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On perturbation series of eigenvalues
of anharmonic oscillators.

RIMS, Tatsuya Koike
(3RF062%  Joade)

0 Introduction.

Anharmonic oscillators have attracted much attention of physists, particularly because of
their relevance to the ¢*-model in quantum field theory.

Here we will consider the asymptotic behavior of the perturbation series of eigenvalues
of anharmonic oscillators. The purpose of this note is to prove the result which was firstly
derived by Bender-Wu [BW1,2] in a rather heuristic manner (See also [BB] for some
related topics).

The anharmonic oscillators are the following eigenvalue problems.

(_a%+’l]im2(l+/\x2N))¢=E(/\)¢ ()\ >0 ,N: 1,2,...), (1)
am, V(o) = 0. 2)

Because the spectrum of this equation (1) with the boundary condition (2) are discreet
and nondegenerate, we can label E(A) by a nonnegative integer K :

eigenvalues : E°(\) < E!Y\) < --- < EEKOQ)) < ...,
corresponding eigenfunctions : ¥°(z,A) = ¥(z,N) YE(z, )

For A = 0, this equation becomes a well-known harmonic oscillator. Its eigenvalues are
EX(0) = K + 1/2 and eigenfunctions are ¥*(2,0) = Dx_/2(z) = e = /*Hg(z) , where
Dy (z) and Hg(z) denote the Weber function and the Hermite function respectively.

For A « 1, we can expand the eigenvalues EX()) and the eigenfunctions %% (z, \)
with respect to A formally (and each term can be determined recursively):

%+ ST AKX,

n=1

EX(\) =K+

P (@, 0) = ¥5(2,0) + 3 9K (@)
n=1

Our purpose is to determine the asymptotic behavior of AX for large n and for arbitrary
N. The result is
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k _ (=1)"N AK+D/N (B(g’%)
" KW2x3 2N

Here B(z,y) denotes the Beta functions.

b s ) (1408). 60

Here we will see that we can obtain the rigorous argument by using exact WKB
method, supplementing [BW1,2] with some rigor.

In section 1, we review the analytic properties of EX()), which is necessary to deter-
mine the exact relation as above. By considering EX()) in a complex plane Cj, AK can
be represented by the difference of boundary values of EX()) on the cut. In section 2,
we construct WKB solutions for anharmonic oscillators, and give the connection formula.
In section 3, we derive the secular equations and calculate the difference of boundary
values of E¥()) on the cut. In section 4, we determine the asymptotic behavior of AXK.
Appendix is a summary of the argument of Bender-Whu.

1 Analyticity of EX()).

In this section, we review the analytic properties of EX()), which are mainly obtained by
B. Simon [S]. The next theorem is fundamental for our purpose.

Theorem 1.1. /
(i) Each EX()) has an analytic continuation with a (IV 4 2)-nd branch point at A = 0.
The location of singularities (we place the cut along {A < 0} in the A-plane):

a) The origin A = 0 is the limit point of singularities.

b) There are no singular points on the 1st sheet.

c) Forany 0;0< 0 < N+ 27r, there exist R > 0 such that EX()) is analytic in the
region {A € C; |A| > R, |arg(})] < 6}.

(i) EX()) = O(|A|¥¥2) (A — oo, X € (any sheets)).

(iv) The perturbation series is an asymptotic expansion:

. 1 -
EX\) ~ K + 5+ STAEA (A =0, Jarg(V)| < 0),

N+2
2

where 0 is an arbitrary number satisfying 0 < 8 < .

This theorem enables us to represent AX through the difference of boundary values of
EX()) on the cut, namely,

Proposition 1.2 . ,
i 0
AK = 1 / _AMd)\ , : (3)

n 27('2 -0 /\n+l

where AEX(\) = EX()\ +40) — EX() —40) .
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- . 1
Proof . Let EX(\) = EX(\) - K — 3 Applying the Cauchy integral formula for
EX(X)/X along the path C (see Figure 1 ), we obtain

EX@t) 1 [ EX())
t “%féx@q)“'

Hence by letting the radius of C tend to infinity,

BN = o [ At gy

271 J—oo A t— A
Let 0 ABK())
k_ 1 [0 AE7(A)
i =5 [ T
Then

- L 1 0 AERQ) [ ¢ 2o /)
K _ Ky _ _— - —
ER(0) = a5t el (t—A E;(A))d’\
1 [0 AEK()) [t\mo+!
- %/_m A —t (X) @\
_ <_1_/0 AE‘I\(/\)ﬂ) frot+1.

