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The a,utomorphism group of the Klein curve in
the mapplng class group of genus 3

Atsushi Matsuura
WEER RREH) *

"1  The main result and its proof

' Let R be a compact Riemann surface of génus g Zb 2. Then Au’l_:( R), the
automorphism group of R, can be embedded into the mapping class group
" (for its definition, see [Bir, Ch. 4]) or the Teichmiiller group I', of genus g;

(1) e Aut(R) grgg Out* (my(R)) = Aut* (m;(R))/Int(my(R)).

: Here, Aut* (7 (R)) consists of the automorphisms of m;(R) inducing the triv-

ial action on Hy(m(R), Z) ~Z. -
Recall the Hurwitz theorem, which states that

- (1.2) - i #Aut(R) < 84(¢g —1).

If the equality holds in (1.2), then R is called a Hurwitz Riemann surface
and Aut(R) is called a Hurwitz group.
Let X be the Klein curve of genus 3 defined by the equation

Py +y32 4+ 2Pr =0.

It is well known that X is a Hurwitz Riemann surface; G := Aut(X) is
isomorphic to PSL,(F;) and has order 168.

Now let us forget about the Klein curve, and consider an orientable com-
pact C* surface X of genus 3. We define the canonical generators of 7, (X, b)
with base point b as in the figure below;
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Figure 1 »

They satisfy the fundamental relation

(13) (alblal"lbl—l)(agbzaglb;l)(b3a3b§1a§l) =1.

Let @2, @3, $7 be the elements of Aut*(m,(X)) defined by

cﬁz(al«) = agbf;la;lal—lb;l_b2
¢a(az) = b3'az" ‘
$a(as) = azb;' a7 ar aza;’
@3(0,;) = agb3a§1a1a2b2a;1
Paasz) = aglalblal_l'

:¢3(a3):= agbgagbz—l(}g—lbl

¢7(a1) = b7 a7 azb3 a3
¢r(az) = azby'az ay!

5 -1 -1 -1 -1
P7(as) = by azbra;'az'aybrar!

a,

Then, we have the following:

@a(b1) = b3 "bsb azbea;’

Pa(b2) = azbsb;'a;!
P2(b3) = azbzaz?,

- -1 -1 _~1. . e |
@3(b1) = azb;'a; a7 aza;a2b,0;

. ' -1 _1p-1 -1
QO7(b1) = agb3a3 a1a2b2a2 b3 a,

P7(be) = alazbgb3a;1

~, ~1 -1
(p7(b3) = a1a2b2a3 alblal .

= -1 -1 -1 -1p -1
Pa(bz2) = a1b] ‘a7 azazb; az'byart -

. -1 -1 -1 -1
Pa(bs) = a1b7 a7 azazby a3y,
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Theorem 1.1. (1) The classes @; of §; in Out*(mi (X)) generate a subgroup
H of T's, which is isomorphic to PSLy(Fr). ‘
(2) Moreover,if X is the Klein curve, then H is conjugate to the image of ¢.

Proof. (1) First note that H # {1}, because the action of H on the homology
group H,(X,Z) is not trivial. By direct computation using (1.3), we have

o (pr@sp2)* = [conjugation by azbya;"bi].

For example,

@2 - by =(a7"byazarasa;’ ay by a)(asar by ar)
X (al'lblala;1a;lbzagbflal)(al'lblalagl)
x (bray by azbea;)(az b3 azar a3 'b; " a2)
X (a;lbgagalaglal'la,”b;lag)(a;‘bgazalag’baag)
 =a;'byaz(arb1a; b3  azbsb3 a3 bs)a,

-1 -1
=a, bgagblalas az,
hence
O g1, \(=1p o=1p—1 ~1p-1
@3 - by =(aza; b ar)(ay bra; by azaza; by as)
-1 1y, -1 -1, -1p-1
x (a7'ba1a3"')(a7  ba2a1a3a7 a3 by a3)

><'(ai’lbgagalaglbaag)(a{1b;laglbgagbl'l)(af‘b,dlagl)
=b3. .

From (1.4) we obtain

15 - 02 = @3 = 0] = Papapr = (prpapn)’ =1
in Out*(m(X)). Since (1.5) is the presentation of PSL,(F7) (see [CM,
p. 96]), there is a surjective map

PSLy(F;) —» H.

The group PSLy(F7) is simple, and the map is an isomorphism.

