The automorphism group of the Klein curve in the mapping class group of genus 3

Atsushi Matsuura 松浦篤司(東大数理)

1 The main result and its proof

Let R be a compact Riemann surface of genus $g \geq 2$. Then $\operatorname{Aut}(R)$, the automorphism group of R, can be embedded into the mapping class group (for its definition, see [Bir, Ch. 4]) or the Teichmüller group Γ_g of genus g;

(1.1)
$$\iota \colon \operatorname{Aut}(R) \hookrightarrow \Gamma_g \simeq \operatorname{Out}^+(\pi_1(R)) = \operatorname{Aut}^+(\pi_1(R)) / \operatorname{Int}(\pi_1(R)).$$

Here, Aut⁺ $(\pi_1(R))$ consists of the automorphisms of $\pi_1(R)$ inducing the trivial action on $H_2(\pi_1(R), \mathbb{Z}) \simeq \mathbb{Z}$.

Recall the Hurwitz theorem, which states that

(1.2) #Aut
$$(R) \le 84(g-1)$$
.

If the equality holds in (1.2), then R is called a Hurwitz Riemann surface and Aut(R) is called a Hurwitz group.

Let X be the Klein curve of genus 3 defined by the equation

$$x^3y + y^3z + z^3x = 0.$$

It is well known that X is a Hurwitz Riemann surface; G := Aut(X) is isomorphic to $PSL_2(\mathbb{F}_7)$ and has order 168.

Now let us forget about the Klein curve, and consider an orientable compact C^{∞} surface X of genus 3. We define the canonical generators of $\pi_1(X, b)$ with base point b as in the figure below;

^{*}Department of Mathematical Sciences, University of Tokyo, Japan *E-mail address*: matsuura@ms.u-tokyo.ac.jp

Figure 1

They satisfy the fundamental relation

$$(a_1b_1a_1^{-1}b_1^{-1})(a_2b_2a_2^{-1}b_2^{-1})(b_3a_3b_3^{-1}a_3^{-1}) = 1.$$

Let $\tilde{\varphi}_2, \tilde{\varphi}_3, \tilde{\varphi}_7$ be the elements of $\operatorname{Aut}^+(\pi_1(X))$ defined by

$$\begin{array}{lll} \tilde{\varphi}_2(a_1) = a_2b_2^{-1}a_2^{-1}a_1^{-1}b_3^{-1}b_2 & \tilde{\varphi}_2(b_1) = b_2^{-1}b_3b_1^{-1}a_2b_2a_2^{-1} \\ \tilde{\varphi}_2(a_2) = b_3^{-1}a_2^{-1} & \tilde{\varphi}_2(b_2) = a_2b_3b_2^{-1}a_2^{-1} \\ \tilde{\varphi}_2(a_3) = a_2b_2^{-1}a_2^{-1}b_1^{-1}a_1^{-1}a_3a_2^{-1} & \tilde{\varphi}_2(b_3) = a_2b_3a_2^{-1}, \\ \tilde{\varphi}_3(a_1) = a_2b_3a_3^{-1}a_1a_2b_2a_2^{-1} & \tilde{\varphi}_3(b_1) = a_2b_2^{-1}a_2^{-1}a_1^{-1}a_3a_1a_2b_2a_2^{-1} \\ \tilde{\varphi}_3(a_2) = a_3^{-1}a_1b_1a_1^{-1} & \tilde{\varphi}_3(b_2) = a_1b_1^{-1}a_1^{-1}a_3a_2b_2^{-1}a_2^{-1}b_1a_1^{-1} \\ \tilde{\varphi}_3(a_3) = a_2b_2a_2b_2^{-1}a_2^{-1}b_1 & \tilde{\varphi}_3(b_3) = a_1b_1^{-1}a_1^{-1}a_3a_2b_2^{-1}a_2^{-1}b_1, \\ \tilde{\varphi}_7(a_1) = b_1^{-1}a_1^{-1}a_3b_3^{-1}a_2^{-1} & \tilde{\varphi}_7(b_1) = a_2b_3a_3^{-1}a_1a_2b_2a_2^{-1}b_3^{-1}a_2^{-1} \\ \tilde{\varphi}_7(a_2) = a_2b_2^{-1}a_2^{-1}a_1^{-1} & \tilde{\varphi}_7(b_2) = a_1a_2b_2b_3a_3^{-1} \\ \tilde{\varphi}_7(a_3) = b_1^{-1}a_2b_2a_2^{-1}a_3^{-1}a_1b_1a_1^{-1} & \tilde{\varphi}_7(b_3) = a_1a_2b_2a_3^{-1}a_1b_1a_1^{-1}. \end{array}$$

Then, we have the following:

Theorem 1.1. (1) The classes φ_i of $\tilde{\varphi}_i$ in $\operatorname{Out}^+(\pi_1(X))$ generate a subgroup H of Γ_3 , which is isomorphic to $PSL_2(\mathbb{F}_7)$.

