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1. Introduction

The purpose of this paper is to classify the automorphism group Aut(P?) of the com-
plex projective line P* by the “ r-signatures ” independent of geometric properties of
P

Let: M be a compact Riemann surface of genus g(>0). Assume that G is a finite
subgroup of the automorphism group Aut(M) of M. We are interested in the classification
of the pairs (M, G). As for a criterion of the classification, we consider it natural to
use the relation of topological equivalence. Our classification gives some information in
relation with the problem of the moduli or Teichmiiller space (cf. [8], [9]). We make the
classification by virtue of the character theory of groups, in particular by the r-signatures
r (see Definition 3.1), which is invariant up to topological equivalence. We characterize
this classification as the relation between “r is representable” and “r is realizable.”

The Lefschetz trace 3 (—1)¢ Tr(G|H* (M, £2%9)) of the natural action of G on the space
of g-differentials on M can be expressed as the Chevalley-Weil formula ( see Proposition
3.1). We shall abstract the notion concerning the branch points on M/G of the natural
projection 7 : M — M /G which appears in this formula. Namely, given a finite (abstract )
group G a priori, we introduce a quantity r = [go; l,...,ls |, which we call the virtual
r-signature of G. Further we denote by X[(T‘]?) the right-hand side of the Chevalley-Weil
formula, abstractly. And we put x, = 1, + x{(r}) , 9 = X,,(1). Here 1g is the principal
character of G. Then we can study automorphism groups of compact Riemann surfaces by
virtue of the character theory of groups with the class function X, on G (see Definition
4.1, 4.2). From this formula, we get our basic tools, the Eichler trace formula and the
Riemann-Hurwitz relation ( see Proposition 4.1, 4.2).

In this paper we state the following theorem :

Theorem. Let G be a finite (abstract) group of order n (> 2). Let Cy,C4,...,Ch be
the conjugacy classes of G and so = 1,s1,...,58p their representatives, respectively. Let
T =[g0; l1,---,ln] be a virtual r-signature of G such that go € Z>0, l; € Z>9 (1 <i < h).

(I) The following two conditions are equivalent :

(i) X, =0.

(ii) r is realizable of genus zero.



(IT) The automorphism group of genus zero is classified by the r-signatures as follows :

1) Zn : i n—i
(i) In casen > 2 : [0;...,?,...,\1/,...] with (i,n) =1, 1 <i < n.
(i) In casen =2 : [0;2].
(2) Dm - i k+1 k+2
(i) Incasem=2k : [0;...,1,...,1,1] with(3,m)=1,1<i<k.
z k+1
(i) Incasem=2k+1 : [0;...,1,..., 2] with(¢i,m)=1,1<i<k.

(3) A4 : [0;1,1,1].
(4) Sy : [0;0,1,1,1].
(5) 45 : [0;1,1,1,0].

Here the symbol “...” means that l; =0.

Here © Xy = 0 ” means the zero-map. The condition * Xrj = 0” implies that r is
representable. In general, we say that r is representable if Xlrl is a linear combination
of the irreducible characters of G with non-negative integer coefficients. Then x,, is a
character of some representation of G. In general, we say that r is realizable of genus g if
there exist a compact Riemann surface M of genus g and an inclusion ¢ : G — Aut(M)
such that go is the genus of M/G and [; (1 < ¢ < h) means the number of branch points
on'M/G of m : M — M/G (see Definition 4.3).

The result of this paper is used in the classification in case that M is hyperelliptic. In
the same line, our method may be available to study the case of g = 1,2,..., which we
shall consider in another place (cf. [5], [7], [8], [10]).

- Remark 1.1. The symbols Z,, Dp,, A4, S4 and As denote, respe&tively, the cyclic
group of order n, the dihedral group of order 2m, the alternating group of degree 4, the
symmetric group of degree 4 and the alternating group of degree 5.

Remark 1.2. It is well-known as the classical results that the finite subgroups of
Aut(P*) are classified as cyclic Zp, dihedral Dy, tetrahedral Ay, octahedral S4 and
icosahedral As.

2. Notation

We denote by Q the field of rational numbers, and by C the field of complex numbers.
We denote by Z>g the set of non-negative rational integers, and by C* the mﬁltiplicative
group C'\ {0}. Put ¢, = exp(27r\/—_1/n) (n=1,2,...). We denote by #S the cardinality
of a set S. ‘ .

Throughout this paper, G is a finite group. As for the group theory and the represen-
tation theory, we use the general notations (e.g. [11] ). For example, (s), C,(H), [G: H],
(x, ), IndG(p), etc. We denote by s the cardinality §(s). We denote by reg ., the regular
character of G. For a,b € G, we denote by a <€ b that a is G-conjugate to b.