(2) To see that H is the automorphism group of a Riemann surface, it is
enough to recall the Nielsen realization problem, which was positively solved
in [Ker]: ‘
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Theorem of Kerckhoff . For any ﬁmte subgroup G of Ty, there s a com-
pact Riemann surface R of genus g such that

GC Aut(R) crly ‘ O

This theorem shows that there exists a Riemann surface R of genus 3
with H C Aut(R). On the other hand, #Aut(R) < 168 = #H by the
Hurwitz inequality. Consequently H = Aut(R). It is classically known that
the Klein curve is the unique compact Riemann surface of genus 3 such that
Aut(R) ~ PSLy(F7). Thus we have proved Theorem 1.1. O

2 m(X) as a subgroup of the triangle group
of type (2,3,7)
In this section, we give a more elementary proof of Theorem 1.1. The outline

is as follows: Let T be the triangle group with angles 7, %, & defined below,
and N its normal subgroup. Then, T (resp. N) has a fundamental domain

A (resp. A) in the Poincaré unit disk. As was shown in [Kle], the Klein

curve X can be realized by gluing the boundaries of A. The elements of T
act on A, hence on X. This action induces an isomorphism T/N ~ Aut(X).
Moreover, N is isomorphic to m;(X). Because T acts on N by conjugation,
T/N can be embedded in Qut*(m;(X)). In this way, we obtain the map ¢ in
(1.1). First, we compute the elements of N corresponding to the generators
of m(X). Usmg this identification, we show that L(T/N ) = H which is
equivalent to Theorem 1.1. '

Let S = (93'),T = (3 7') be the generators of PSLy(F7). Then S? =
T" = (ST71)® = 1. For the triangle group ,

T = (1%, 7% =% =% =Lenn=1),
we define a group homomorphism

p: T > PSLz(]F7)

by ¢(72) = S, ¢(v3) = ST—1,¢(77) = T. Clearly ¢ is surject;'ive. The map ¢

gives an exact sequence

(2.1) : 15 N T PSLy(F;) —» 1,
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where N := kery =~ m;(X) is the kernel of ¢. Hence we have G ~ T/N.
For any element & of N, we shall denote by a the loop with base point
b representing & . First, we give the elements of N corresponding to the
canonical generators of (X, b). Note that, for two elements &, 3 € N, their
product &8 € N corresponds to the loop ﬂa

Proposition 2.1. Define &.-,5; € N1 = '1,2,3 by

a1 =79 7 S (v P vy

b1 =v173 17 Ve (vivrvs) A v vevs

a2 =277 277 1V (321 ) 97 e Vi Y v

by =197 107 1 (v v 9 P e
o =2 =4 —1. . ~1y4_—1_4_ 2 -1

a3 =73v7 ‘Y27 (v 21 ) M s

bs =1377 27297 (2 17 3) s e s

Set ay = aalb3, b3 = 3. Then the elements a,a,, a5, i)],i)g,i) are iden-
tzﬁed with the canonical generators of m(X) and they satzsfy the equatwn
(a5, 85] [az’bﬂ [a1,81) = 1. Here [, B] = e "lﬂa

Proof. Let A (resp. A) be the fundamental domain of T (resp N). Figure
2 below illustrates that A is a hyperbolic triangle with angles %, 7, 2% and A
is-the union of 168 copies of A. By tracing paths; we can easily see that the
elements d;, b; in the figure can be written as above.

' By: gluing corresponding edges, we obtain the Riemann surface X. The
elements a;, b; are represented by the loops a;,b; in Figure 1. We can also

check the fundamental relation by computation. O

The conjugation gives the canonical map
i: T — Aut*(N).

This induces the map ¢ in (1.1). We take i(2),(73),i(y7) as the generators
of ((T/N).
The following proposition finishes the direct proof of Theorem 1.1.

Pi‘dﬁoéitidh 2.2. 2(7,) can be identified with @; for j = 1,2,3.



Proof. Set v; - a := i(v;)(a) = 7ja'yj"1 for & € N. Then, for &;,b; in Propo-
sition 2.1, we can describe v; - &;,7; -b; € A as in the Figure 3.

We shall show that (7(a;) represents i(77)(@1). By gluing the edges of A,
we get the following loop £ representing 77 - d;. :

We can check that £ is hornotopicbto the loop below, which is the loop

-1 _-1 -1_-1

The proofs for the other cases are similar and omitted. a
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Figure 2: Fundamental domain A of N ([Kle, p. 126])

11

Glue 1=6, 7=12, 2=11, 3=8, 5=10, 4=13, 9=14 in this order. Each loop is
connected to the base point b by dotted path.
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