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A FUZZY RELATIONAL EQUATION
IN
DYNAMIC FUZZY SYSTEMS

M. KURANO(Chiba University), M. YASUDA (Chiba University),
J. NAKAGAMI(Chiba University) & Y. YOSHIDA (Kitakyushu University)

Abstract : For a dynamic Fuzzy system, the fundamental method is to analysis its recursive relation of
the fuzzy states. It is similar as the Bellman equation is the important tool in the dynamic programming.
Here we will consider the existence and the uniqueness of solution of the fuzzy relational equation. Two
examples which satisfies our conditions, are given to illustrate the results.

1 Introduction and notations

We use the notations in [4]. Let X be a compact metric space. We denote by 2% the collection of all
subsets of X, and denote by C(X) the collection of all closed subsets of X. Let p be the Hausdorff metric
on 2%. Then it is well-known ([3]) that (C(X), p) is a compact metric space. Let F(X) be the set of all
fuzzy sets §: X — [0, 1] which are upper semi-continuous and satisfy supme x8(z)=1Let §: X x X —
[0, 1] be a continuous fuzzy relation on X. :

In this paper, we consider the existence and uniqueness of solution g € F(X) in the following fuzzy
relational equation (1.1) for given a continuous fuzzy relation § on X (see [4]) :

p(y) = sup {p(z) A 4(z,y)}, ye€X, - (L1
reX

where a A b = min{a, b} for real numbers a and b. We define a map g, : 2% — 2% (a €[0,1]) by

{y | d(z,y) > aforsomex € D} fora#0, De2X D#0,
Go(D) :={ iy | 4(z,y) > 0for somex € D} fora=0, Dec2X D#0, (1.2)
X for0<a<l1, D=9,

where cl denotes the closure of a set. Especially, we put §o(z) = §o({z}) for z € X. We note that q, :
C(X) = C(X).

Lemma 1.1 ([4, Lemma 2]). For each a € [0,1], the map 4, : C(X) — C(X) is continuous with respect
to p.

For § € F(X), the a-cut 34, o € [0,1] i3 defined by

a={zeX|3x)>a} (a#0) and 35 :=cl{zre X |35(z) > 0}.

Lemma 1.2.
(i) For 3 € F(X), § satisfies (1.1) if and only if
Go(8a) = Ga, a€l0,1]. o (1.3)

(ii) We suppose that a family of subsets {D, | @ € [0, 1]}(C C(X)) satisfies the following conditions (a),
(b) and (c):



(a) Do C Dy for0<o' <a<l;
(b) limgr1q Dor == D, for a # 0;
(€) Ga(3a)=38a forae|0,1].
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Then 3(x) := supsejoy{@ A 1p,(x)}, = € X, satisfies § € F(X) and (1.1), where 1p denotes the

characteristic function of a set D € 2X.
Proof. (i) is trivial. (ii) is from (i) and [4, Lemma 3]. D
2 The existence of solutions

For a € [0,1] and z € X, a sequence {§%(z)}x=1,2.... is defined iteratively by

da(@):={z}, G(z):=dalz) and G z):=Go(@(z)) fork=1,2, -

Then, let G,(z) := s, () and

Fu(z) = | () = {£} UGa(a).

k=0

We now consider a class of invariant points for this iteration procedure, that is, * € G4(x). So put

Ry :={zx e X |z € Gya(z)} forae(01]

(2.1)

(2.2)

Each state of R, is called as an “a-recurrent” state and it is studied by [7]. The following properties (i)

and (ii) holds clearly:
(i) Ga(Fa(z)) = Go(z) fora#0and z € X;

(iil) Ry CRy for0<o <a<l.

Lemma 2.1. Ifz € Ry, the following (i) and (ii) hold:

(i)
da(Fa(2)) = Fa(z) for o€ [0,1);

(ii) Fo(z) C Fy(z) for0<a' <a<l.

Proof. Since z € R; C R, we have

So, we obtain (i). (ii) is trivial. O

For z € Ry, we define

Fo(z) = ) d{Far(2)} (a#£0) and Fo(2) := cd{Fo(2)},

o’'<a
where cl{F,(z)} denotes the closure of F,(z).
Lemma 2.2. If z € Ry, the following (i), (ii) and (iii) hold:
(i) da(Pa() = Fulz) forae[0,1];
(i) Fa(2) C For(z) for0<o/ <a<l;

(iii) Fo(z) = limaria For(2)  for a #0.