2t Jmoo A —1 Anotl

The integral in the last equation converges because (see Theorem 1.1)

{AEK(A) = O(A™%) (A - o0),
AEX(N) = O(0™) A =0, m=1,2,--).

This completes the proof of the proposition. O

any
Ny

Figure 1: Path C of integration in the A-plane.

out
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Remark 1.3.

(7) In the above proposition, the path of integration is very close to-the cut {A < 0}
in the A-plane. But we can change this cut to {—te*;t > 0} for sufficiently small € > 0
(see Theorem 1.1). In this case, Proposition 1.2 also holds by changing the path of
integration to {—te’;¢ > 0}. In the later(section 3), we use Proposition 1.2 in this
form.

(#7) For large n, the dominant contribution comes from small A due to the factor t=" in
the integrand, hence our problem is reduced to determining AFE()) for small negative

A
To determine AEX()), we use the following proposition.

Proposition 1.4 .
For A € C, each EX () is the eigenvalue of the equation (1) with the following boundary
condition (4):
lim 1(z) =0, (4)

lz|—c0
z€T 4(0)

where § = arg(\) and

Y.(0) = {x € C; |arg(£z) + 2(N9+ 2)| < 2(N7r+ 2)} .

Sketch of the proof. The asymptotic form of the solution of (1) with (4) is

P(z) ~ exp (-—m\/-—j—.-z—)xwv“)) (z — o00).

This is also true if we consider (1) in the complex domain. Hence we can change the
boundary condition to ¥(z) — 0 as £ — oo in the sector

{:c € C;Re (\/Xa:z(N"'z)) > 0} ,

that is £1(0)|s=0. What we have to do is to extend the above argument to A € C.

Figure 2: The sector £1(x) (left) and the sector L4(—) (right).

Figure 2 describes the sector £4() for § = 7, —.
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2 WKB analysis for anharmonic oscillators.

In the previous section, our problem was reduced to the determination of the behavior of
the eigenvalue of the equation (1) with the boundary condition (4) for A < 0,A — 0. So,
from now on, we treat A as a small parameter.

2.1 WKB solutions for anharmonic oscillators.

First of all, we construct WKB solutions for anharmonic oscillators. We introduce the

following scaling. _
A — N (9 = arg(M),

T — /nc.

Because A is a small parameter, 7 becomes a large parameter. The equation (1) becomes
d? 2 -1
—E+U(Q($)~n E)|4 =0, ()

Q(z) = %:ﬁ(l + e9?N),

We first consider the following transformation of unknown functions:

P(z) = exp /m Sdz. (6)
Then the equation (5) becomes _
ds
2 — 2 -1
S +%—n (Q(:c)—n E)

We next expand S with respect to n:
S=nS_1+So+n1S1 4.

Then each S; satisfies

S.17 = Q(a), (7)
d
Sa+—S,=- 8
25051+ ==5_1 = ~E, (8)
d
25,4151+ Y. SiS;+ S =0 (n=0,1,2,--"). (9)

i+j=n
£,720

Equations (8) and (9) determine a unique solution once the sign of S_; is fixed; note that

S_1 has th form
5_1 = :i:\/Q(IL‘)

Hence there are two (formal) solutions of S;

o E__ Q@ »
Se = £0/Q )+(¢2 e QQ(w))wm ). (10)

(The signs are taken simultaneously.) We choose a branch of {/Q(z) so that
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(a) We place a cut from each simple turning point to infinity without crossing any Stokes
curve (cf. Figure 3 for N=1. See Definition 2.4 for the definitions of turning points
and Stokes curves). '

(b) Q@) ~ 55 (== 0) .

Figure 3: Wiggly lines indicate the cuts.

