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'§1. Hochster’s formula
iiven a subset W of V, the restriction of A to W is the Stlb(‘omplex

Aw={o€A|oC W}

of A. In particular, Ay = A and Ay = {0}.

63



- Let H;(A;%k) denote the i-th reduced simplicial homology group of A with
the coefficient field k.. Note that H_;(A;k) = 0if A # {0} and

ﬁi({w};k):{?c 20

—1).

hv

?
i
Hochster’s formula [Hoc, Theorem 5.1] is that

}31'} = | Z dimkﬁj_i_l(Aw;k).
wcv, §(W)=j

Thus, in particular,

ﬂ;“(l;[A]) = Z dimy, Hu(W)—i—l(AW§ k).

wcv

Some combinatorial and algebraic applications of Hochster’s formula

have been studied. See, e.g., [B-H;], [B-H;], [Hs), [Ha], [Ha], and [T-H,].

§2. Betti numbers of Stanley—Reisner rings
associated with cyclic polytopes

In this section we briefly summarize the results in [T-H,]. See [T-H,]
for the detailed information. See also e.g., [Brg| for general properties of
cyclic polytopes.

Let R denote the set of real numbers. For any subset M of the d-
dimensional Euclidean space R?, there is a smallest convex set containing
M. We call this convex set the convexr hull of M and denote it by convM.
For d > 2 the moment curve in R? is the curve parametrized by

t— z(t) = (t,t%,---,tY), teR.

By a cyclic polytope ('(v,d) , where v > d 4+ 1 and d > 2, we mean a poly-
tope P of the form P = conv{z(t;),---,z(t,)}, where ty,-- -, ¢, are distinct
real numbers. It is well known that C(v,d) is a simplicial d-polytope with
the vertex set {x(#;), -, z(t,)}, and its face lattice is independent of the
particular values of t. Therefore its boundary complex is a simplicial com-
plex and has the same combinatorial structure for any choices of vertices.

We denote it by A(C'(v, d)).
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The next theorem explains why the cyclic polytope is important.

UPPER BOUND THEOREM (cf. e.g., [Bro]) Let P be a d-dimensional
polytope with v vetices. Let C be a d-dimensional cyclic polytope with v
vertices. Then we have

fi(P) < £i(C),
where f;(P) stands for the number of i-facces of a polytope P.

We now compute the Betti numbers of a minimal free resolution of the
Stanley-Reisner ring A[A(C(v,d))] of the boundary complex A(C'(v,d)) of
the cyclic polytope (‘(v,d).

We fix a field k. Lo :

If the dimension d is even, a minimal free resolution of k[A] is pure and
the Betti numbers can be computed from the Hilbert function of k[A].

" PROPOSITION 2.1 ([Sch]). Let A be the boundary complex A(C(v,d))
of the cyclic polytope C(v,d), where d > 2 is even. Then a minimal free
resolution of k[A] over A is of the form:

0 — A(—v) — A(—v+ g— +1)Pe-a1t —

4

Z |
A= sy A -1 A HA

L 4

where for 1 <i<v—d-—1,

d d . » d )
w=("310 )(5+§“1)+(1",5—1)(U—5d—z—1).
2T ) :—1 d

Our formula on 3; in Proposition 2.1 is, in fact, a little bit different from
the one in [Sch]. But it is easy to show that they are coincident.
Now we state the main theorem in this chapter.

THEOREM 2.2 ([T-Hy)). Let A be the boundary complex A(C(v,d))
of the cyclic polytope C(v,d), where d > 3 is odd. Then a minimal free
resolution of k[A] over A is of the form:

d bv—d—l d by
O—>A(—-v)——>A<—v+[§] —|—‘2) @)A(—v—l— [5] +1) —

65



Even if the geometric realization |A| of a simplicial complex A is a
sphere, a Betti number of the Stanley-Reisner ring k[A] may depend on the
base field k in general. See [T-H;, Example 3.3]. But as for the boundary
complexes of cyclic polytopes we have the following result:

COROLLARY 2.3. Let A be the boundary complex A(C(v,d)) of the cyclic
polytope C(v,d), where d > 2. Then all the Betti numbers of the Stanley-
Reisner ring k[A] are independent of the base field k.

We show unimodality of the Betti number sequence
(Boy B1y- -+, Buaq) of the Stanley-Reisner ring k[A(C'(v,d))] associated with
C(v,d). Since this sequence is symmetric, i.e., 8; = B,_4-; for every 0 <
¢ < v —d, the unimodality means 3y < 3 < -+ < Biv-a)/2-

COROLLARY 2.4. Let A be the boundary complex A(C(v.d)) of the
cyclic polytope C(v,d). Then, the Betti number sequence
(Bo(k[A]), Bi(k[A]). -+, Bu—a(k[A])) of the Stanley-Reisner ring k[A] over

A is unimodal.

