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Electrical conductivity {(or transport obefficient) is férmu—
lated on the basis of the Boltzmann-Bloch équation and also of
the Neumann equation. Concerning this a variation principle for
eaéh-equation is presented, which illuminates the basis of
irreversibility. Contraction of the irrelevant information on
the even component of the density matrix as to time reversal
operation converts the stationarity problem in the variation
principle based on the Neumann equation into the extremum problem
of the same type as in the variation principle based on the
Boltzmann equation. For such a gas system as conduction electrons
in solids, the former can be completely reduced to the latter,

which are understandable from the chaos-theoretical viewpoint.

§1. Introduction

The formulae for electricl conductivity is obtained as time
integral of the temporai auto-correlation of Velectric current
density j expressed as an inner product (Jj(t),j) based on the
Boltzmann-Bloch equation (dynamical stage) and also on the
Neumann equation {dynamical stage), in which j(t) obeys the

respective basic equations of motion. For the dynamical system
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exhibiting the so-called sensitivity on initial condition, the
formula in dynamical stage can be reduced to the type of that in
kinetic stage. Variation principles are helpful for understanding
this reduction.

In §2 the kinetic theory based on the Boltzmann-Bloch equation
is developed to derive the formula. Similarly, in §3 the
dynamical theory is presented on the basis of the Neumann
equation. In §4 the variation principle in the kinetic theory is
presented as an extremum problem, with its thermodynamical
meaning. In §5 the variation principle in the dynamical theory
is presented as a stationarity problem. In §6 this stationarity
problem is converted into an extremum problem of the same type as
in the kinetic case, by contracting irrelevant informations on
the even component with respect to time reversal operation and

some oncluding remarks are given.

§2. Formula in the kinetic stage

In the traditional theory, the electrical conductivity of a
conducting system is calculated on the basis of the Boltzmann-
Bloch equationt:2> 2243, The distribution function f(p,r,t) for
the conduction electrons with electiric charge e and effective
mass m obeys the so-called Boltzmann-Bloch equation as a function
of the momentum p, space coordiate r and time t. In the presence

of an applied electric field E it is expressed as

of af
(z.1)

T | st

af ]

at ) 3t
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The first contribution

af af p »of
= -eE. - = . (2.2)
at o 3ap m 3r
is the drift term giving a systematic change. In the 1linear

approximation with external disturbance, f can be replaced with
the Fermi distribution fg=1/[eftc-v>+1], where g8 and u are
the inverse local temperature and the local chemical potential,

respectively. Then the drift term (2.2) can be rewritten as

af afg
= - [§(k) Xi+qlk)X21, (2.3)
st U 3¢

where the currents and the generalized forces are given, respec-

tively, by
stk)=ehk/m, q(k)=h{e-pg)k/m, (2.4)
X1 ZE+Vu/e, X:=-(9T)/T. (2.5)

The second contribution in (2.1) is called the collision term
which is due to the scattering processes experienced by the
electrons. We confine ourselves to the electron-phonon system.
By introducing an auxiliary distribution function ¢(k,t) via

afe
¥

f:fa— (2.6)

in the time-dependent perturbation theory, the collision term 1in

the linear approximation as to ¢ is obtained as#’

Lo, (2.7)

[ 3f l _ afg

3t d&

where L is the collision operator defined by
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27 v
Le(k) = z. [<k|VIk'>|28(e~-c’ ) (-0 ), (2.8)
‘ 1-fo’ _
Lp(k)= = a® |qlng |———— 6({e’-e-Duw)
e 1-f,
fa'’
+ - dle’—e+d0) | (o-0'), (2.9)
%]

for the scatterings of electrons due to impurities and to lattice
phonons, respectively, where g=zev, ¢ =ev , f=f(k,t), f'=f(k’,t),
o=¢lk,t), ¢'’=¢(k’,t) and <k]|V]|k’> is the matrix element of the
perturbing potential V due to the impurities. The distribution
function of phonon with wave number q =k’-k in thermal equiilib-
rium is represented as the Planck distribution function ng(w,)
=1/[{eb>w-1]. The parameter ¢ is given in terms of the so-called

Sommerfeld-Bethe constant C by

c, (2.10)

o
9NMs

where N is the number of lattice ions of mass M per unit volume.

Inserting (2.3) and (2.7) in (2.1), we get

Ap/at+Lo=X, Xej (k) o Xi+ql(k) Xz, (2.11)

Averaging (2.4) as to the distribution function (2.6), we

get the electric and heat current densisties, respectively, as
I=2f (k)i k)=(e,3)=(5,0), (2.12)
szzf(k)q(k)z(‘b;q}:(qu))’ (2.13)

where we have defined the inner product as



3fg (e)
{p,p)=(gp,¢p)= =% —— p(k)Iplk).
. d¢
The steady state solution of (2.11) can be expressed as

G=X1 @1 FX2 29z,

with the use of ¢, and ¢: satisfying

Lei=j1, Lez=32, (ji=3, jz=q).