Definition 2.1. . .
Sodd = §(S+ - S._), Seven = §(S+ + S-—)

From the equation (10), we easily obtain

S = 1/Q(2) - - é@) Lo, (11)

Q'(z)

Seven =——=+ 0 -1 . 12
200 O (12)
Lemma 2.2.
S = l_d_l S
even — 2d2§ 0g Oodd -
Proof . Because Sy satisfies
dS.
2 £ _ 2 -1

we obtain

d
2SodclSeven + _Sodd =0 .
dz

This proves the lemma . O
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Up to the normalization constants, WKB solutions are, by definition,

e = exp </x Sidx) ,

1
Yy = mﬂp( / Sodddz)

In what follows we fix their normalization by the following.

or, by Lemma 2.2,

Definition 2.3 (Normalization of WKB solutions).
Our choice of the normalization of WKB solutions is

Yi(z,n) = \/‘;_exp (:tn/ \/_da:> exp ( / (Soaa — nS_l)dx> . (13)

(Note that S_; = Soad,—1 = /Q(z) . )

Each integration in (13) is well-defined. This is why we choose the above normalization.

2.2 Connection formula for WKB solutions.

In this subsection we give the connection formula for WKB solutions.

Definition 2.4 (Turning point, Stokes curve.).
(¢) A turning point is, by definition, a zero of Q(z). We say it is a simple (double,
resp.) turning point if it is a simple (double, resp.) zero.
(i1) A Stokes curve is the following integral curve:

Im /I \/@(z)dz = 0 (where a is a turning point) .

As is easily seen, three Stoke curves emanate from a simple turning point, and four Stokes
curves from a double turning point.
For anharmonic oscillators, turning points are

double : z=0,
simple : m=exp(§iﬁ(2k7r—0)) (k=0,1,---,2N —1).

Definition 2.5.  Let L be a Stokes curve emanating from a turning point a.
If :t/ \/Q(m )dz > 0, we say that the WKB solution 4 is dominant on L. (Similarly,

if :i:/ \/@(z)dz < 0, we say that the WKB solution %4 is subdominant on L.) Here
the path of mtegratlon is along L.

We give an analytic meaning to WKB solutions by taking the Borel summation (cf.
[DDP)). Namely, after expanding WKB solutions like

Py = exp (21:77/ \/—dx) > e i(z)n ™72,

j=0
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we take the Borel summation with respect to . Of course, whether it is Borel summable
or not depends on z. Concerning this problem, we can establish the connection formula
stated below. We can obtain these formulae by transforming the equation to canonical
equations at each turning point (the canonical equation is the Airy equation for simple
turning points, and the Weber equation for double turning points).

In the following, we assume that there are no Stokes curves which connect turning
points.

Theorem 2.6. Any WKB solution is Borel summable except on Stokes curves.

Theorem 2.7. .
Let L be a Stokes curve emanating from a simple turning point a, and let ¢4 denote

the following normalized WKB solutions :

A 1 T
= £ [ Suaads)
Pa TP ( | Soaadz
If we analytically continue the (Borel summed) WKB solutions }Zg: across L in coun-
terclockwise manner with respect to the center a, we find that 14 obey the following
formula. . . .

Yo o Pr iy (if ¢, is dominant on L) .

Yo — Yo

{ zi . if pig, $- is dominant on L) .

Theorem 2.8. If we analytically continue the (Borel summed) WKB solutions .
across a Stokes curve emanating from the origin as described below, we find that .
obey the following formula (see Figure 4).

II I

HI v

Figure 4: Regions I, II, III, IV.
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Region IV — Region I : ¢, — g +1 g—;r—(—%g
{ Region I — RegionII : 9. — _+ i%m,%e"i"FnF¢_, Yy — Py .

c. o

Region Il — Region IIT  : ¢, — o, +1 ameZi"Fn"F¢_, Yo — P

Yo, o -

\

Here C. and F denote the following :

Ci = (—4)%7% +0(n™Y),
F = B,Sg Sodd =-F + O(’I]_l).

Remark 2.9. )
(i) In Theorem 2.7, we use v instead of 1. To obtain the connection formula for
¥4, we simply use the following:

be =exp (20 [ /Q(@)de) exp (% [ (Soaa - 7S3)de) s

(#4) In Theorem 2.8, we state only the necessary formulae in the later use.

3 Derivation of the secular equation.

In this section, by using the connection formulae, we derive the secular equation, i.e., the
equation that EX()) should satisfy, for arg(\) = £(x — 0) (Note that our present aim is
to determine the boundary values of EX()) at the cut in C,).

