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\S 1. UNIFORM PERFECTNESS OF THE HYPERBOLIC RIEMANN SURFACE

In this note, we shall consider only the hyperbolic Riemann surfaces $R$ endowed
with the Poincar\’e metric $\rho_{R}(z)|dz|$ of constant negative curvature $-4$ . We de-
note by $D_{R}(p, r)$ the hyperbolic disk in $R$ centered at $p\in R$ of radius $r$ . We set
$\sigma_{R}(P)=\sup${$r>0;D_{R(p,)}r$ is simply connected} and $H_{R}= \inf_{p\in R}\sigma_{R}(p)$ , called
the injectivity radius of $R$ .

According to [LM], $R$ is called uniformly perfect if the injectivity radius $H_{R}$ is
positive (including infinity).

Let $\mathcal{R}_{R}$ be the set of essential ring domains in $R$ , where ring domain $R_{0}$ is
essential if the inclusion map $R_{0}=\rangle$ $R$ is $\pi_{1}$ -injective. The module $m(R_{0})$ of
$R_{0}\in \mathcal{R}_{R}$ is defined by the number $m$ such that $R_{0}$ is conformally equivalent to the
annulus $\{z\in \mathbb{C};1<|z|<e^{m}\}$ . The core curve of $R_{0}\in \mathcal{R}_{R}$ , denoted by $\mathrm{c}_{\mathrm{o}\mathrm{r}\mathrm{e}}(R_{0})$ ,
is the unique simple closed geodesic of $R_{0}$ (with complete hyperbolic metric).

On $R$ , another important continuous metric $\hat{p}_{R}$ , called the Hahn metric, is de-
fined by

$\hat{p}_{R}(z)|dz|=\inf_{G}\rho_{G}(\mathcal{Z})|dz|$ ,

where $G$ ranges over simply connected domains with $p\in G$ and $z$ is a fixed local
coodinate around $p\in R$ . By the monotonicity of the Poincar\’e metric, $\hat{\rho}_{R}\geq\rho_{R}$ .

We set $M_{R}= \sup_{R_{0}\mathcal{R}_{R}}\in m(R_{0})$ and $K_{R}= \sup_{p\in R^{\frac{\hat{\rho}_{R}}{\rho_{R}}}}(p)$ . Now we have the
following estimates. (The part (2) is due to Gotoh [G].)

Theorem 1.1.
(1) $2H_{R}\leq\pi^{2}/M_{R}\leq 2H_{R}e^{2H_{R}}$ .
(2) $\frac{1}{4}\coth H_{R}\leq K_{R}\leq\coth H_{R}$ .

Corollary 1.2.
The following conditions are mutually equivalent.
(1) $R$ is uniformly perfect $(i.e_{\mathrm{Z}}.H_{R}>0)$ ,
(2) $M_{R}<+\infty$ ,
(3) $K_{R}<+\infty$ .

We shall close this section by exhibiting a simple application of uniform perfect-
ness. Let $A_{2}(R)$ and $B_{2}(R)$ be the complex Banach spaces of holomorphic

$\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}\mathrm{a}\mathrm{t}-2\mathrm{i}\mathrm{C}$

differentials $\varphi$ on $R$ with norms $|| \varphi||_{1}=\iint_{R}|\varphi(Z)|dxdy$ and $|| \varphi||_{\infty}=\sup_{R}|\varphi|\rho_{R}$ ,
respectively. We set $\kappa_{R}=\sup\{||\varphi||_{\infty} ; \varphi\in A_{2}(R), ||\varphi||_{1}=1\}$ .
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Theorem 1.3. $\kappa_{R}\leq\frac{1}{\pi}\coth^{2}(HR)$ . In $partiCular_{f}A_{2}(R)\subset B_{2}(R)$ , if $R$ is uni-
formly perfect.

Remark. Matsuzaki [M] proved this theorem in a sharper form, and with full
generality. By our result, we see that $\kappa_{R}=O(H_{R^{-2}})$ as $H_{R}arrow 0$ , but, in fact,
$\kappa_{R}=O(H_{R^{-1}})$ as $H_{R}arrow 0$ by an argument using the Marden-Margulis constant
(see [M]).