Substituting the solutions of (2.16) in (2.12,13),

Jm=j2 Lin o Xn (Ji=J,J:=Q),
for an isotropic or cubic system, where

)

Lmn:(Om )LQH):J (jm(t)l.jn )dt:an (m,n:l,Z),

2

satisfies Onsager’s reciprocity relation,®’' and

Jo (t)=exp(-Lt) ju .

{(2.14)
(2.15)
(2.16)

get

(2.17)

(2.18)

{2.19)

As a special case, the electrical conductivity is written as

g = J' (Jgtt),jldt,

(2.20)

where for an orthogonal component of electric current density J

Jlt)zexp(-Lt)j.

$§3.Formula in the the Dynamical Stage

The density matrix p(t) for the system exposed to an

electric field E(t) obeys the Neumann equation,?’ .

) Y
iR ——= [H-P-E(t),pl],
at

(2.21)

{3.1)
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where H and p are the Hamiltonian and polarization operator,

respectively. We solve this as
plt)=pc+p: (L), (3.2)

to the first order in the external field where p¢ denotes the
grand canonical distribution p:=Kexp[-g(H-uyN)] in terms of a
normalization constant and of the total number N of conduction
electrons.

Generalizing ¢ in (2.6), we define an operator & by

B
p:(t)=j drpcexp(aH)o(t)exp(-AH). (3.3)

2

Substituting (3.2) into (3.1) with (3.3), we obtain
ad/at+Le=j-E(t), (3.4)

where a superoperator L is defined on the operator ¢ by

~

Le=z -if{H,e]1/k, : (3.5)

and j=i[H,pPl1/» is the electric current density. The solution of
{3.5) 1is written as
o(t) =J exp(-iLt) jdt, (3.6)
%}
for the field with unity strength, where j denotes the current
density operator parallel to the field.
We define the inner product between a pair ¢ and p as?>®

B
(@,w)=(@,¢)=f Tr{dp: exp(AH)vexp(-aH)da, (3.7)
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which is reduced to (2.26) by neglecting the electron-impurity
and electron-phonon interactions in H. Substituting (3.2) with
(3.3) into th average Tr{(p(t})j) of j, we obtain (2.20) again,
where j should be read as the operator, the inner product is

defined by (3.7) and the time dependence of j(t) is given by

J{t)zexp(-Lt)j=exp(iHt/k) jexp({-iHt/R). {3.8)

§4.Kinetic Variation principle

The variation principle provides a powerful method to clarify
the theoretical basis as well as fascilitate the computation.
With respect to the inner product (2.14) the collision operator L

defined by (2.7) satisfies the relations*’

(¢,Lyp)=(yp,Lo), (4.1)
(¢,Lp)20, {(4.2)
for any pair of functions ¢ and p. Thus, the kinetic wvariation

principle is presented as followg:7:8:332) %) 45

[I] Maximize the functional
(p,Ly), (4.3)

with respect to g under the condition

{g,Lyg)=(p,X). ) (4.4)

[I]1 Maximize the functional

2(y,X)-(9p,Ly). - (4.5)

(I} Maximize the functional
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(V)JX)E
(p,Ly)

(4.6)
The last'one can be restated as a minimum principle for the
reciprocal of (4.6). The solutions of [I], [[] and [B] all satis-
fy the linearized Boltzmann-Bloch equation (2.11) in the steady
state. If X is merely due to the electric field, they give the
Joule heat generated. The electrical conductivity is obtained for
the unity field strength, whereas the minimum of the reciprocal
of (4.6) gives the resistivity. By assuming g=cj. for the field
directed in the x-axis, the electrical conductivity is obtained

as the maximum with respect to a constant parameter c:

(Jsx 52 h? <Jx &> .
= e s e =¢j2dT,  (4.7)
(JesyLj<) aks T ‘2<[Jx;H w I TH w3 128 (0)
where 7 gives the mean free time and H°, is the Fourier
component of the perturbation H° causing the scattering of

electrons in the so-called interaction representation: viz.

exp(iHe t/h)H exp(-iHat/h)=2 H ,exp(int). (4.8)

n

where Hpy denotes the unperturbed Hamiltonian. we can obtain the
well-known Grineisen formula from (4.7).

