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Life-span of Classical Solutions
to Nonlinear Wave Equations
in Four Space Dimensions

Li Ta-tsien (Li Da-qian) *

Abstract In this paper we prove that in four-space-dimensional
case, L. Hérmander’s estimate T(¢) > exp{Ae~'} (A > 0, constant)
can be improved by T(¢) > exp{Ae~2} on the lower bound of the
life-span T(e) ‘of classical solutions to the Cauchy problem with small
initial data (u,u:)(0,z) = e(¢(z),v(z)) for nonlinear wave equations
of the form Ou = F(u, Du, Dy Du), where F(X) = O(JA]?) in a neigh-

bourhood of A = 0.

1 Introduction

Consider the Cauchy problem for fully nonlinear wave equations with small initial
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data:
Ou = F(u, Du, D, Du), (1.1)
E=0:u=cd(z),u=ep(a), (1.2)
where i R |
0= gt—z— — ; 5()&? - ; (1.3)
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is the wave operator,

a 0 (0 0O -0
D:):“(Ta'm_la"W'a’;:)a D'—(a>a_wla"'aﬁ)a (14)
¢, € C§°(IR") and € > 0 is a small parameter.
Let

A=), i=0,1,--,n;(A;), 5,5 = 0,1,---,m,i + 5 > 1) (1.5)

Suppose that in a neighbourhood of A = 0, the nonlinear term F = F(}) in (1.1)

is a sufficiently smooth function satisfying
F(3) = O(JA]"*), (1.6)

where « is an integer > 1.

For all integers n, « withn > 1 and o > 1, the lower bound of the life-span of
classical solutions to (1.1)-(1.2) was studied by S. Klainerman [1]-[2], [5], [7], J. L.
Shatah (3], S. Klainerman & G. Ponce [4], F. John [6], F. John & S. Klainerman
(8], M. Kovalyov [9], L. Hormander [10], Li Ta-tsien & Yu Xin [11] etc. for the

‘special case

F = F(Du, D, Du),

and by D. Christodoulou [12], Li Ta-tsien & Chen Yun-mei [13], L. Hormander
[14], H. Lindblad [15], Li Ta-tsien & Yu Xin [16], Li Ta-tsien & Zhou Yi [17], Li
Ta-tsien, Yu Xin & Zhou Yi [18]-[20], Li Ta-tsien & Zhou Yi [21]-[23] etc. for the
general case

F = F(u, Du, D, Du).

A summary of all the results mentioned above can be found in Li Ta-tsien &
Chen Yu-mei [24]. All these lower bounds, except in the case n = 4, a = 1 and

92F(0,0,0) # 0, have been known to be sharp.
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Thus, in the case n = 4, a = 1 and §2F(0,0,0) # 0, it is natural to ask if the

lower bound of the life-span

- T(e) 2 exp{Ac™}, (1.7)
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where A is a positive constant independent of ¢, originally obtained by L. Hormander

[14] and then, by means of the global iteration method, by Li Ta-tsien & Yu Xin
[16], is sharp or not. In this paper, as a joint work with Zhou Yi, we shall prove

that (1.7) can be improved by
T(e) > exp{Ac7?}, (1.8)
where A is a positive constant independent of ¢ (see Li Ta-tsien & Zhou Yi [35]-

[36])-o

2 Motivation

By L. Hérmander [14] and Li Ta-tsien & Zhou Yi [17], if there is no u® term in
the Taylor expansion of F, i.e., 32F(0,0,0) = 0, then in four space dimensions
Cauchy problem (1.1)-(1.2) always admits a unique global classical solution on
t > 0, provided that € > 0 is suitably small.