(2.3)

(2.4)
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Proof. (ii) is trivial from Lemma 2.1 and (iii) is also trivial from the definition. To prove (i), let o
0. From Lemma 2.1(i), we have §o(Fo(z)) = Fp(z). By the continuity of §, we can check g, (cl{Fo(2)}) =
cl{Fy(2)} in similar way to the proof of [4, Lemma 1]. Therefore, Go(Fa(2)) = Fo(2).

Let a > 0 and y € §o(Fu(z)). By LLemma 1.1, we have

ye () dalc{Far(2)}) = ) Gal{Faz1/nyvo(2)}).

a’<a n=1
From the continuity of ¢, for n > 1, there exists z, € F(q_1/n)vo(2) such that §(zn,y) > a« —1/n. By
Lemma 2.1(i),
Y € Ga—1/nvo(Fla—1/nv0(2)) = Fla—1/mvo(2) C c{Fla_1/nyvo(2)} for all n > 1.
So, y € ﬁ'a(z). Therefore, we obtain X X
da(Fa(2)) C Fa(2).
While, we have
{Fy(2)} C Go(cl{Far(2)}) fora” <o <a.
Then R
Fo(2)= [ {Fa(2)} C [ Gor(cf{Far(2)}) = Gald{Far(2)}) for o’ <o

a’'<a a’'<a

So, we get

Fa(z) - m da(c{Far(2)}) = da ( ﬂ Cl{Fa“(z)}) = qa(ﬁ‘a(z))-

a’<a a’<a

Therefore, we can obtain (i). O

Let z € Ry. Since {F,(2) | « € [0,1]} satisfies the conditions (a) — (c) of Lemma 2.1(ii), we obtain the
following theorem.

Theorem 2.1.
(i) If Ry # 0, then there exists a solution of (1.1).

(ii) Define a fuzzy state

§%(x) == sup JaAlg (), z€X. (2.5)
() ae[o,n{ foo (@)

Then 3% € F(X) satisfies (1.1).
Assume that Ry # (). We introduce an equivalent relation ~ on R, as follows: For 21, 23 € R,
z1 ~ z9 means that z; € Fy(22) and z9 € F,(21).
Then we could identify the states of R, which is equivalent with respect to ~, and so put

Ry =R,/ ~.

Lemma 2.3. For z;,20 € Ry,

z1 ~ 2y ifandonly if Fy(z1) = Fu(29) for all a € [0, 1].

Proof. Let z; ~ z5. Then, we have z; € Fi(22) C Fo(22) for any « € [0,1]. From the definition (2.1)
of F,(21), we obtain F,(21) C F,(22). Since we have F,(22) C F,(21) similarly, F,(z1) = F,(22) holds.
The reverse proof is trivial. O

From Theorem 2.1 and Lemma 2.3, the number of solutions of (1.1) is greater than or equals to the num-
ber of “1-recurrent” sets. To consider the class of solution (1.1), let P := {§ € F(X) | pis a solution of (1.1)}.
Then P has the following property:

Theorem 2.2. Let3* € P (k=1,2,---,1). Then:
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1) Pup

Then p € P.
(i) Let {a* € [0,1] | k=1,2,---,1} satisfy maxg—;2..;0* = 1. Put

pzx) := _max l{ak Ap*(z)} forx e X.

eyttt

Thenp € P.

Proof. (ii) Taking the a-cut of p € F(X), we have
Po = U 75:4
k:ak>a
Then,
fa)=da | | 5= U @@= |J #:=0p
kiakb>a kiak>a kiak>a

Therefore, we obtain (ii) from Lemma 1.2(i). (i) is proved similarly. 0O

3 The uniqueness of solutions

In this section, we discuss the uniqueness of a solution of the equation (1.1) under convexity and com-
pactness. Let B be a convex subset of R"™ and C,(B) the class of all closed and convex subsets of B.
Throughout this section, we assume that the state space X is a convex and compact subset of R™. The
fuzzy set 3 € F(X) is called convex if its a-cut §, is convex fro each o € [0,1]. Let Fo(X) := {§ € F:
§ is convex}.

Let, applying Kakutani’s fixed point theorem ([2]), we have the following.

Lemma 3.1. Let o € [0,1] and §(x) is convex for each x € X. Then, for any A € C,(X) with A =
do(A), there exists an « € X such that §(z,z) > o.

Proof. The map G, : A — C.(A) with go(z) € C.(A) for all z € A is continuous from Lemma 1.1, so
Kakutani’s fixed point theorem gurantees the existence of an element z € A such that x € G, (z), which
implies ¢(z, z) > «. This completes the proof.