(2) Moreover, if X is the Klein curve, then H is conjugate to the image of ι .

Proof. (1) First note that $H \neq \{1\}$, because the action of H on the homology group $H_1(X, \mathbb{Z})$ is not trivial. By direct computation using (1.3), we have

(1.4)
$$\tilde{\varphi}_{2}^{2} = \tilde{\varphi}_{3}^{3} = \tilde{\varphi}_{7}^{7} = 1, \quad \tilde{\varphi}_{2}\tilde{\varphi}_{3}\tilde{\varphi}_{7} = 1, \\
(\tilde{\varphi}_{7}\tilde{\varphi}_{3}\tilde{\varphi}_{2})^{4} = [\text{conjugation by } a_{2}b_{2}^{-1}a_{2}^{-1}b_{1}].$$

For example,

$$\begin{split} \tilde{\varphi}_3^2 \cdot b_3 = & (a_2^{-1}b_2a_2a_1a_3a_1^{-1}a_2^{-1}b_2^{-1}a_2)(a_3a_1^{-1}b_1^{-1}a_1) \\ & \times (a_1^{-1}b_1a_1a_3^{-1}a_2^{-1}b_2a_2b_1^{-1}a_1)(a_1^{-1}b_1a_1a_3^{-1}) \\ & \times (b_1a_2^{-1}b_2^{-1}a_2b_2a_2)(a_2^{-1}b_3^{-1}a_3a_1^{-1}a_2^{-1}b_2^{-1}a_2) \\ & \times (a_2^{-1}b_2a_2a_1a_3^{-1}a_1^{-1}a_2^{-1}b_2^{-1}a_2)(a_2^{-1}b_2a_2a_1a_3^{-1}b_3a_2) \\ = & a_2^{-1}b_2a_2(a_1b_1a_2^{-1}b_2^{-1}a_2b_2b_3^{-1}a_3^{-1}b_3)a_2 \\ = & a_2^{-1}b_2a_2b_1a_1a_3^{-1}a_2 \,, \end{split}$$

hence

$$\begin{split} \tilde{\varphi}_3^3 \cdot b_3 = & (a_3 a_1^{-1} b_1^{-1} a_1) (a_1^{-1} b_1 a_2^{-1} b_2^{-1} a_2 a_3 a_1^{-1} b_1^{-1} a_1) \\ & \times (a_1^{-1} b_1 a_1 a_3^{-1}) (a_2^{-1} b_2 a_2 a_1 a_3 a_1^{-1} a_2^{-1} b_2^{-1} a_2) \\ & \times (a_2^{-1} b_2 a_2 a_1 a_3^{-1} b_3 a_2) (a_2^{-1} b_2^{-1} a_2^{-1} b_2 a_2 b_1^{-1}) (a_1^{-1} b_1 a_1 a_3^{-1}) \\ = & b_3. \end{split}$$

From (1.4) we obtain

(1.5)
$$\varphi_2^2 = \varphi_3^3 = \varphi_7^7 = \varphi_2 \varphi_3 \varphi_7 = (\varphi_7 \varphi_3 \varphi_2)^4 = 1$$

in Out⁺ $(\pi_1(X))$. Since (1.5) is the presentation of $PSL_2(\mathbb{F}_7)$ (see [CM, p. 96]), there is a surjective map

$$PSL_2(\mathbb{F}_7) \twoheadrightarrow H.$$

The group $PSL_2(\mathbb{F}_7)$ is simple, and the map is an isomorphism.

(2) To see that H is the automorphism group of a Riemann surface, it is enough to recall the Nielsen realization problem, which was positively solved in [Ker]:

Theorem of Kerckhoff. For any finite subgroup G of Γ_g , there is a compact Riemann surface R of genus g such that

$$G \subset \operatorname{Aut}(R) \subset \Gamma_g$$
.