As the Stokes curves are degenerate for arg(A) = £, we rotate the cut slightly to use
the results in section 2 (cf. Remark 1.3 (¢)). Here we rotate the cut in counterclockwise
manner to {A = —te 't € Ryo} (e is a sufficiently small positive number), and seek
for the value of E¥()) for arg(A) = £(m — 0) + ¢. Note that the configuration of Stokes
curves for arg(A) = 7 + ¢ is the same as that for arg(A) = —x + € (cf. Figure 5 ~ 7). The
procedure how to derive the secular equation is as follows:

First, we should notice that t_ is subdominant in £ (6) for § = +x + ¢ for our choice of

the branch of /Q(z) (here we extend the definition of the subdominancy for “on Stokes
curves” to “in some region”(see Definition 2.5), but there is no fear of confusions).

By the analytic continuation of #%_ from ¥, to X_, ¢_ becomes K.(n,E)y, +
K_(n, E)-.

E+(A) -(A)
Y- = . Ki(n, By + K_(n, E)-
analytic
continuation
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The existence of the eigenfunction forces K (n, E) to be 0, which is the required secular equation.
We describe its explicit form in the subsequent subsections.

<

Figure 5: Stokes curves (N = 1) for § = 7 (left) and § = &7 + ¢(right) .

NS

Figure 6: Stokes curves (N =2) for § = & (left) and 8 = +x + € (right) .

A

Figure 7: Stokes curves (N =3) for § = +x (left) and § = 7 + € (right) .
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3.1 Eigenvalues for arg()\) =7 +e.

Using the path of analytic continuation described in Figure 8, we obtain the following
from Theorem 2.7 and 2.8:
I{+(77)E) = 7'(B2(777 E) .
+A_(n,E) — A4(n, E) + Bi(n, E)B2(n, E)A+(n, E)
+Bl(773 E)A+(77, E)A—(TI, E)) )

where
+1 +1
As = exp(=2q [ S.1de)exp(=2 [ (Soaa —1S-1)dz),
C+ 271‘ -F

N C. \/2_71- —in, F
B, =

CTF+D. T

=\

Figure 8: Path of analytic continuation for 8§ = = + e.

1 -1 13
If we let w denote 2/ S_idz = 2/ S_1dz = _m_z_) , the above secular equation is a

0 0
sum of terms of the order O(1), O(e~™), and O(e~?"). Hence we try to seek the solution
in the following form:

E = Eo(n) + Ex(n)e™™ + Ey(n)e™™™ + -+,

EJ("]) = Z E‘,nfl—" .

n=0

By substituting the above expansion, we obtain (up to O(e™™))

‘ BZ(TI’EO) =0 3 (14)
0B, . . .
ﬁ(n, Eo)E1 + A—(Ua Eo) - A+(7I,Eo) + 31(77, Eo)Bz(ﬂan)A+(77,Eo) =0, (15)
where |

. +1
Ay = Are™ =exp (—2/ (Soad — nS_l)d:c) .

(>
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As (14) is equivalent to = 0, we find

1

T(F+1)
. 1

EF =K+ 5+ O(n™) . (16)

Hence, by using (14), (15) and (16), we find

22 1 K_"‘i‘_
Ef = ———n®*2477 (1 4+ O(n71)).
1 \/2—7{_]{'77 N ( + (7’ ))

3.2 Eigenvalues for arg(\) = -7+ ¢ .

In this case the path of analytic continuation is described in Figure 9, and the resulting

secular equation is
1

__.._—=0

T(F+3)

/ _

Figure 9: Path of analytic continuation for § = —7 + ¢.

Although the number of Stokes curves crossing the path of analytic continuation in-
creases with N, the fact that t_ is subdominant on the newly relevant Stokes curves
guarantees that the expression of K (n, F) is irrelevant to N.

By solving this secular equation, we obtain

EX = K+%+O(n“) :

4 Asymptotic behavior of AX.

In this last section, we determine the expansion of eigenvalues for arg(A) = £7 + €. The
difference of these values is:

AEX = EFe™ 4 ... | (17)
where

- 21 .
EF = —=_nXtuR(14+0(n7Y)). (18)

Jor K1
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By changing the variable in the integrand of (3), we have
0 K
Ak = L / AE™(A) ==

" 211 J—oo  APTF1
n+1N
= ( o / AEK ) "'N-ld'f] (19)

Substituting (17) and (18) to (19), we finally obtain

K _ ( ) n+l N (K+l)/N —K—%—nN l ( l )
A= K'\/2x3 T LK+ 2+nN) 1+O(n) )

(n — o).