We use the following situation :
Situation 2.1. Let G be a finite( abstract ) group. Let Cp, Cy, ..., Cj, be the conjugacy
classes of G and so = 1, sy, ..., sp their representatives, respectively.

3. r-signatures and r-datum

We shall introduce the notion concerning the branch point on M/G of the natural
projection 7 : M — M/G.

Let G be a finite (abstract ) group. For an inclusion ¢ : G — Aut(M), we say that G is
an automorphism group of M. In this case, we identify G with its image via ¢ and denote
that G C Aut(M). We shall specify ¢, if necessary. |

Assume that G C Aut(M). For a point P on M, we denote by

Gp={oceG;o(P)=P}

the stabilizer of P in G. We define an injective homomorphism 0p : Gp — C* by the
equation :

Op(c) =¢ (0 €Gp)

where ( is a fo-th root of unity satisfying the relation
o*(t)=¢ -1 (mod 720p)
for some local parameter 7 of the valuation ring Op at P (in the function field of M ).
Definition 3.1. In Situation 2.1, we assume that G C Aut(M). Denote by gg the
genus of M/G. We put, for s (# 1) € G,
I(s)=4(r{PeM; Gp={(s) and Op(s) = {ys})

where the natural projection 7 : M — M/G. Then we call the quantity

r= [907 1(81),. ..,l(Sh)]
the r-signature of G with respect to Cy,...,Ch.
Remark 3.1. I(s) = (s) in case s € &'

Now we introduce the notion concerning the fixed points on M.
Definition 3.2. Let G be a finite group. Assume that G C Aut(M). We put, for
s(#1) €G,
r(s)=4{ P € M; Gp 2 (s) and Op(s) = (s},
T«(s) =§{ P € M; Gp = (s) and 0p(s) = (ys},
and put
r)=1-g

where g denotes the genus of M. Then we get a class function r : G — Q, which we call
the r-datum of G.



Let G be as above. We denote by x(? (g =1,2,...) the Lefschetz trace (cf. [2])
> (~1) Tx(G|H (M, 2°7)) o
i>0 '
of the natural action of G on the space of g-differentials on M. Then we have
XV = Te(GIHY(M, 2)) — 1,
X9 = ’I‘r(G|H0(M, 2%9)) for ¢ > 2. .
Here 1, is the principal character of G which is given by 1,(s) =1 for all s € G.

Proposition 3.1 ( The Chevalley-Weil formula). In Situation 2.1, we assume that
G C Aut(M). Letr =[go; U(s1),--.,U(sn) ] be an r-signature of G. Then we have, for
q=12,..., ’ '

(a) h 1 ,(q)
X —@wﬂ@—&MZm»Q—E)«% zmg

=1 ¢

where
f#s—1

P = 1 Z d- Ind(s)(ﬂ d+q)
fors e G.

Here reg,, is the regular character of G which is given by ‘
reg(s) =0 for s (#1)€G,
reg.(1) = G.

Further Indg> is the induced character which is given by

Ind<s 03 Z 0 1ta forte G

O‘GG
—1ta€(s)

where 6 : (s) — C™ by the equation 6,X(s) = (3.

4. Virtual r-signatures and virtual r-datum

Given a finite ( abstract } group G a priori, we shall abstract the notion in 3.
Let G be a finite group. In Situation 2.1, for an h+ 1-tuple [go; l1,...,In ] of rational
numbers, we put, for s (# 1) € G,

=Y 1GUs) ()] Us)
s'eG

FIESR O

where s =s , I(s") = I; in case ' £ s;. Here [ : | is the index and C,(H) is the

centralizer of H in G. Further we put

(FW%—W-ZZ< Qﬂ



Then we get a class function r : G — Q. :
On the other hand, for a class function 7 : G — Q, we define an h+1-tuple [go; 1, . .., 4]
of rational numbers by the following relations :

(i) ruls)=r(s) - Z r«(s') where s= 5'[(s’>:(s”
s'eG
for s (# 1) € G (defined by descending condition ),

7+(8:) )
(i) L= (i # 0),
[Ce((si)) = (si) ]
1 1 1
i) go=1-—r(1)—=S 4-(1-—
@) g0 =1-g5r) -3 (1-%)- |
Hence we see that the tuple [go; l1,...,l] and the class function r : G — Q are the same

notion. So we use the same notation.