In order to illustrate the motivation of expecting estimate (1.8), as the ‘worst’

case of equation (1.1) we consider the equation
Ou = u? (2.1)
which can be regarded as a special case (p = 2) of the following equation
Ou = |ul? (p>1). | (2.2)

When n = 3, F. John [25] proved that if p > 1 4 /2, then for &€ > 0 suitably

small, Cauchy problem (2.2) and (1.2) admits a unique global solution on ¢ > 0;
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while, if 1 < p < 1 + /2, then any nontrivial solution with compact support to
equation (2.2) must blow up in a finite time. Thus, in the case n = 3 the critical
value of p is equal to po(3) =1+ V2. In general, as suggested and studied by W.
Strauss [26], R. T. Glassey [27]-[28], T. C. Sideris [29], J. Schaeffer [30] etc., in n
space dimensions, po(n), the critical value of p, should be the positive root of the

following quadratic equation
(n—1)p*—(n+1)p—2=0. (2.3)

In particular, we have po(4) = 2. Hence, equation (2.1) corresponds to the critical
value of p in four space dimensions. |

When p = po(n) with n = 2,3, Zhou Yi [31]-[32] proved that the life-span
T(e) of solutions to Cauchy problem (2.2) and (1.2) satisfies

T(e) ~ exp{Ae7PP~}, (2.4)

where A is a positive constant independent of &; namely, there exist two positive

constants A; and A, independent of ¢, such that
exp{AePP D} < T(e) < exp{A,e~PPDY,

We guess that (2.4) still holds in the case n = 4. If so, in four space dimensions

the life-span of solutions to Cauchy problem (2.2) and (1.2) should satisfy
T(e) =~ exp{Ac™%}. (2.5)

This consideration leads us to prove (1.8) for Cauchy problem (1.1)-(1.2) and to

believe that this lower bound of the life-span should be sharp.o

3 Proof of the main result

The general framework which we shall use to prove (1.8) is still the global iteration

method, suggested in Li Ta-tsien & Chen Yun-mei [13] and Li Ta-tsien & Yu Xin



[16].
First of all, just by differentiation, it suffices to consider the Cauchy problem

for the following general kind of quasilinear wave equations:

Ou= Y bi(u, Du')uxixj + 2 aoj(u, Du)ue; + Fo(u, Du), (3.1)
oot,7=1 ‘ Jj=1.
=0:u=c¢ed(z),u =ep(z), (3.2)

where b;;, aoj (2,7 = 1,---,n) and Fp satisfy certain suitable assumptions. With-

out loss of generality, in what follows we may suppose that

supp {¢,%} C {z | 2| < 1}. (3-3)
The solution u to Cauchy problem (3.1)-(3.2) (in which n = 4) can be written

as v
U =W+ U, (3.4)
where u, is the solution to the following Cauchy problem for the homogeneous

wave equation:
Ou, = 0, N | (3.5)
t=0:u =ep(z),(u): = ep(z); (3.6)
while w is fhe solution to the following Cauchy problem: | |

4 4 '
Dw = Y bij(u, Du)uge, + 2 agj(w, Du)us, + Fo(u, Du),  (3.7)
4,7=1 j=1 |
t=0:w=0w=0. (3.8)

The iteration scheme is given after the preceding translation by

. 4 :
Ow = Y bij(ue +w, D(u: + w))(ue + w)ximj
i,7=1 .

4 ,
+2 El agj(ue + w, D(ue + w))(ue + w)io, (3.9)
.7=

+ Fo(ue + w, D(ue + w)),
[ t=0:w=0,w, =0,
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which defines a map

M:w—w= Muw.ng (3.10)

For any integer N > 0, define

lult, e Npax = 2 IIx(t )T u(t, YLragrn), (3.11)
lk|<N

where I' denotes the following set of partial differential operators:

I'={D,L,Q} & ([y,--,T,), (3.12)
in which
9 9 B
D=} — — o — 3.1
<8t7 6.’1:1’ ,8.'1771) bl (3 13)
LZ(LG,GZO,L---,”), (314)
Q= (Qij’i’j =1, '777*) (315)

with
LO = tat + :Elaa:l + -+ -’Enaxna
L; =1t0,, + x;04, 1=1,---,n, (3.16)
Qi]‘—’:l"a.—.’lijax., 7]21 e, N,

