,

“++, Pan, Pany1. Thus the integrate path of B, is following.

Oo+P2n+1 —P2n +OO
— — —_

We get period 7;; by the above integrate path

(1) Fory=1,2,---,n—1
T

: Pajt1 Py Pyjia Pajq1 Py; Paj41
' —
i = | Wi , wiat wip + Wi = w; + —w; + wj
B; my; Paj41 Py m2; P2jt1 Py
[oe]

2;
= 2(P2i]- - P2zj+1)/1 W
wl; = 2(P;; — Py 1) Ki

, P2n+l Py (S
Tin =/ wj =/ Wiy +/ Wig +/ —Wwi1
Bn 00 Py Pan
/o 1 i s
Tin = 2(P2n - P2n+1)]‘1

271
2n +1

)

P; = exp(

o) o 1
K; :/ i:/ —_—
, 1 v 1 il -]
3.2.2 Result

1.PERIOD MATRIX
A - period matrix IT :

By the above calculation, m;; = 2Z{=1(P2",_1 -P)K; (i,7=1,2,---,n)

1{1 O P1~—P2 PI—P2+P3—P4
Ko P?— P} P2_Pp24p2_p?

0 K, )\ Pr—pPr PP—Pp+Pr—Pp

i1 (Pa—1 — Pa)
?:1(P2?2—l - P22[)

Z?:l(Pﬁ—l - 21)
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B - period matrix II' :
By the above calculation, =i, = 2(P2ij - Pzij+1)j{i (1,7 =1,2,---,n)

K, O P,— Py Pyi—F - Py, — Py
I I 8 PP-P PL-P} o Ph—Phu
0 K. )\ Pp—Py Pp—Pp - Pp— Py,

2. DETERMINANT

detl] = 2K, [y - Koa(P — P?)(P* — PY)--. (P" — PP H = 2(—1)"K P ¢

detll = 20, Ky - Kn(P? — PY)(P* = P®)..- (P™ — P H = 2(~1)"K P3¢

Let put Cy on [T5_,(P* — 1), then H is following the Vandermonde determinant.

1 P2 P4 . P2n—2
1 P4 PS .. P4n—4

He=| = pR e 0 Cuaee-CoCh
s .].3;7.1 ....... 1.3.2 e

K=KK,- K, Ki=/°°wi C=CCs CosCny Cp=T[(P"—1)
1

=1
27
2n+1

Pi=P (i=1,2,---,n) P =exp( )
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3.2.3 Confirmation for lemma

In this section we show that the value of periods made by five rules satisfy Riemann’s

period relation 1.2.

n n koo . , .
S0 e [ e] = X {2 3(Phey — PIK: M 2P~ B K

. .
n l P’L
= 4KK;Y [(1— PP, > ——
k=1 =1 P
| 1 — P)(1 - P7) &
= 4Kin( )(l Z PﬁZPféz
P k=1 =1
_ (1 P )(1 - P] : J ] P2ik
= 41(21{1 i E—l P, Pj - ]
= 4K K P{ Zng > B
k=1
X — Py 1 - Pyt
= 4K;K;——P" P1 —pHiZ 2
X] 1 + { P2 2 1 — P2z+] }
pi . Pj Ppiti

= 4K K;7——FP" - — o
| ‘11+Pl { 14+ P/ 14 P
P — PY(1 - P)

= M TR R Py £ A

(symmetric expression for P, P?)

2o f =D [

which satisfy Riemann’s period relation 1.
2 w; w; — Wi @; | >0
k;l [ Ak By /;k A ]
7 w; w; — W w; 1 >0
Z [ /:41; ‘/;k By ~/Ak ]

k=1
‘ n
- w
mkz:;(/Aiwl/Bi
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On the other hand, we have only to prove last inequality for Riemann’s period relation 2.

k

S @ [ w] = 3 [{2X (Pt — P K: H 2Py — Poya) Ki } ]
A B
k=1 k k k=1 =1
n k
D 1 1 1 P
= 41{3(1-—P’)(1—P)Z[Z—-7(P2)[P2,c]
B k=1 I=1P
21— PO =P) & 5l =Py
= : A5 P, L
4K 5 k};}[ TR 2k |
1—-P 2 _.
= 4K? — P, 1- PP,
i (- PPy ]
1-P7 _. &
= 4K Py [P 1
1-P 1 P
= 4K? -P'{ P, n _
el b )
1-pi_.  —F
= (2 __Pp¢ _
4A'HPi {1+Pi n}
—p . .
4K? C ) {PP+n(l+P")}

“(1+ PYH(1+ PY)

n

i C4KH1 - PY{n+(n+1)P'}
lez:l[Akwi/‘Bkwi]— l1+Pz|2

By putting
271

2n+1

P’ = exp( )

- 4K? 271
I / By / i = (2 1) si >0
mlcgl[ Akw Bkw] I1+P1|2(n+ )Sln(2n+1)

which means that the period matrix for the homology in five rules satisfy Riemann’s period

relation. Thus we have the following theorem from the above result.

THEOREM 3.1 Let X be the Riemann surface defined by y* = z®**! — 1, then the period
matriz of X is given by (II,II') of §3.2.2.
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