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Abstract

A modified version of lambda-mu-calculus is defined. It corresponds
with the implicational fragment of the system of classical natural deduc-
tion with one conclusion. Strong normalization theorem is proved for the
modified version of $\mathrm{l}\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{d}\mathrm{a}-\mathrm{m}\mathrm{u}-\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}$ .

1 Introduction
In [1], we defined a reduction for the system of first order classical natural
deduction which contains all logical symbols primitively. The reduction is the
natural extension of Prawitz’s one ([7] [8]) for the intuitionistic case. Concerning
our reduction, we proved weak normalization theorem in [1] and Church-Rosser
property in [2]. But the notations used in the proof in [2] is so much complicated.
In some sense, systems of typed terms is more suitable than those of proof-
figures to denote reductions and prove their properties. Could we rewrite our
complicated proof in [2] to a simple one ? This question has motivated us
to investigate systems of typed terms suitable to work for the theorems about
reduction in the systems of classical natural deduction. In the intuitionistic
case, there is a well-known correspondence between typed terms of $\lambda$-calculus
and proof-figures of natural deduction called Curry-Howard isomorphism. For
the classical logic, this correspondence is extended to the one between Parigot’s
$\lambda\mu$-calculus ([4] [5] [6]) and a system of second order classical natural deduction.
However, the system of classical natural deduciton which corresponds directly
with Parigot’s $\lambda\mu$-calculus is slightly different from the usual one we want to
investigate, since in the former system derivations are allowed to have more
than one conclusion. The essence of our reduction in [1] is its treatment of
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redexes followed by classical absurdity rule, which is used in the system of
classical natural deduction with one conclusion. It is possible to modify Parigot’s
$\lambda\mu$-calculus to suitable one for our classical natural deduciton system. Such
modified system of $\lambda\mu$-calculus is rather simple in comparison with Parigot’s
original one. Namely, it is not necessary to divide variables into $\lambda$-variables
and $\mu$-variables. Only one sort of variables is sufficient. But a simple proof
of Church-Rosser property of our modified system of $\lambda\mu$-calculus has not been
proved yet. In this paper, we comment a fact that has been obtained. in the
investigation of the modified system. That is, if the modified $\lambda\mu$-calculus is
restricted to the implicational fragment (in the sense of natural deduction), it
enjoys strong normalization theorem. Strong normalization theorem for our
system of classical natural deduction is still a conjecture.

2 Classical natural deduction $(\mathrm{C}\mathrm{N}\mathrm{D}_{\supset})$

$\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}\mathrm{i}\mathrm{s}$ a system for classical natural deduction which contains only implica-
tion as logical connectives primitively. Formulae of $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}$ are composed from
propositional variables, the propositional constant $\perp$ for false, and a logical
symbol $\supset$ for implication. A formula of the form $A\supset\perp$ is abbreviated as
$\neg A$ . Inference rules of $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}\mathrm{a}\mathrm{r}\mathrm{e}$ introduction and elimination rules $\mathrm{f}\mathrm{o}\mathrm{r}\supset$ , and
classical absurdity rule.

Introduction and elimination rules for $\supset$ :

$\frac{[A]B}{A\supset B}(\supset I)$

$\frac{A\supset BA}{B}(\supset E)$

Classical absurdity rule:

$[\urcorner A]$

$\frac{\perp}{A}(1_{c})$

Regularity of $(\perp_{c})$ . It is assumed that any assumption formula dis-
charged by any application of $(\perp_{c})$ in a derivation is the major premiss of an
application of $(\supset E)$ . Notice that if a derivation which does not satisfy the
regularity of $(1_{c})$ , then we can easily transform it to a regular one [1].

In [1] we define our reduction rules for the system of classical natural deduc-
tion with full logical symbols, and prove its weak normalization theorem.

71



3 $\lambda\mu 1$-calculus
We define $\lambda\mu 1$-calculus, which is a modified version of Parigot’s $\lambda\mu$-calculus
$([4][5][6])$ . Types are formulae of $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}$ . $\lambda\mu 1$-variables $x^{A},y^{A},\ldots$ are available
for each type $A$ .