Proof of Theorem 1.3. Fix an arbitrary point $P$ in $R$ . Let $\pi$ : $\Delta=\{|z|<1\}arrow R$

be a holomorphic universal covering map with $\pi(0)=p$ . We denote by $\tilde{\varphi}$ the pull-
back of $\varphi\in A_{2}(R)$ by $\pi$ . Then $|\varphi p_{R^{-2}}|(p)=|\overline{\varphi}(0)|$ by the conformal invariance of
the differential forms. On the other hand, for $r=\tanh(\sigma(p))$ , by the mean value
property, we have

$\overline{\varphi}(0)=\frac{1}{\pi r^{2}}\int\int_{|z|<r}\tilde{\varphi}(z)dxdy$

Since $\pi$ is injective in $D_{\Delta}(\mathrm{O}, \sigma(p))$ , we have

$| \varphi p_{R^{-2}}|(p)=|\tilde{\varphi}(0)|\leq\frac{1}{\pi r^{2}}\int\int_{|z|<r}|\tilde{\varphi}(Z)|dxdy$

$\leq\frac{1}{\pi r^{2}}\int\int_{R}|\varphi|=\frac{1}{\pi r^{2}}||\varphi||_{1}\leq\frac{1}{\pi}\coth^{2}HR^{\cdot}||\varphi||_{1}$ .

Thus we have the assertion that $|| \varphi||_{\infty}\leq\frac{1}{\pi}\coth^{2}H_{R}\cdot||\varphi||_{1}$ . $\square$

\S 2. HYPERBOLIC AND EXTREMAL LENGTHS

We denote by $S_{R}$ the set of all free homotopy classes of non-trivial simple closed
loops in $R$ . The hyperbolic length $\ell[\alpha]$ of $[\alpha]\in S_{R}$ is defined by

$\ell[\alpha]=$ $\inf_{\prime,\alpha\in_{1^{\alpha]}}}\int_{\alpha’}p_{R}(Z)|dz|$ .

Let $\pi$ : $\Deltaarrow R$ be a holomorphic universal covering map of $R$ and $\Gamma$ its covering
transformation group. If an element $\gamma\in\Gamma$ covers $[\alpha]\in S_{R}$ , then we have $|\mathrm{t}\mathrm{r}\gamma|=$

$2\cosh\ell[\alpha]$ (where $|\mathrm{t}\mathrm{r}\gamma|$ denotes the absolute value of the trace of the element of
$SL(2, \mathbb{R})$ representing $\gamma$ ).

Thus we can easily see that

$H_{R}=\underline{1}$ inf $\ell[\alpha]$

2 $[\alpha]\in SR$

and
2 $\cosh(2H_{R})=\inf_{\gamma\in\Gamma\backslash 1\}}|\mathrm{t}\mathrm{r}\gamma|$ .

In particular, the uniform perfectness of a Riemann surface $R$ means that the
bottom of its length spectrum is positive. Fern\’andez [F] showed that the exponent
of convergence of the Fuchsian group $\Gamma$ is less than 1 for any uniformly perfect plane
domain $R$. See also [A] and [Gon]. It is an interesting problem to extend Fern\’andez’
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result to general Riemann surface case. We should remark that, at least, compact
Riemann surfaces are always uniforniy perfect, but with $\mathrm{e}\mathrm{x}\mathrm{p}$.onent 1.

The extremal length $E[\alpha]$ of $[\alpha]\in S_{R}$ is defined by

$E[ \alpha]=\sup\frac{(\inf_{\alpha’\in_{1]}}\alpha\int_{\alpha^{\prime^{\mathcal{T}}}}(Z)|dz|)^{2}}{\int\int_{D}\tau(z)2|dZ|^{2}}\tau$

’

where the supremum is taken over all Borel measurable conformal metrics $\tau=$

$\tau(z)|dz|$ on $R$ . As for this, the following result due to Jenkins-Strebel is fundamental.
Theorem 2.1 (cf. [St]). For any $[\alpha]\in S_{R}$ with $E[\alpha]>0$ , there exist8 an integrable
holomo$7phic$ quadratic differential $\varphi_{0}$ (Jenkins-Strebel differential) with $cl_{\mathit{0}\mathit{8}}ed$ tra-
jectry homotopic to $\alpha$ , whose characteristic ring domain $R_{0}\in \mathcal{R}_{R}sati\mathit{8}fi.e\mathit{8}$ the
following conditions.

