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VARIATION OF CURVATURES AND STABILITY OF HYPERSURFACES
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This article is devoted to some known results on
varialtional problem of hypersurfaces in Euclidean
spaces.Our purpose 1s not only to. gather together
the known resulls concerning the stability of
compact hypersurfaces, but also to derive them
{from a uniform point of view,namely,by the method
of frame fields and the calculus of differential
forms. The normal variation ls defined and the

varijation ‘of the 1st and 2nd quantities .are

obtained. Thus the varliation of the Gauss and mean

curvatures are derived. The generalized Gauss and
mean curvatures of the parallel hypersurfaces, in
lerms of the variational problem of a glven

hypersurface, are given. Finally, compact hyper- .

.surfaces are classified according to the stability
with respect Lo J H°* 1.

H

1. Geometric Prelinimareis

hypersurface,

"

Here,

XD —> Em'l, M =X (D) c Em+1

we glve a brief review on'thégenerél theory of

hypersurfaces for later use (1]. Let M be an oriented

immersed in an oriented.(m+1)7Euclidean Space
» parametrized by a regular patch

(1)
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Here -and 'in the sequel; the Latin and Greek indices run over
the ranges (1,2,....,m) and (1,2,....,m+1) respectively. We
”shall use Einstein’s summation convention.

We can choose the field of frames ¥ =4X,ea} in E™*?

such that, restricted to M, the vectors e, are tangent to M
and consequently the vector e et is the unit normal field
over M.in E™. With respect to the frame fleld of Eﬁ+1

chooéeﬁ above, let w be the field of dual frames then the

structure equatxons of E™! are

B B B . B

dwa=—w Aw , dw =w7 Aw , W + W
B « .o ¥y ' B o

where d is the exterior differentiation  and A 1is the

=0 (2)

exterior product between forms. The fundamental equations of

the frame ¥ are

_ _.B . : .
dX = w e, dea— w, e:’3 ' (3)

where w' are the dual forms to e, and‘wTare the conhection
forms. We restrict these forms to M, then N

wm+1=0’ 0 = dwm+1= wT*lAwi"”J ) A {(4)

Using Cartan’s lemma, we write

m+1 J _ - -
Awl hU w 'h;j —'bjl ‘ (5)
do' = - w; Ao, w: + w; =0 (6)

Using (5), (6) and the 1st eqﬁatlon'ofﬁ(d), oné'éah'see
that the 1st and 229 fundamental forms of the immersed
manifold M are

I=<dX, dX> = w'w -
AR TRRY -
II= -<de  ,dX> = oo™ = h oo
m+]1 » i 1)
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respectively, where <,> is the induced metric by the
immerstion x, and 61),6ij are the well-known Kroneker
deltas. Consequently, we have
A’k = (D' + wo' ) e + 11 e - (8)
J i m+1
The 3rd fundamental form III is defined as
- - J
I = <dem+1'dem+1> 6” wm+1 wm+1

and from (5) we obtain

i - _ o .
111 = 7, ww o, 7, E hlkhkj (9)

The mean, Gauss and scalar curvature functions are

H = tr 11 = —1_p &' (10)
m ij
K = Det (hij) (11)
R = m°H° -[11]° B (12)
respectively, where
' 1/2
_ 2
IT1| = Z (h ) (13)

1,

is the norm of the 2nd fundamental form II.
The following results are cited from [2]. Let AP (M)

is the space of p-forms defined on M. The star operator * is

define as

* AT —— AP
Using the known properties of the * operator, it is easy to
see that the volume element of M with respect to the metric
I is

*1 = w'A WA, ... Aw (14)



and the codifferential & A°(M) — AP (M), whgre'
sw =(-1)"P*™* 1 *dxe | | | (15)
Thus the Laplace operator A is defind as a map
A: AP(M) ——— A"(M) given by
pu =(ds+3d)w o (16)
For a Zero form ¢§A°(M). dgen! (M)is given as
dp = A’ ,dgle) = A, AEA’(M) | (17)
Exterior differentiation of (17) and using (6), we obtain
(dA1+ Ak w; JAw' =o

Using Cartan’s lemma we have

dA +A W5 = A @) (18)
S 1]
Combining these relations, it follows
Al(le+ ij;) + Aljwiwj=0 (19)

From (15) and (17), the Laplace operator of the function ¢
(p=0)is
bp = * 1d* d¢ , (20)

Direct computations and using (18), one can prove that

(3], [4] , v
Aq) = AUGU . ‘ (21)