Definition 4.1. In Situation 2.1, we call the tuple -

r=1[go;l1, -]

the virtual r-signature of G with respect to Cy,...,C) and the class function 7 : G — Q
the virtual r-datum of G. ‘

Now we shall denote by X[(r‘]?) the right-hand side of the Chevalley-Weil formula in
Proposition 3.1, abstractly. From this formula, we get our basic tools, the Eichler trace
formula and the Riemann-Hurwitz relation.

Definition 4.2. In Situation 2.1, let r=1{go; l1,...,ln ] be a virtual r-signature of
G. We put, for ¢ = 1,2, .

(@ — - , 1 /@)
Xin® = (2‘1—1)(90—1)“2 Li - (1_,1151) T€g; — Z li - g,

=1
where
jis 1
w0 = Z d-Tnd§)(02+9)
for s € GG, and put
_ (1)
X =1a+ X, 9= %,(1)-

Proposition 4.1 (The Eichler trace formula). Let G be a finite group. Let r :
G — Q be a virtual r-datum of G. Then we have, for s(# 1) € G,
. gﬂq
* S
X0(s) = Sor(s)
B 1- Cﬁs
where (0,4s) =1, f8* =1 (mod §s), and

X\P(1) = (1 -2q)r(1)



(g=1,2,...).

Proposition 4.2 (The Riemann-Hurwitz relation). In Situation 2.1, let 7 =

[g0; liy---,1n] be a virtual r-signature of G. Then we have the following relation :
b 1
29—2=4G{200 -2+ L (1—_> .
i=1 fsi

Now we are in a position to give the definition of “r is realizable. ”
" Definition 4.3. In Situation 2.1, let 7 = [go; l1,...,ln ] be a virtual r-signature of
G. We say that r is realizable of genus g if there exist a compact Riemann surface M of
genus g and an inclusion ¢ : G — Aut(M) such that

(i) go is the genus of M/G and

(ii) lz = ﬁ(ﬂ’{ PeM 5 GP = <Sz> and Op(s,-) == Cﬁsi}) for S; € Oz (1 <1< h),
where the natural projection 7 : M — M/G ( cf. Definition 3.1).

Proposition 4.3 (The Riemann existence theorem). In Situation 2.1, let r =
[g0; l1,---,n] be a virtual r-signature of G. Then r is realizable of genus g if and only if

(i) go € Zzo, l; € ZZO (1 <1< h) and

(ii) there exist elements s;; € C;(1<i< h, 1<j<), and o, Br € G
(1 <k < gg) such that

G= (alaﬂly vagm/Bgo,Sl,la' ~+981lyy - -3Sh1s-- -5 Shl, )

with the relation

go
IIlow Bel]]si =1
k=1 ij

5. Proof of Theorem

Proof of Theorem (I). The implication : (ii) = (i) is trivial. To prove the converse, we
introduce the notion for the virtual r-signature r of G. We put

(go; #1s1y---, 881, 8Shy .-, Hish ).

Here fis; appears [;-times (1 < i < h).
On the other hand, we put
(go; m1,...,my)
where 2 < my < --- < m, < n, mjln, which we call the virtual branching data of r. For

the sake of brevity, we shall call, for example, the data (1). These are equal except their
order. Then we have the relation between them as follows :

f{jsmj=m}= Zli with m|n, m # 1.

ls;=m



To determine r corresponding to the data, we use this relation. Further we can reform
the Riemann-Hurwitz relation in Proposition 4.2 as follows :

20—-2=n 290—2-1-2 1—i .
j=1 mj

Now we assume that (i) x,,; = 0. Hence g = 0. Then there exist the following five possibil-
ities :
(1) (0;m,n) : n>2.

(2) (0;2,2,m) : n=2m (m > 2).
(3) (0;2,3,3) : n=12.
(4) (0;2,3,4) : n=24
(5) (0;2,3,5) : n=260.
In particular we shall determine 7 corresponding to the date (2).

The case of the data (2) : Let m # 2. We claim that G = Dy,. In fact, first, we shall
show that

G={(a,b; a™=b%>=1, bab™! =a").
For the data (2), we have r as follows :
(i) 90 =0, l; =1y = l;» = 1, other [; = 0 where fs; = fisy = 2, fs;0 = m.
(ii) go=0, I; =2, ly = 1, other I; = 0 where §s; = 2, §sy = m.

From the data (2), we see that there exists an element a € G with o = m. In case m :
odd, there exist no elements of order 2 in (a). From the data (2), we see that there exists
an element b ¢ (a) with #b = 2. In case m : even, there exists a unique element a% € (a)
with a? = 2. Now we assume that [(a% ) = 2.

Remark 5.1. [(a%) = 2 means that I; = 2 in case a3 < ;.

Then ), # 0. In fact, by the Eichler trace formula in Proposition 4.1,

: xlr](a%) =1- %r(a%).