(1) $E[ \alpha]=\frac{(\inf_{\alpha’\in}\int \mathrm{l}\alpha \mathrm{J}\circ|J\varphi|1/2|d\mathcal{Z}|)^{2}}{\int\int_{R}|\varphi|dxdy}$ ,
(2) $m(R \mathrm{o})=\frac{2\pi}{E[\alpha]}$ ,
(3) $m(R_{1})\leq m(R_{0})$ for all $R_{1}\in \mathcal{R}_{R}$ with Core $(R_{1})\in[\alpha]$ .

Corollary 2.2.
$[ \alpha]\in\inf_{SR}E[\alpha]=\frac{2\pi}{M_{R}}$ .

The following theorem connects amounts of the hyperbolic and extremal lengths,
and from it we can directly deduce Theorem 1.1 (1).

Theorem 2.3.

$\frac{2}{\pi}\ell[\alpha]\leq E[\alpha]\leq\frac{\ell[\alpha]}{\arctan(\frac{1}{\sinh\ell[\alpha]})}$ .

By an elementary calculation, we know that $\frac{\pi}{2}<e^{x}\arctan(\frac{1}{\sinh x})<2$ for any
$x>0$ , we have the next

Corollary 2.4.
$\frac{2}{\pi}\ell[\alpha]\leq E[\alpha]\leq\frac{2}{\pi}\ell[\alpha]e^{l[\alpha}]$ .

Remark. Maskit showed the similar result that $\frac{2}{\pi}l[\alpha]\leq E[\alpha]\leq P[\alpha]e^{l}[\alpha]$ in [Mas].
On the other hand, Matsuzaki [M] showed the next

Theorem 2.5.
$E[\alpha]\leq\kappa_{R}\ell[\alpha]2$ .

Proof. Let $\varphi_{0}$ be the holomorphic diffrential on $R$ with $||\varphi_{0}||_{1}=1$ which gives an
extremal metric $|\varphi_{0}|^{1/2}|dz|$ as in Theorem 2.1. Then, for $\alpha’\simeq\alpha$ ,

$E[ \alpha]^{1/2}\leq\int_{\alpha’}|\varphi 0|^{1/2}|dz|=\int_{\alpha’}|\varphi 0p_{R^{-}}|21/2.|p_{R}dz|\leq||\varphi_{0}||_{\infty}1/2\int_{\alpha}\prime p_{R}|dz|$.

Since $\alpha’$ is arbitrary, we obtain that $E[\alpha]\leq||\varphi_{0}||\infty\ell[\alpha]^{2}$ . $\square$

By combining Theorem 1.3, we have the next
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Corollary 2.6. $E[ \alpha]\leq\frac{1}{\pi}\coth^{2}H_{R}\cdot\ell[\alpha]2$ .

Remark. Of course, by a refined result of Matsuzaki [M], we shall have a better
estimate than the above.

Corollary 2.7.
$\pi^{2}/M_{R}\leq 2H_{R}^{2}\coth^{2}HR$

By this we can see that $1/M_{R}=O(H_{R}^{2})$ as $H_{R}arrow\infty$ . Thus, the above estimate
is much bettar than one in Theorem 1.1 (1) as $H_{R}$ tends to $\infty$ . The author does
not know whether the exponent 2 is best possible or not.

Finally, we refer to the quasi-invariance of these amounts. Let $f$ : $Rarrow R’$

be $K$-quasiconformal homeomorphism, and set $\alpha’=f(\alpha)$ . Then, it is clear that
$E[\alpha]/K\leq E[\alpha’]\leq KE[\alpha]$ . Moreover it also holds that $\ell[\alpha]/K\leq\ell[\alpha’]\leq K\ell[\alpha]$ (see
Wolpert [W] $)$ .