2 - Normal variation of the frames 7

This section modifies the results ontthe variational
problem which have been introduced in [5], [6]. Let M be a
compact hypersurface with piecewise smooth béundary 8M, the

function ¢= O on M and f$ * 1 =0 V ¢ e A°(M). We consider
M

a smooth map.
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F: J XM —E™! such that for t € J = [0,1] the map
Ft:M —E™! where Ft(p)=F (t,p) fqr P ¢ M is an
immersion such that F0 =X and Ft,X are coincident on the
boundary. The image Ft(P) is represented . by the
parametrization

X(t,uh)=x(u) + totuhe  (u') o (22)

where X =X(u')is a regular patch of M.This representation
defines a normal variation of M in EM4 associated with ¢.

given at t =0. Thus we

which 1is

9
at
have the variation vector field 3§ Ft = ¢ e

denoted by &X.

We define the operator 8vas d =

+1

Here, we try to obtain the fundamental and structural
equations of the variation X. Exterior differentiate (22)

and using (3), (4)and (17) we have

dX =5iei + &m*l o1

" " (23)
-1 - _ j -m+1 = i
w (61) t¢hij)w , W tAlw

The vector valued one-form dX can be written as

- _ 1= —= _
dx =w e ., e § (aij t¢h1j)ej+ tAlem+1 (24)

The vectors Eiare tangent vectors to the variation X=F—(t.p)
corresponding to the tangent vectors e  to the surface
1

X =X (u'), where Ei= F,(er)and Fyis the derivative map of F.
m+1

For simplify the computation, we put €l= Y wlu(t)em , where
a=1

wia(t) are linear functions in the parameter t,and are given

as

wia(t)= § (axa 6ak_t¢hla6ak)+ tAlaa,m+1 (25)
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The functions wia(t) having the properties

3 _ |
wla(o)= g S Oax’ fgf—wia(t)— ¢ E By odox” A3y (26)

ym+1

The ﬁormal vector é_+1to the variation X is defined as the
m

vector product of the tangent vectors Eias the following (7]

_ m+1 m m . .
= AL (27
e .= L Y T wij (t) e AeJ A AeJ ‘2 )
Y 1=1 i=1 o 1 2 m
Jl.Ja—
Thus we have
a m m+1 m )
de = [————- Y My (L) y (t)}(o)e Ae. A...Ae
mi atjk=1 j1=1 i=1 ljk 1jm+1 j1 J2 Jm

After some routin calqulations, we get

. m mt1 . :
6em+l= jle j)i:=1AJkej1Ae.jzAf....iAeJm,(mod em+1)
1,79,
The indices jl,jz,.“,jm,jkare takén as an odd
permutation of the natural sequence (1,2,...,m+1). Therefore

e NAe A...ANe =-e . Consequently, in a simple form, we have
o, Jn I ; , :

n _
6em+1= «igl Axel , (mod em*l) (28)

3. Normalkvariation of the first fundamental quantities

In this. section, we derive the formulas of the
variation of the 1st fundamental quantities. The 1st

fundamental form of the variation X is I = <dX,dX>and from

(24)we have 1 =éi)wiwj, where

g (t) =5 -2 t¢h +t2(¢° A -
ng ) 'y ¢ ' (¢ 711+ iAj)’ gij(o) 611 (29)
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are the 1st quantities of the wvariation X .It is easy to

see that the 1st and 2nd variation of glj are

2,
L 2 _ a - - 2
og = 2¢h1j, d g —[ giJ](o) 2(¢ 71J+ AiAJ) (30)

i) 1) | 542

Taking the variation on both sides of the well knhown

relation éij éik= s , éik(o)= gik

; =61k we obtain

S gij . 61k+ 5ij .Sg%k =0

‘From (30), one can see that the -1§; variation of the

. . 1j .
contravariant metric tensor g T is

Pk_ '
3g ‘= 2¢h (31)
Similarly, using (30), (31), one can obtain the following
2 Jk_ 2 _
d g’ =2(3¢ ij AkAj) . (32)

From the foregoing results, we have

Lemma 1. The 1st and 2nd variation of the metric tensors

i
g, 18

3 3
The volume element of the variation X is ¥i=v Det(éij)*l

a
* = - *
and thus & *1 { 3T /Det(gij)](O) 1.

Using the well known result

are given by (30), (31) and (32) -

d = o ~1] agi]
5t Det (gij)=Det (gij). g 5T —

and from (30}, (10) one can obtain

d*1=-m¢H™*1 ' : (33)



4- Parallel hypersurfaces as a variational type.