This theorem shows that there exists a Riemann surface R of genus 3 with $H \subset \operatorname{Aut}(R)$. On the other hand, $\#\operatorname{Aut}(R) \leq 168 = \#H$ by the Hurwitz inequality. Consequently $H = \operatorname{Aut}(R)$. It is classically known that the Klein curve is the unique compact Riemann surface of genus 3 such that $\operatorname{Aut}(R) \simeq PSL_2(\mathbb{F}_7)$. Thus we have proved Theorem 1.1.

2 $\pi_1(X)$ as a subgroup of the triangle group of type (2,3,7)

In this section, we give a more elementary proof of Theorem 1.1. The outline is as follows: Let T be the triangle group with angles $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{7}$ defined below, and N its normal subgroup. Then, T (resp. N) has a fundamental domain Δ (resp. Λ) in the Poincaré unit disk. As was shown in [Kle], the Klein curve X can be realized by gluing the boundaries of Λ . The elements of T act on Λ , hence on X. This action induces an isomorphism $T/N \simeq \operatorname{Aut}(X)$. Moreover, N is isomorphic to $\pi_1(X)$. Because T acts on N by conjugation, T/N can be embedded in $\operatorname{Out}^+(\pi_1(X))$. In this way, we obtain the map ι in (1.1). First, we compute the elements of N corresponding to the generators of $\pi_1(X)$. Using this identification, we show that $\iota(T/N) = H$, which is equivalent to Theorem 1.1.

Let $S = \binom{0}{1} \binom{-1}{0}$, $T = \binom{1}{0} \binom{-1}{1}$ be the generators of $PSL_2(\mathbb{F}_7)$. Then $S^2 = T^7 = (ST^{-1})^3 = 1$. For the triangle group

$$T := \langle \gamma_2, \gamma_3, \gamma_7 | \gamma_2^2 = \gamma_3^3 = \gamma_7^7 = 1, \gamma_2 \gamma_3 \gamma_7 = 1 \rangle,$$

we define a group homomorphism

$$\varphi \colon T \to PSL_2(\mathbb{F}_7)$$

by $\varphi(\gamma_2) = S, \varphi(\gamma_3) = S T^{-1}, \varphi(\gamma_7) = T$. Clearly φ is surjective. The map φ gives an exact sequence

$$(2.1) 1 \to N \to T \to PSL_2(\mathbb{F}_7) \to 1,$$

where $N := \ker \varphi \simeq \pi_1(X)$ is the kernel of φ . Hence we have $G \simeq T/N$. For any element $\hat{\alpha}$ of N, we shall denote by α the loop with base point b representing $\hat{\alpha}$. First, we give the elements of N corresponding to the canonical generators of $\pi_1(X,b)$. Note that, for two elements $\hat{\alpha}, \hat{\beta} \in N$, their product $\hat{\alpha}\hat{\beta} \in N$ corresponds to the loop $\beta\alpha$.

Proposition 2.1. Define $\hat{a}_i, \hat{b}_i \in N, i = 1, 2, 3$ by

 $\hat{a}_{1} = \gamma_{7}\gamma_{3}^{-1}\gamma_{7}^{-3}\gamma_{2}\gamma_{7}^{2}(\gamma_{3}\gamma_{2}\gamma_{7})^{4}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{3}\gamma_{3}\gamma_{7}^{-1}$ $\hat{b}_{1} = \gamma_{7}\gamma_{3}^{-1}\gamma_{7}^{-3}\gamma_{2}\gamma_{7}^{2}(\gamma_{2}\gamma_{7}\gamma_{3})^{4}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{3}\gamma_{3}\gamma_{7}^{-1}$ $\hat{a}_{2} = \gamma_{2}\gamma_{7}^{-4}\gamma_{2}\gamma_{7}^{-4}\gamma_{2}\gamma_{7}^{2}(\gamma_{3}\gamma_{2}\gamma_{7})^{4}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{4}\gamma_{2}\gamma_{7}^{4}\gamma_{2}$ $\hat{b}_{2} = \gamma_{2}\gamma_{7}^{-4}\gamma_{2}\gamma_{7}^{-4}\gamma_{2}\gamma_{7}^{2}(\gamma_{2}\gamma_{7}\gamma_{3})^{4}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{4}\gamma_{2}\gamma_{7}^{4}\gamma_{2}$ $\hat{a}_{3} = \gamma_{3}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{-4}\gamma_{3}(\gamma_{7}^{-1}\gamma_{2}\gamma_{3}^{-1})^{4}\gamma_{3}^{-1}\gamma_{7}^{4}\gamma_{2}\gamma_{7}^{2}\gamma_{3}^{-1}$ $\hat{b}_{3} = \gamma_{3}\gamma_{7}^{-2}\gamma_{2}\gamma_{7}^{-4}\gamma_{3}(\gamma_{2}\gamma_{7}\gamma_{3})^{4}\gamma_{3}^{-1}\gamma_{7}^{4}\gamma_{2}\gamma_{7}^{2}\gamma_{3}^{-1}.$