1< p, q < 400, x(t, ) is the characteristic function of any given set in IR, x IR",
k = (ky,---,k,) are multi- indices and LP9(IR™) is a function space, introduced

by Li Ta-tsien & Yu Xin in [16], with the norm

n—1
N lzrarry = || F(E)r ™ | Lr(0,400sLa(sm-1)), (3.17)

where r = |z| and ¢ € S™!, S"~! being the unit sphere in IR"*. We write

”'u(t’ .)HraN)P’X? %f p = q,
lu(t, MIrNpax = ”“(t")”I‘,Nm,qa %f x =1, (3.18)
lut, Moo if N=0.p

The essential point for the global iteration method is to choose a suitable

function space with which we shall work in the iteration. This space should



- simultaneously reflect the decay property and the energy estimate of solutions to
the linear wave equation.

In the present situation, the space is chosen as follows:

XS,E,T = {w(t,x) | DS,T(w) < E’atlw(oax) = wI(O)('B) (l =0,1,--- 7S + 1)}1

(3.19)
where S is an integer > 11, F and T are positive numbers and
2
Dsr(w) = > sup |[D'w(t,)lrsz+ sup [lw(t)lrszx
lij=1 0St< 0<t<T

+ sup (1+8)]w(t, )llrsezx + sup (1+8)72(In(2 + )7 |lw(,)ll|
0<t<T 0<t<T

+ osup (L+0F1+[t—l2l))? X [Mw(ta)l, (3.20)
0<t<T [kl<S-3
c€R?

in which x; is the characteristic function of the set {(¢,z) | |z] < &1}, x2 = 1—-x

and

lwtt, =32 1 +1t =1 12l w(t lzer)- (3.21)

k|<S
Moreover, wi”) = w{” =0 and wl(o)(:v) (1=2,---,541) are the values of dlw(t, z)
~at t = 0 formally determined by Cauchy problem (3.7)-(3.8) with (3.4)-(3.6).

Endowed with the metric

p(@,i)) = DS,T(J) —Vw), Vo,we XS,E‘,T) (322)

Xs g1 is a nonempty complete metric space, provided that € > 0 is suitably
small.
Let X, s.gr be the subset of X5 g1 composed of all elements w € Xs g such
that
supp w C {(t,z) | || <t +1}. (3.23)

If we can show that for ¢ > 0 suitably small there exist £ = E(e) and T = T'(¢)

such that the map M has a unique fixed point w € XS‘,E(E),T(E), which implies that
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u = w + u, is the unique classical solution to Cauchy problem (3.1)-(3.2), then

we get the following lower bound of the life-span
T(e) > T(e).a (3.24)

Noting that the initial data in (3.9) are zero and the nonlinear term in (3.7)

is quadratic with respect to u = u, + w, we have

Lemma 3.1. For w = Mw, dlw(0,z) (I =0,1,---,5 + 2) are independent of
w € YS,E,T, and

10(0, )lIr, 54209 < Ce?, (3.25)

where 1 < p, ¢ < 400, C is a positive constant independent of £ and ||w(0, -)||r,s+2,p.4
is the value of ||w(¢, )||r,s+2p,4 at t = 0.0
According to the basic procedure of the global iteration method, in order to

get the desired result, it suffices to show the following two lemmas.

Lemma 3.2. For any w € Ys,E,T, w = Mw satisfies

Ds,T(w) <4 {52 + (R + \/E)(E + DS,T(w))}.D (3.26)

Lemma 3.3. Let ©, @ € YS,E,T. If v = M& and w = Mo also satisfy w,

w € YS,E,Ta then
Ds_l,T(’u—) — 'L_T)) < CQ(R + \/_E)(Ds_.l,q‘(lf) — ’lI_)) + DS_I,T(LD — (TJ)).D (327)

In Lemma 3.2 and Lemma 3.3, Cy, C, are positive constants and

R=R(e,E,T) = Eln(2+T) + &/In(2 + T). (3.28)