3.1 Definition (Terms)
Terms are defined inductively as follows.. The $\lambda\mu 1$-variables $x^{A},\ldots$ are terms of type $A$ .. If $x$ is a $\lambda\mu 1$-variable of type $A$ and $u$ is a term of type $B$ , then $\lambda x.u$ is a

term of type $A\supset B$ .. If $t$ and $u$ are terms of type $A\supset B$ and $A$ respectively, then $tu$ is term of
type $B$ .. If $x$ is a $\lambda\mu 1$-variables of type $\neg A$ and $u$ a term of type 1, then $\mu x.u$ is a
term of type $A$ .

Curry-Howard isomorphism can be easily extended to the correspondence
between terms of $\lambda\mu 1$-calculus and derivations of $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{u}\mathrm{t}$ restriction of
regularity on $(1_{c})$ . The regularity on $(1_{c})$ corresponds with the notion $\mu$-regular
which will be defined later in this section.

3.2 $\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ ($\mu$-nice)
Let $u$ be a term and $x$ a $\lambda\mu 1$-variable of type $\neg A$ . $x$ is $\mu$-nice in $u$ if the following
conditions hold:

$\bullet$ $x$ is not bound in $u$ .. $u$ is not $x$ itself.. For any occurrence of $x$ in $u$ , the smallest subterm of $u$ including properly
the occurrence of $x$ is of the form $xw$ for some term $w$ .

3.3 $\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ ($\mu$-regular)
A term $t$ is $\mu$-regular; if for any subterm $\mu x.u$ of $t,$ $x$ is $\mu$-nice in $u$ .

Hereafter, we assume that all terms are $\mu$-regular.
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4 Reduction

4.1 $\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}([/*])$

Let $u$ and $v$ be terms of type $C$ and $A$ respectively, $x$ a $\lambda\mu 1$-variable of type
$\neg(A\supset B)$ which is $\mu$-nice in $u$, and $y$ a $\lambda\mu 1$-variable of type $\urcorner B$ not occurring
in $u$ nor $v$ . Then $u[v/*x, y]$ is the term of type $C$ defined inductively over the
construction of $u$ as follows:. $z[v/*x, y]=z$ if $z$ is a $\lambda\mu 1$-variable.

$\bullet$ $(\lambda z.t)[v/*x, y]=\lambda z.(t[v/*x,y])$. $(st)[v/*x, y]=(s[v/*x, y])(t[v/*x, y])$ if $s$ is not $x$ .
$\bullet$ $(xt)[v/*x, y]=y(t[v/*x, y]v)$

Notice that $z$ is not $x$ since $x$ is $\mu$-nice in $u$ .

4.2 Definition( $\mathrm{R}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ relations)

Basic reduction relations $(\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{d}\triangleright_{c})\mathrm{a}\mathrm{r}\mathrm{e}$ defined as follows.. $(\lambda x.u)v\triangleright_{c}u[v/x]$

$\bullet$ $(\mu x.u)v\triangleright_{c\mu}y.(u[v/*x, y])$ , where $y$ is a $\lambda\mu 1$-variable not occurring in $u$

nor $v$ .
The one-step reduction relation $(\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{d}\triangleright_{1})$ is defined as the compatible clo-
sure of the basic reduction relation. The reduction relation (denoted $\triangleright$ ) is
defined as the reflexive and transitive closure of the one.step reduction relation.

4.3 Definition( $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}$ normalizability)
A term $u$ is strongly normalizable (denoted $SN(u)$ ) if there is no infinite se.
quence $(u_{i})_{i<\omega}$ such that $v_{O}=u$ and $u_{i}\triangleright_{1\%+1}$ .

5 A proof of SN
In this section, we prove the storng normalization theorem of $\lambda\mu 1$-calculus or
that of $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}$ .
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5.1 Definition( $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{y}$ computability)

For a term $u$, the predicate ”
$u$ is strongly computable”, denoted $SC(u)$ , is

defined as follows.. For a term $u$ of atomic type, $SC(u)$ if $SN(u)$ .. For a term $u$ of type $A\supset B,$ $SC(u)$ if for all term $w$ of type $A,$ $SC(w)$

imples $SC(uw)$ .

5.2 Lemma

Let $T$ be any type.. Every term $(xu_{1}\ldots u_{n})$ of type $T$, where $SN(u_{i})$ for all $i,$ is strongly
computable.. For any term $u$ of type $T,$ $SC(u)$ implies $SN(u)$ .

5.3 Lemma

If $SC(u[v/x])$ and $SC(v)$ , then $sc((\lambda X.u)v)$ .

These two lemmata above are proved similarly in the case of typed $\lambda$-calculus
([3]).