The time derivative of the entropy of th electron system,
S =-kg F folnf-(1-f, )In(1-f, )1, (4.9)

is written as

S af: f.
lnl ] (4.10)

= 2
kg k at 1-f,

By inserting (2.2) and next (2.1) for 9f/3t in (4.10) and
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retaining the external disturbance to the lowest order, contri-

butions from the collision and drift terms are obtained as

’ : ) {4.11)

l 3S (p,Lo)
at e T

LR | (4.12
T ( )

[ifi (,X)
3t )

respectively. The former is intrinsic to the system and is called
the entropy production. The relation (4.2) implies the non-
negativity of teh entropy production (4.11). The requirement [[I]
means the pfinciple of maximum éntropy proauction in the steady
state, whereas (4.12) should be minimized as the principle of

least energy dissipation.?®’

§5.Dynamical variation principles 12

For the Neumann equation (3.1), we assume two situations:

E(t)=Eexp(st) (t<0), (5.1)
E(t)=z=Eexp(-st) (t>0), (5.2)

where E is a constant electric field and s is a positive

infinitesimal. In conformity with these, we assume

tl_im pl{t)=pc, e(t)=0'+> exp(st), (5.3)
}im plt)=pc, olt)=¢'- expl(-st). I (5.4)

We must take into account these two situations'éimultaneously, in
contrast with the kinetic variation principle based on the
Boltzmann-Bloch equation described in §3, where we can discuss
confining to either one case of (5.1) and (5.2). By substituting

(56.1) to (5.1) into (3.4), we obtain
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Lsot+>=j+E, ‘ Y (5.5)
L-s¢i-7"=j-E, (5.6)

where a superoperator L. is defined on an operator ¢ by

L. 6=s0+Lo=so+i[H,0]/5. | (5.7)
As . to the inner product {3.7), Ls satisfies the relation

(0, Lew)==(¥,L-0). ‘ (5.8)
The variation principle is presented as follows. Maximize

W(oi+>,¢-)=2(¢' ") =@~ ,E-j)-(o' > ,Led' ), (5.9)

as to ¢'* and ¢<-’. Then the solutions satisfiy (5.5) and (5.6},
respctively. The stationary value gives the Joule heat generated,
which is reduced to the electrical conductivity for the field
with unity strength. This corresponds to the type [[] in 54; and

can also be readily rewritten in other types.

§6.Contraction of the dynamical variation principle¢i to>

The time reversal is performed in the Schrédinger represen-
tation by taking the conjugate complex denoted by bar, where the
Hamiltonian H{H) of the system exposed to the magnetic field H is
transformed as  H(H)=H{-H). In the absence of magnetic field the
Hamiltonian is real and invariant: H=H, to which we confine
ourselves. The complex conjugate |n> of an eigenstate |n> is also

an eigenstate with the same eigenvalue E,, according to equations

Hin>=E, « |n>, Hln>=E, - |n>. {6.1)
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The current density is transformed as Jj=-j. As the time reversal
of '+ can be identified with ¢‘-', we redefine ¢‘+*' and ¢‘-’ as
& and ¢, respectively.

Using the decompoition with respect to time reversal symmetry
o=@’ +0", ®=-¢'+0", ¥ =-¢, & =9¢", (6.2)
we can rewrite (5.9) as
W(e)=2(0',5-E)=-s ( (¢',0")~(0",0")) +(2i/R)(e"[H,0"]), (6.3)

where only ¢’ couples with the external disturbance j-eE. Taking

1

variation of (63) as to ¢, we obtain
o"=i[e’,H]/(Ks). (6.4)
By substituting (6.4), the expression (6.3) is rewritten as
W(e’)=2(e’,j-E)-(o’,00"), (6.5)
where I. is defined by
Co=([H, [H,0]+R2>s?@)/(h2s). , (6.6)

The maximum of (6.5) as to &' gives the Joule heat generated.

For the electric field with unity strength, (6.5) is reduced to
o(d’)=2(0’,ju)-(0’,0e¢’), (u=x,y or z) (6.7)

of which maximum gives the electrical conductivity (5.11).
The dynamical variation principle concerning (5.9) manifests
itself as a stationarity problem in contrast to the kinetic

extremum problem presented in. $§4 implying irreversibility. By
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contracting the irrelevant component of the density matrix even
with respect to time reversal, it 1is converted into an extremum
problem as to the odd component ¢’. By further contracting non-
diagonal elements in the representation diagonalizing the. unper-
turbed Hamiltosnian for the system of sensitive to the initial
condition or chaotic system such as the conduction electron systm
in solid, +the wvariation principle concerning the diagonal
elements can be rewritten in a form similar to the the kinetic
variation principle described in §4.t?) The latter is the result

of the lowest perturbation.
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