Now, we characterize parallel surfaces in terms ofvthe
normal variational problem. The two hypersurfaces M,ﬁ are
called parallel hypersurfaces if one of them is obtained
from the other by means of a special normal variatioh. This
variation can be given from (22) where ¢ =1 (A1=°’ Vi ) and
t=c(const. ). Thus, the representation of the hypersurface M

~ which is parallel to the given hypersurface M is

X (c,ui)=X(u1) +c em+i(ui) (34)

From (29) it follows that the 1st fundamental quantities of

the parallel surface M are

§1j= (6lJ ~20h1j) + 02711 .t35)
The discriminant g of T = glj wiwjis

g = det [I—(Zch -czar)) | (36)
where h, ¥ and 1 are square matrices'defined as h = (hlj},

7=(71j

2ck;Fc ki, where klare the prihcipal curvatures of 'tﬁe

hypersurface M [8]. Thus

~ 2

g =T (1~ckl) (37)
i

The element of area *lof the surface M is *1= v § * 1;

and thus we have *1=P (c)*1 where
m

‘m+1
P(c)= p(-n)'" ' w_c?
i=1

and H = k k ....k
l Z j j J ? o

(38)

3 <<y

), 1 =(6xj)' But the eigenvaluégﬁdf (2ch-c%y)are Just
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are the higher order Gaussian curvatures.

From (37) it follows that g # 0. Thus the vector valued
function X = X(c,u') define a one- parameter family of
parallel hypersurfaces.From the construction of the paraliéi
hypersurfaces, it is easily to see that, the unit normal
vector field to the hypersurface ﬁvis coincident with e

+1
(the normal vector field of M). The shape operator S_(V) of

P
the hypersurface M at the point P in the direction- of the

tangent vector V is defind as S~(;)=fdem+1(;). From (24)
one can prove the well known theo?em {91

S (e)=S (8.) , & =Y (5 -ch Je (39
po 1 g i PR IS I

for every éx and g‘in the tangent spaces Tp(M) and T~(ﬁ)

p
respectively. Therefore

~ o _ j :
Sﬁ(ei)— deM*l(ei) wm+1(ei)ej , (40)
Taking account of (5) we have
~ k
S (e )=} [h w (e )]e =Y h
p 10 U i U

The inverse transformation of (39) is

e
J1

A

e = E 5 Sk - (41)

m

where hkjis the cofactor of the element 6k —chkj in the

trix (8 -ch ). H e)=Yh e .
matrix ( X c kj) Henceforth Sg(el) E hikek

A

~ J1 o kj ~ o~
h h = —_— i =
where h § pm(C) are the elemgnts of the matrix h (hlk)



of the shape operator S. Because the mapping X is not
~preserve the lines of curvatures (hkj¢o,j¢k) these results
are an extension to the results which have been obtained in

[10]. Thus, we reach to the following

Theorem 1.The Gauss and mean curvature functions ﬁ and ﬁ of

~

the parallel surface M are

L h h ) h h
B= Detl 5 "3t Xxj ~ tr{ ) 31 kj

R =

m mp (c)
o) m

5- The variation of the second fundamental quantities.

respectively

Here, new approach to the variétion of the 2nd
fundamental quantities hU is adapted.For this purpose, the

1st equation of (23) can be written as

dX = dX+tA wle + t¢w' e
i m+1

m+1 i

Exterior differentiation gives

27 _ .2, m+l,2 ‘ 1
d’X =d°X -t¢ §(w1 e +@e

where 0'= t(2A w'o' +¢ w W'+ ¢ dw' ).From (5) it follows
. i m+1 b} m+1

m+1

27 _ .2, _ J k S
d'X =d"X -t¢ § hijhlkw we  + (2] e

Thus, the 1st variation of the vector valued 2-form a’x is

- 8d°X=-¢ L h

J k
, h1 wwee ., (mod el) (42)

J 1tk

From the 2nd equality of (7) we get

5 11= ahljw‘w’= 5<d’X, e > (43)

m+1

USing (28) and (42) we obtain
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j ok 1oyt
S hl hlkw w Al(Dw +w wJ)

J J

wwl= - ¢ Y h1
1
Substitution in (19) gives

J k

5h ww
1)

_ 1) )
—Aljw w- ¢ ? hljhign w

and from which we have

dh =A - h h 44
RENED (e

The Gaussian curvature K of the variation X is

K = Det (ﬁij)/ Det (élj) and the variation 8K is defined as

3 (oo, & -

Using the ruls of differentiation to the 'determinAnf

function, one can see that

3§ K = Det (hlj) [12 h,

1)
j 6hlj + 29 0 hlj]

J

From (9), (10), (11) and (44) we have

5K = KizjhiJ(Alj—¢ 7,,) 24 mHK (45)
Thus, we have '

Theorem 2. The variation of the Gauss curvature is given

from - (45). There is no variation for surface with null

Gaussian curvature.