‘Based on these two lemmas, the standard contraction mapping principle can
be easily used to show that the existence time interval [0, T'(¢)] will be determined

by -

R(e, E(¢e),T(e)) + \/JT% (e,E(e), T L - (3.29)

Co’
where Cy = 3max(Cy,C;) and E(g) = Coe?. Obviously, if we take

T(e) = exp{Ae™?} — 2 (3.30)

with A > 0 suitably small, then (3.29) holds. This gives the desired estimate

(1.8).o

For the proof of Lemmas 3.2 and 3.3, we need some refined estimates on the

solution to the Cauchy problem

Du = F(,2),
{ t=0:u=f(z),u=g(z) (3.31)

in four space dimensions.

As mentioned above, L. Hormander’s estimate (1.7) was reproved by Li Ta-

tsien & Yu Xin in [16]. The key tool in the proof is the following lemma.

Lemma 3.4. Suppose that n > 3. Let u = u(#, ) be the solution to Cauchy
problem (3.31). Then

lu(t, Mezrry < CUISlz@wny + l9llLarm
t n—2
+/0 P (7, Mpa@gny + (1 +7)772 P (r, ) |pr2@mmld,

Vit >0, (3.32)

where % = 1 4+ 1 y; is the characteristic function of the set {(t,z) | |2| < i

x2 =1 — x1 and C is a positive constant.n

103



104

Inequality (3.32), established in Li Ta-tsien & Yu Xin [16], may be regarded
as an improved form of Von Wahl’s inequality (cf. [33]).
Based on a Sobolev embedding theorem in the radial direction, the idea of

the proof of Lemma 3.4 can be applied to get the following two lemmas.

Lemma 3.5. Suppose that n = 4. Let u = u(¢,z) be the solution to Cauchy
problem (3.31) with

{ supp {f,g9} C {z | |z| < 1}, (3.33)

supp F' C {(t,z) | |z] <t +1}.

Then

Ixaut, ez < CO+ )7 {2 + 1913 gy

t
[0+ TP gy + 6P, ragrenldr),

Vi>0, (3.34)

where x; is the characteristic function of the set {(¢,z) | |[z] < ®1}, x2=1—xa

and C is a positive constant.g

Lemma 3.6. Suppose that n = 4. Let u = u(¢,z) be the solution to Cauchy

problem (3.31). Then

~3(i_1
Ieau(t, Mawscrey < O+ 87D fllgso gy + g crey
1
+ [ 6P, g + (1 + 7)) F ()

V>0, - (3.35)

L112(R4)]d7'}a

where p > 2, Sy = % — %, % = %—!— 1“450, C is a positive constant and H>°(IR*)

stands for the homogeneous Sobolev space equipped with the norm

11750 ey = IEI S ()l L2 (s (3.36)



where f(¢) is the Fourier transformation of f(z).q

Moreover, noting that the initial data have compa.ct’ support, a version of
Huyghen’s principle can be used to improve Hormander’s L!-L* estimate (see
L. Hérmander [34]) and Lemma 3.4 as presented in Lemma 3.7 and Lemma 3.8

respectively.

Lemma 3.7. Under the assumptions of Lemma 3.5, we have

lu(t,z)] < CO+t+|z))"5(1 + [t — |z]])~F {||u(0,)||raz
H|ue(0,)Irsp + (1 + |t — |2||) sup ||F(7,)|lra1}s
, 0<r<t |

Vt>0,Yze R (3.37)

where C' is a positive constant.g

Lemma 3.8. Under the assumptions of Lemma 3.5, we have

I+ 1= 1 1) 2 xau(t @) |2y
< C+ 2 {[[u0, Nran + [0, ) I,
t 1 _
L1+ DI g ey + (4 D) P, o),

Vt>0, (3.38)
where C' is a positive constant.g

Lemmas 3.5-3.8 play an important role in the proof of Lemmas 3.2 and 3.3.o
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