Here, by Definition 4.1,

r(a%) =Y [Co((s) = ()] U(s)

s'eG

m s . .o s m o'
where a2 = 5"z . Consider the elements s’ satisfying the condition a% = s’ % . From the

virtual r-signature r, it is sufficient to consider elements order 2 and m. If s’ is satisfied
with this condition, so is elements which is G-cojugate to s’. The element of order 2
satisfying this condition is exactly one a%. As for the elements of order m satisfying this
condition, we can consider the following cases :



Case (1) : I{(s") = 0 for every s'.
Case (2) : There exists an element s’ such that I(s) = 1.

Hence we have
r(@) = [G((3)) : (@)1 1a®) + [C: G (N ]- [Go () : ()] 1)
=2m+2I(s).
Therefore
- 1—-m in case (1),
X[r](af) =1-m-1(s)= {

-m in case (2).

Hence x,, # 0. This is absurd to the assumption. Thus we see that I(a?) # 2. From
the virtual r-signature r, we see that there exists an element b ¢ (a) with b = 2. Since
[G: {a)] =2, we have .

G = (a) + (a)b (theright coset decomposition )
and (a) is a normal subgroup of G. Hence
G={(ab;a™=b=1, bab~! = a¥).

Further we have 2 = 1 (mod m).
Remark 5.2. [(a%) = 0.

In case u = 1. We note that G is abelian. Then Xiry # 0. In fact we have

Xy (6) = 1= 5 7(0)

Here

r(d) = D [G((s)) : ()] 1(s")

s'eG

where b — /"%, Consider the elements s satisfying the condition b = s % From the
virtual r-signature r, it is sufficient to consider elements order 2 and m. The element
of order 2 satisfying this condition is exactly one b. There exist no elements of order m
satisfying this condition. Hence we have

r(b) = [C5((0) : (B) |- U(b) = mi(b).

Therefore
1 ‘ if 1(b) =0,

1-m if 1(b) = 2.
Hence x;,, # 0. This is absurd to the assumption.



Let u # 1. We claim that u = —1. In fact we consider that

<
X (@ "14‘52 __gﬂ*
where (6*,m)=1, 88* =1 (mod m), { = (. Here we note that (8, m) = 1. Mther

ra®) = TG () : () ]-1(s)

s'eG

s’ . s o " s
where o = s''m. Consider the elements s’ satisfying the condition a? = s' . From the
virtual r-signature r, it is sufficient to consider elements order 2 and m. The element of
order m satisfying this condition is exactly one a?.

Remark 5.3. In case m : even and 8 = 1, we have a? with ﬁal';‘ = 2 satisfying this
condition.

By Remark 5.2, we can consider that there exist no elements of order 2 satisfying this
condition. Hence we have

r(a”) =[G ((a”)) : ()] Ua®) = U(a®).

Therefore

<
X (a) = 1+;l(aﬁ)w-

As for the quantity I (aP), we can consider the following cases :
Case (1) : I(a®) = 0 for every .
Case (2) : There exists 8 such that I(a®) = 1.

In case (1), we have X,(a) = 1. This is absurd to the assumption. In case (2), since
af & a¥8, we have I(a®) = I(a*’) = 1. Hence
B < ¢(uB)*
x{r}(a) =1+ 1= 7 + -

By the assumption, it must be Xiry (a) = 0. Then

(B (uB)*
SO
1—-¢5 1 — ((uh)
Hence we have (8" +(#8)" = 1 by simple calculation. Therefore we have u* = — (mod m).

Hence u = —1. Thus we see that G = D,y,, i.e.,
G={(ab;am=b=1,bab ! =qa! ).
Then we have r in this case as follows :

In case m =2k : fis; =m, fsg41 =8sk0 =2, (i,m) =1, 1 <i<k-—1.



(i) go=0, l; =1, lg41 =2, other [; =0.
(i) go=0, l; =1, lg42 =2, other [; = 0.
(i) go =0, l; = lgy1 = lpao : 1, other I; = 0.
Incasem=2k+1: s, =m, fisgr2 =2, (i,m)=1, 1 <i<k.
(i) go=0, l; =1, lg41 =2, other [; =0.
Let m = 2. Then we have the data (2) (0; 2, 2, 2). The finite groups of order 4 are
ZyxZy={ab;a?=0=1,bab~t =a7l),

Z,.
For these groups, we have r as follows :

Z2XZ2 : ﬁs;=ﬁ52=ﬁ33=2.