5.4 Notations
Let $u,$ $v_{1}$ , and $v_{2}$ be terms of type $C,$ $A_{1}$ , and $A_{2}$ respectively. Let $x_{1},$ $x_{2}$ , and $y$

be $\lambda\mu 1$-variables of type $\neg(A_{1}\supset A_{2}\supset B),$ $\neg(A_{2}\supset B)$ , and $\neg B$ respectively such
that $x_{2}$ and $y$ do not occur in $u,$ $v_{1}$ , nor $v_{2}$ . We use the notation $u[v_{1}, v_{2}/**x_{1}, y]$

to denote the term $u[v_{1}/*x_{1}, X_{2}][v_{2}/*x_{2}, y]$ . Notice that the term is indepen-
dent of the choice of $x_{2}$ . Similarly, we use the notation $u[v_{1}, \ldots, v_{n}/**x_{1}, y]$

for the term $u[v_{1}/*x_{1}, x_{2}]\ldots[v_{n}/*x_{n}, y]$ . If $n=1,$ $u[v_{1}, \ldots, v_{n}/**x, y]$ means
$u[v_{1}/*x, y]$ .

5.5 Lemma

Let $(\mu x.u)v_{1}\ldots v_{n}$ be a term of an atomic type. If $SC(u[v_{1}, \ldots, v_{n}/**x, y])$ and
$SC(v_{i})$ for each $i$ , then $sC((\mu x.u)v1\cdots vn)$ .

Proof. By lemma 5.2, $SC(u[v_{1}, \ldots, v_{n}/**x, y])$ leads $SN(u[v_{1}, \ldots, v_{n}/**x, y])$ .
It implies $SN((\mu_{X.u})v_{1}\ldots vn)$ since $SN(v_{i})$ for each $i$ . The type of $(\mu x.u)v_{1}\ldots v_{n}$

is atomic, so we have the result. $\square$
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5.6 Notations
In the case that it is inessential that which variable has been chosen for $y$ in
the term $u[v_{1}, \ldots, v_{n}/**x, y]$ , we denote it $u[v_{1}, \ldots, v_{n}/**x]$ . We also use the
notation $u[\vec{v}/(*)_{X]}$ which stands for $u[varrow/x]$ or $u[\vec{v}/**x]$ where $v\mathrm{i}arrow \mathrm{s}$ a sequence of
terms and its length is equal to 1 in the case of $u[varrow/x]$ .

5.7 Theorem
Let $u$ be any term and $x_{1},$ $\ldots,$ $x_{n}$ mutually $di\mathit{8}tinCt\lambda\mu \mathit{1}$-variables which do not
bound in $u$ . Let $v_{1}arrow,$

$\ldots$ , $v_{n}arrow$ be $\mathit{8}equenceS$ of $tem\mathit{8}$ and $z_{1},$
$\ldots,$

$z_{n}$ mutually distinct
$\lambda\mu \mathit{1}- variable\mathit{8}$ not occurring in $u,\vec{v}_{1},$

$\ldots,$
$norv_{n}\mathit{8}arrow uch$ that $u[z_{1}/x_{1}]\ldots[z_{n}/x_{n}][v_{1}arrow/(*)_{Z_{1}]}\ldots[\vec{v}_{n}/(*)_{Z_{n}]}$

becomes a term. Then, $SC(\vec{v}_{i})$ for each $i$ implies $SC(u[Z_{1}/x_{1}]\ldots[z_{n}/x_{n}][\vec{v}_{1}/(*)_{Z_{1}]}\ldots[v_{n}arrow/(*)_{Z_{n}])}$

where $SC(v^{1}, \ldots , v^{l})mean\mathit{8}Sc(v^{k})$ for all $k$.

Proof. By induction over the construction of $u$ .. $u\equiv x_{i}:$ Rival.

$\bullet$ $u\equiv y$ where $y$ is not in $x_{1},$ $\ldots,$ $x_{n}$ : Use lemma 5.2.
$\bullet$ $u\equiv ts$ : By definition of strong computability.

$\bullet$ $u\equiv\lambda x.t$: Use lemma 5.3.
$\bullet$ $u\equiv\mu x.t$ : Use lemma 5.5. $\square$

From the theorem and lemma 5.2, it immediately follows that every $\lambda\mu 1$-term
($\mathrm{i}.\mathrm{e}$ . every deduction in $\mathrm{C}\mathrm{N}\mathrm{D}_{\supset}$ ) is strongly normalizable.
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