\S 3. UNIFORMLY PERFECT PLANE DOMAINS

As we have seen in the previous sections, the uniform perfectness can be defined
by the intrinsic hyperbolic geometry of the surface. But, the uniform perfectness
seems to have its most importance in plane domains. The various equivalent defi-
nitions of uniform perfectness for plane domains tell us the richness of this notion.

In the sequel, let $D$ be subdomain of $\hat{\mathbb{C}}$ with $\#(\hat{\mathbb{C}}\backslash D)\geq 3$ . And, let $\pi$ : $\Deltaarrow D$ be
a holomorophic universal covering map. We set $N_{D}=||S_{\pi}|| \Delta:=\sup_{z\in\Delta}|S_{\pi}(Z)|(1-$

$|z|^{2})^{2}$ , where $S_{\pi}=( \pi^{\prime/}/\pi’)’-\frac{1}{2}(\pi^{\prime/}/\pi’)^{2}$ is the Schwarzian derivative of $\pi$ . Note that
$N_{D}$ does not depend on particular choice of $\pi$ .

By the Nehari-Kraus theorem, we know that $N_{D}\leq 6$ if $D$ is simply connected.
Now we state the supplementary result concerning with $N_{D}$ .

Theorem 3.1 (Minda [Mi]). If $Di\mathit{8}$ not $\mathit{8}imply$ connected, we have

$\frac{\pi^{2}}{2H_{D}}+2\leq N_{D}\leq 6\coth^{2}H_{D}$ .

Let $A_{D}$ denote a subclass of $\mathcal{R}_{R}$ consisting of all round annuli, and set $A_{D}$ $:=$

$\sup_{R_{0}\in A_{D}}m(R_{0})(\leq M_{D})$ . Then, we can show the following result.

Theorem 3.2 (cf. $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ [Mc]). If $D\subset \mathbb{C}$ , it holds that $M_{D}\leq A_{D}+5\log 2$ .

In case of $\infty\in D$ , we have the next auxiliary result.

Theorem 3.3. If $L\in \mathrm{M}\ddot{\mathrm{o}}\mathrm{b},$ $\frac{1}{2}AL(D)-\log 4/3\leq A_{D}$ .

If $D\subset \mathbb{C}$ , further we define the domain constant

$c_{D}= \inf_{z\in D}\delta_{D(z})pD(Z)$ ,

where $\delta_{D}(z)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\mathcal{Z}, \partial D)=\mathrm{i}\mathrm{n}\mathrm{f}a\in\partial D|z-a|$.
That is, $c_{D}$ is the infimum of the ratio of the Poincar\’e metric $p_{D}(z)|dz|$ to

the quasi-hyperbolic one $|dz|/\delta_{D}(z)$ . We should note that $\delta_{D}(z)p_{D}(Z)\leq 1$ for any
$z\in D$ , thus $C_{D}\leq 1$ . Concerning this, the similar result as Theorem 1.1 (2) is
verified.
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Theorem 3.4 (Minda [Mi]).

$\frac{\tanh H_{D}}{4}\leq c_{D}\leq\frac{2\sqrt{3}}{\pi}H_{D}$ .

Remark. The assumption that $\infty\not\in D$ is essential for $c_{D}$ . In fact, if $D=\Delta^{*}=$

$\hat{\mathbb{C}}\backslash \overline{\Delta}$, we have $\delta_{\Delta^{*}}(z)=|z|-1$ and $\rho_{\Delta^{*}}(z)=\frac{1}{|z|^{2}-1}$ , therefore $\delta_{\Delta^{*}}(z)\rho_{\Delta^{\star}}(z)=$

$\frac{1}{|z|+1}arrow 0$ as $zarrow\infty$ .
Finally, we summalize our results.

Theorem 3.4. Let $D$ be a plane domain of hyperbolic type. Then the following
conditions are mutually equivalent.

(1) $H_{D}>0$ ,
(2) $M_{D}<\infty$ ,
(3) $A_{D}<\infty$ ,
(4) $N_{D}<\infty$ ,
(5) $c_{D}>0$ (if $D\subset \mathbb{C}$).

The other features of uniformly perfect domains can be seen in [Poml] and
[Pom2].
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