The contraction on both sides of (44) yields

_ _ 2
s h‘l— A ¢ E (hlk) (46)

Summing over i and using (13) we get

SLh =8¢ -¢ 111 (47)
1



The mean curvature function H of the hypersurface M is defined

e
m+1

=

are the 2nd fundamental quantities of the variation X and

from m H = é‘j(t)ﬁij(t), where ﬁij(t) = <d2i, >(e1,ej)

ﬁij(o)=h,j. Thus, the variation &H of the mean curvature
1

function H is given from

_ -1 ~ry,;
| mSH = —— [g (t) h (t)}(o)
Explicitly
moH =2oh . 80 +n . og"
] ij

Taking account (13) and (31), we have

m Sl = § Sh + 2¢ 1112
i

and from (45), (12) it follows that
2,2
méH = A¢ + ¢ (m"H -R) (48)

Thus, we have

Theorem 3. The variation of the mean curvature is given from
(48).

Now we shall give a necessary and sufficient condition

for the immersion X to have stability with respecﬁ to
J.Hc*l,czo.
M

From (33) and (48) one can see that

5 J HE*1 =-—%- J {cnc"‘A ¢ + m’p (c-1)H " -c ¢ H®™? R}*l
M M '
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Since the immersion X is compact, we use the Green theorem

and thus we have
S I HE*1 =._%_ I¢ {CAHC_?+m2(c-1)H°+1-cH°_1R}*1 (49)
o M

The immersion X is stable with respect to SH® *1 if and only
. | ”
if the right~hand side of (49)is identically zero V ¢ & A° (M),

that is

c c+1 c

caH® "t em? (c-1)H 1 -cH® " R=0 ©(50)

The integral condition (50) has been obtaind in [6] using
the methods of tensor analysis. Thus, we reach to the proof

of the main thedrem

Theorem 4. The oriented closed immersion X :M —— Em+1 is

stable with-respectvto the integral [ H°*1 if and only if

M
the condition (50) is valid.

Putting c=m=2 in (50), it is easy to see that the
closed surfaces in E3are the solutions of the différential

equation [11]
AH +2H (H°-K)=o | ( (51)

We take the tours in E° as an application of this result,

where

w'= bdul,w2=f(u1)du2, f(ul) =a + b cos u’

2 . 1,1 3 1 3 1 1 2
w =-sin u du 0, = b w ,w_ = cos u f(u) o

- wl - wz,* w2= wl
at+2b cosu1 vCosul

H = 1 , K:...___l___
2bf(u’) bf(u’)

From (20) one can obtain



2 1
-ab-a cos u
sz(f(ul))3

Thus, the condition (51) 1is valid for the tours such that

a=byv2

6-Stability of hypersurfaces with constant mean curvature.

AH =

Let XM —— Em+l has a constant mean currature, fhe

immersion X is stable with respect to the integral S H°*1 if
M

mz(c—l)Hc—cR=o | (52)

which characterizes the Wiengarten surfaces. Thus, we have

Lemma 2. The hypersurfaces with constant mean curvatures
which are stable with respect to the integral f H°*1 are of

type Wiengarten. H

Here, some main results on hypersurfaces of constant

mean curvature are summerized. In the case where C=o0, we have

Lemma 3. The hypersurfaces which are stable with respect to

J *1 are the minimal hypersurfaces.
H

In the case where C=1, the condition (52) is degenerate

to R=2K=0, which characterizes the developable surfaces.

Thus, we have

Lemma 4 The developable surfaces are the only hypersurfaces

with constant mean curvature and stable with respect to the

integral [ H*1
|

These results have been proved in[12] using the methods

of the associated characteristic Euler Lagfange vector. From

the above lemmas, we have a classificiation given from
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Theorem 5. The immersion with constant mean curvature

display many similarities with minimal immersions in E™' *1

They are both solution to the variational problem of

minimizing the area function.
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