Set $\hat{a}_3' = \hat{a}_3^{-1}\hat{b}_3$, $\hat{b}_3' = \hat{a}_3$. Then the elements $\hat{a}_1, \hat{a}_2, \hat{a}_3'$, $\hat{b}_1, \hat{b}_2, \hat{b}_3'$ are identified with the canonical generators of $\pi_1(X)$ and they satisfy the equation $[\hat{a}_3', \hat{b}_3']$ $[\hat{a}_2, \hat{b}_2]$ $[\hat{a}_1, \hat{b}_1] = 1$. Here $[\alpha, \beta] := \beta^{-1}\alpha^{-1}\beta\alpha$.

Proof. Let Δ (resp. Λ) be the fundamental domain of T (resp. N). Figure 2 below illustrates that Δ is a hyperbolic triangle with angles $\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{7}$ and Λ is the union of 168 copies of Δ . By tracing paths, we can easily see that the elements \hat{a}_i, \hat{b}_i in the figure can be written as above.

By gluing corresponding edges, we obtain the Riemann surface X. The elements \hat{a}_i , \hat{b}_i are represented by the loops a_i , b_i in Figure 1. We can also check the fundamental relation by computation.

The conjugation gives the canonical map

$$\tilde{\iota} \colon T \to \operatorname{Aut}^+(N).$$

This induces the map ι in (1.1). We take $\tilde{\iota}(\gamma_2), \tilde{\iota}(\gamma_3), \tilde{\iota}(\gamma_7)$ as the generators of $\iota(T/N)$.

The following proposition finishes the direct proof of Theorem 1.1.

Proposition 2.2. $\tilde{\iota}(\gamma_j)$ can be identified with $\tilde{\varphi}_j$ for j=1,2,3.

Proof. Set $\gamma_j \cdot \alpha := \tilde{\iota}(\gamma_j)(\alpha) = \gamma_j \alpha \gamma_j^{-1}$ for $\alpha \in N$. Then, for \hat{a}_i, \hat{b}_i in Proposition 2.1, we can describe $\gamma_j \cdot \hat{a}_i, \gamma_j \cdot \hat{b}_i \in \Lambda$ as in the Figure 3. We shall show that $\tilde{\varphi}_7(a_1)$ represents $\tilde{\iota}(\gamma_7)(\hat{a}_1)$. By gluing the edges of Λ ,

we get the following loop ℓ representing $\gamma_7 \cdot \hat{a}_1$.

We can check that ℓ is homotopic to the loop below, which is the loop $b_1^{-1}a_1^{-1}a_3b_3^{-1}a_2^{-1}.$

The proofs for the other cases are similar and omitted.

Acknowledgment. I would like to thank Professor Takayuki Oda for suggesting the problem, and for valuable discussions and encouragements. I also wish to thank Takuya Kon-no for careful reading of the manuscript.

References

- [Bir] J.S. Birman, Braids, links, and mapping class groups, Princeton Univ. Press, 1974.
- [CM] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, Springer-Verlag, 1972.
- [Ker] S.P. Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983), pp. 235-265.
- [Kle] F. Klein, Über die Transformation siebenter Ordnung der elliptischen Functionen, Gesammelte Math. Abhandlungen, Band III, pp. 90-136, Springer-Verlag, 1923.
- [Mac] A.M. Macbeath, Generators of the Linear Fractional Groups, Proc. Symp. Pure Math., vol. 12, A.M.S., 1968, pp. 14-32.
- [Mag] W. Magnus, Noneuclidean tesselations and their groups, Academic Press, 1970.

Figure 2: Fundamental domain Λ of N ([Kle, p. 126])

Glue 1=6, 7=12, 2=11, 3=8, 5=10, 4=13, 9=14 in this order. Each loop is connected to the base point b by dotted path.

Figure 3-(i): Action of γ_2

Figure 3-(ii): Action of γ_3

Figure 3-(iii): Action of γ_7