(1) go=0lh=l=lk=1 " (2) go =0, Iy = 3, other I; = 0.
(3) g0 =0, Iy =3, other l; =0. (4) go =0, I3 =3, other I; =0.
(5) 90=0, 11 =2, l2=1, otherl;=0. (6) go=0, l1 =2, I3 =1, other l; =0.

(7) 90=0, li=1, Iz =2, otherl; =0. (8) go=0, lo =2, I3 =1, otherl; =0.
(9) go=0, l1 =1, I3 =2, other [; =0. (10) go=0, la=1, I3 =2, other [; =0.

Z4 :fs1 = 2.
(1) go=0, I =3, other [; =0.
Thus we have r for the data (2). By the assumption, however, we must exclude r such
that x,, # 0. So we shall check such r. Let

X,y = MoXo +11X1t -+ NhXh

be the decomposition-of X,y into the irreducible characters of GG. Since
Xir) =0 & ng=ny=---=n=0,
it is sufficient to check an irreducible character x; such that n; = ( Xirr Xi ) # 0. Here
(X, ¥ ) is a hermitian inner product which is given by
1 -1
(x, )= e > x(0) - (o™h)
oceG
for characters x and ¢. Recall that
, h 1\ R o
X =1G+{go—1+z l; <1—E>}-regc—z lz"l/si
i=1 v i=1

where
fs—1

1
p,;“’ = j:t—s dz:; d- Indg)(ésdﬂ)

10



for s € G. For an irreducible character x of G, we have

(X X0 =(1gs Xx) {go—1+Zl (1——,>}-(rega, X).

Si

Here - '
( ) 1 if x is the pr1nc1pa1 character of G,
I, x) = . _
¢ 0 " otherwise,
(regg, x ) = x(1),
A1) 1 = G (pd+1
(", x) = g5 3 d- (o), x)
d=0
i Hs—1 . o : . : i
= Ts d-(93+!, Xl(sy ) (by the Frobenius reciprocity law )
S
d=0 o
ﬁs 1f4s—1
Z > dax- (037, 0F)
5 40 k=0
ﬁs 1 .
Z dzgq1
where

X|(s) = 33093 + 271931 +--- 4+ .’L'ﬁs_lefs—l, Tys = IQ-

We can determine the coefficients of x|, since we obtain
Xl(s) (1) Xlisy(8), - Xy (5% 1)
by the character table of G (see 6).

Remark 5.4. In case x = 1., we have <X[r}’ 1, ) = go-

Thus we can determine r under the assumption as follows :
(2) Dy, :

(i) Incasem =2k : go =0, l; = lp41 = lp42 =1, other [; =0
with (i,m) =1, 1<i< k. '

(ii) Incasem =2k+1: go=0, [ =1, lp4; =2, other [; =0
with (i,m) =1, 1 <i< k.

Remark 5.5. In case (2) m = 2, we have

Z2xZ2 : g():O, l1=l2=l3=1.

11



12

This belongs to (i).
Remark 5.6. In the same way, we can verify X, = 0 for r as above.
Applying Proposition 4.3, we shall show that r is realizable of genus zero.
(2) Dy, :

(i) We can take a* € C;, b € Cly1, atb € Cryg

such that D,, = (a’, b, a’h) with a*-b-a’b = 1.
(ii) We-can take a™* € C;, a'b € Cy1, b € Cry1

such that Dy, = (a~%, a'b, b) with a™* - a’b- b= 1.

Thus we see that r is realizable of genus zero.
Further by considering the other cases it is easy to see that we have a one-to-one
correspondence between the data (2) and Dy,. g.e.d.

6. Appendix

.For an irreducible character x such that ( Xirp? X ) # 0, the character table is as
follows (cf. [13]) :
Dy, (m = 2k) :
1 m 2 2
Co G Ciyr Ciya
X1 1 1 -1 -1
xe |l 1 (=1) 1 -1
xsll 1 (=1 -1 1

1<i<k

Here the first row gives the order of elements of each conjugacy class.
0 1 1

X1l(s;) = bs; X1|(3k+1) = 03k+1’ X1|($k+2) = 09k+2’
k _ 40 —pl

X2l(ss) = 0575 Xalisgn) = Osiprr X2l(syn) = Osppa

k
X3|(3i) = 981" X3‘<Sk+l) = gslk+17 X3‘(3k+2> = 9£k+2'

()t (e X5) =30 ()7 (g x2) =3

Z2 X Z2 :
See the character table of Dy, (m = 2).

(2), (6), (9) : (x> X2) = % (3), (5), (7) : (x> X3) = %

(@), ®), (10) ¢ (x x1) = 5

1 2
Co C Xl(s1) = O, (1) : (X x)=-L
xi 1 1



(11]
[12]

(13]
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