As a consequence, we have a property of the convex solution of (1.1).

Proposition 3.1. Let p € F.(X) be a solution of (1.1). Then, for each a € [0,1], there exists an = € p,
with q(z,z) > a.

Proof. By Lemma 1.2, o = Ga(Pa) for each a € [0, 1]. Thus, Lemma 3.1 clearly proves the desired result.
0

Now, we give sufficient conditions for the uniqueness of a convex solution of (1.1).. Let U, := {z €
Xlg(z,z) 2 o}.

Assumption A. The following A1 — A3 holds.
Al The set U,, @ = 1 is one point set, say . That is, Uy = {u}.
A2. U, C F,(u) for each o € [0, 1], where u is in the above Al and F,(u) is defined by (2.1).
A3. If A= G,(A) for any A € F.(X),0 < a <1, then

A= |J F.(4)

zcUNA
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Theorem 3.1. Under Assumption A, the equation (1.1) has a unique solution in F.(X).

Proof. Let 3,7’ € F.(X) be solution of (1.1). By Lemma 3.1, ; N Uy # and p| NU; # . Since U; is one
pointset, u € p; and u € p}. Thus, by A2 and A3, p; = Fi(u) and | = Fi(u), which implies p; = p]. We
now show that p, = F,(u) for each 0 < a < 1. Since u € Por = Gor (Por) and Py, is closed, it holds Fyr (u) C
Por- Therefore,

Fo(w) = |J d{Fw @} C | Pulu) = pa

a’'<a o' <a

On the other hand, we have

Po = Upcvong, HFalz)}, from A3
C Ueep,rp., MFalz)}, from A2
C Upes, H{Fal2)}-

From that z € F, means F,(z) C Fi(u), it holds that
o C Al{Fa(u)} C Falu).

The above shows p, = F(u). Similarly g/, = ﬁ'a(u.). Thus, $o = p,,. This completes the proof.. O

4  Numerical example

Here two numerical examples are given to comprehend computational aspect of this paper.
Example 1. Let X = {0,1]. For any g;[0,1] — [0, 1], let

g(z,y) == (1— |y —g(z) ) VO.

We assume that g(-) is strictly increasing and there exists a unique xo € [0, 1] with zg = g(z0). Under the
above condition, Ry = {zo} and for each o € [0, 1),

U, = [QOUTQL

when z,, 7, is a unique solution of z = g(z) — (1 — ),z = g(z) + (1 — ) respectively and z, = 0,%, = 1
if the solution does not exist in [0,1].

Clearly, U, equals a unique solution of the equation A = p,(A) in C.([0,1]), so that Assumption A in
Section 3 holds in this case. Thus, by Theorem 3.1, we have

§(z)= sup {aAly ()} (4.1)
a€l0,1]

is a unique convex solution of (1.1). For a concrete example such as g(z) = (222 +1)/4, then it is seen that
Ri = {(2 - v2)/2} and
z, = (1 - 5/2—2a) Vo,
1 3/4<

maz{ 1-2a-3/2, 3/4<a<l.

By (4.1), the unique solution is as follows (Fig.1):

S(z) = —22/24+z+3/4, 0<x<1-+2/2
T 2?/2-245/4, 1-+v2/2<z2<1

Fig.1 The unique solution §.
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Example 2. This example has two peaks for the fuzzy relation. Let X = [0, 1] and
jlz,y) = (1= |y - @+ 1)/4) vV (1~ |y - («® +2)/4]).
Then, R; = {a,b}, where a = 2 — v/3,b = 2 — \/2. By simple calculation, we get
Fula) = [22,73) and Fa(b) = 25,73

for a € [0, 1}, where

o_J 0, 0<a<3/4
LaT\ 2-/T"%a, 3/4<a<l
o | 1, 0<a<7/8
LaT\ 2-VIa T, 7/8<a<1
b __ 07 OSaS7/8
La=) 2-6-4da, 7/8<a<l

b __ 1, 0SC|!S3/4
LaT\ 2-VIa-2, 3/d<a<l1

By Theorem 2.1, the solution of (1.1) are given as follows(Fig2.):

( _.2
EAETS 0<z<2-43

~a _ 2 __

(=) = 3—{?ié, 2-V3<x<2-VI0/2
| 7/8, 2-y10/2<z <1
(7/8, 0<z<2—+10/2
2

3 (z) = ¢ iifit—%, 2-v10/2<2<2-v2
2 _
\f—{?if, 2-vZ<z<l

Fig.2 The unique solutions §* and &°.
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