§3. Gorenstein complexes

We first give the definition (see [Sta;]). Let k be a field or Z. Let A
be a (d — 1)-dimensional simplicial complex with v vertices. We call A
Gorenstein® over k ( or k-Gorenstein*) if it satisfies one of the following
equivalent conditions; '
(1)For all faces o € A (including o = )) we have

if ¢ = dim link A(0),

otherwise.

Hi( link A E{
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(2)(a)k[A] is Gorenstein.
(b)For all 1 < i < v, x; are zero-divisors in k[A].

We have the following hierarchy;

{Boundary complexes of simplicial polytopes}
C {Triangulations of a sphere}

C {Z-Gorenstein* complexes}

C {Q-Gorenstein* complexes}.

Remark. (1)All the inclusions above are strict. Non-shellable-triangu-
lation of a sphere (a Poincaré sphere, an odd-dimensional real projective
space, respectively) gives the first (second, third, respectively) inclusion
strictness. o '

(2)If v — d < 3, then all the above classes are equal ([Bru-Her,]).
(3)If d < 3, then all the above classes are equal.

Problem 3.1. Let k be a field. If*A is a (d — 1)-dimensional -

Gorenstein™ complex with v vertices, then does
Bi(k[A]) < Bi(K[A(C(v,d))))-

hold? In particular, in the case d = 3, does

aikia)) < U 1,)1.(:7_3) (?:f) 1<i<v—4,

hold?

Actually it holds if v — d < 3 ([Bru-Hery)) or if d < 2. In the case
d = 3 we can treat the problem from a combinatorial view point because of
Remark (3). We have the following partial results;

THEOREM 3.2. Let A be a 2-dimensional Gorenstein* complex vith v (>
5) vertices.
(1) We have By (k[A]) < L=t
(2) We have

ﬁig(v—~1).('v——z—3) 1'7——3 ,1§i§v—4,
1+ 1 1 —1/

forv < 12.
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To prove the theorem, we use:

THE INDUCTION THEOREM OF BRUCKER-EBERHARD(cf. [Oda, p190]).
Supposc a finite triangulation A of S* is given. We get a triangulation A’
of S? with one more verlex, if a vertex of A is * split inlo two " by one of
the three steps (1), (2),(8) shown in the figures below. We can obtain any
given finite triangulation of S? from the tetrahedral triangulation by splitting
verlices finilely many limes.

N \
LEMMA 3.3. Lel A be a triangulation of S* with v vertices. And let A
be a triangulation oblained from A by (1) or (2) in the Induction Theorem
above. Then we have

Biix1 (K[A]) < Biiw1 (KA]) + Bz i(K[A]) + (U : 3)
fore> 1.

LEMMA 3.4. Lel A be a triangulalion of S? with v vertices. Assume A
is oblained from the letrahedral triangulation by successive steps of (1) and

(2). Then we have
v—3
L (K[A]) <2 .
ﬂlﬂ"l-l(l‘[ ]) = ?<Z + 1)

Proof. Thanks to Lemma 3.3, we have

st < (1 77) v6-n("7 )+ ()
= (12 ()



S 3
o+l
as required. Q. E. D.

- LEMMA 3.5. Let A be a triangulation of S* with v vertices. If v < 12,
“and if A is not the icosahedral triangulation, then there exists a vertex x
such that d(x) < 4, where
d(z):=f{o: I-face of A |z € o}.

Now we skech the proof of Theorem 3.2. First note that non-zero Betti
numbers j3; ; only appear in the 2-linear part (S1,2,..., Sy—40-3 ) and in the
3-linear part (F13,...,Fy—au—2 ) for 1 <o < v —4. Since A is Gorenstein,
we have f3; j(k[A]) = By—i—3,0—j(k[A]) for every ¢ and j. Put j := ¢+ 2. We
have 3 ;19(k[A]) = 3iozp-io(k[A]).

Suppose v < 12 and A is not the icosahedral triangulation, (In the case
A is the icosahedral triangulation, we must treat it separately. But we omit
it here.) By Lemma 3.5, A is satisfied the assumption in Lemma 3.4. Then
we have

Bi(k[A]) = Biiv1(k[A]) + Biipa(R[A])
= Biir1(k[A]) + Bomizzw—i-2(k[A])

fv =3 ) v—3
Z('i-l-l)_'_(v_ll_g)(vwi—Q)

o (v=1)(v—=1=3)fv-3
B i+1 i—1)°

IN

which is the assertion (2).

As for the assertion (1), note that j3;,(k[A]) = (“—"3)211’—*41, which only
depends on v. Hence we have only to show 3 5(k[A]) < “54,Then we have
only to check that the number of “empty triangles (circles of length 3 which

are not 2-faces)” increases at most by one in the case (3) in the Induction
Theorem, which is immeadiate.
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