Appendix.
As this note was motivated by [BW1,2], in this Appendix we give its summary as we un-
derstand; we hope its ingenious ideas indicated below will help the reader’s understanding
of our reasoning.

Because the reflection principle implies

EX(Y) = BRDY)
the equation (3) becomes
0 K
AK = l/ Im(E (/\))d,\

T J=0 Antl

Hence what should be done is to determine Im E¥()) for A = —e (€ > 0, small). Then
they start their reasoning with the following Ansatz:

E=Eqp+ Eq,
oy = K+ 5+ Z Egnc" (Eon €R),
Eq) exponentlally small relative to  Eg) .

1
Let V(z) = Z:v2(1 —ex?M) , and let zg, 21 (0 < 7o < z1) denote the zeros of V(z) on Ryo.

Notice that z, is very large (zo = O(1), ; = O(¢~*/?)). We define Regions A, B,C,D,E
as in Figure 10. We employ different approximations in each region.

A D

B C E

Figure 10: Regions A,B,C,D,E.
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In Region A: We approximate the equation by the Weber equation,

We suppose the solution to be symmetric or antisymmetric. Then

Ya(z) = ';' [DE-l/z(w) + (—I)KDE-l/z(—x)]

( the factor = is for the normalization of the solution ). If we expand ¢4 with respect to
Eq), we have

o
$a(2) = ¥4 gm0 +Eq) (55('*_) ;Em:o) e

0
Let 1 4(0) (resp., ¥a(1)) denote 4 |E(,)=o (resp., Eq) (_.".p_“l.
relations hold: ‘

9Eq, |E(,)=o> ). Then the following

¢A(0)(m) = % [DE(O)-—-I/Z(-T) + (_1)KDE(0)—1/2(_$)] 3

~ Dg(z)
Yaq)(z) exponentially small relative to 1 4(0)(x)

In Region B and Region C: We approximate the solution by WKB solutions,

Ypa(z) = V'1/4exp(:i: : \/f/—d:v),
o

e u(z) = VHexp(x /z VVdz).

In Region D: We approximate the equation by the Airy equation.

In Region E: Using the boundary condition (4), we approximate the solution by the
following WKB solution:

¥p(z) = V’ll‘*exp(—/: VVdz).

So far, we construct the approximate solutions. We next try to match these solutions.

For example we consider the matching from Region A to Region B in the following
way. In Region B, the WKB solution is

¥p(z) = Bp,_(z) + B'¢p ()

. 1 o .
with some constants B and B’ . As we approximate V(z) by =z — E in the intersection
of Region A and Region B, we have

V(@) ~ )2

Z

?

z\/— 1 2 2 III02 .1302
5 Vdz ~ Z(a: — Zo loga:+-7(10g—4-——1)) .
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Hence

3302 $02 K | 1 2
Biyg_(z) ~ B\/-Z_exp(—-—s—(logT - 1))z exp(—zm ) - (20)

On the other hand, the asymptotic form of 4 4g)(x) is

Yap)(z) ~ Dx(z)

~ K=o/t (z — o). (21)

It follows from (20) and (21) that the constant B must be

2 2
x; (log o

B=1
4

ﬁcxp( -1)).

By repeating these procedures, we can determine constants B, B',C,C’, E (in Region
D, the argument is essentially the same as the determination of the connection formula
for simple turning points). The following table indicates the order of the determination
of constants.

Region A Region B Region C Region D Region E
(Weber) - (WKB) (WKB) (Airy) (WKB)
’(,bA(o)(IL') = B ¢B'_(:c) = C ’lﬁc’_ (123) -

+ + + Ep(z)

Yauy(z) < B'¥pi(z) <« C'ioy(z) =

In particular, since B = e~ C and B’ = e~% C’ hold with € denoting /::1 VV(z)dz, we

have ‘
B = 0(1),
C,D,C" = O(e‘ﬂ) ,
B = O(e™®).

Hence we find
E(l) = 0(6—20) .

Thus E(y) is exponentially small; this fact is consistent with our assumption. Detailed
calculation gives

i e\ (K+1/2)/N A
Eo = 7 (Z) exp ("WB (N’E)) '
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