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Abstract

We introduce a general integer programming formulation for a class of combinatorial op-
timization games, which include many interesting problems on graphs. The formulation im-
mediately allows us to improve the algorithmic result for finding imputations in the core (an
important solution concept in cooperative game theory) of the network flow game on unit
networks. An important result is a general theorem that the core for this class of games is
nonempty if and only if a related linear program has an integer optimal solution. We study
the properties for this mathematical condition to hold for several problems on graphs, and
apply them to resolve algorithmic and complexity issues for their cores: decide whether the
core is empty; if the core is empty, find an imputation in the core; given an imputation $x$ , test
whether $x$ is in the core.

1 Introduction

Game theory has a profound influence on methodologies of many different branches of sci-
ences, especially those of economics, operations research and management sciences. The thesis
of bounded rationality is introduced as a crucial concept for game theoretical strategies to have
practically meanful implementations in real life situations $[15, 17]$ . In particular, computational
complexity (existence of polynomial time algorithms) has been singled out as one important fac-
tor for the bounded rationality of the participating agents in a game, and several authors have
taken algorithmic and complexity issues as the main focus in solutions for game theory problems
[1, 4, 8, 9, 12, 13, 15].

Recently, Kalai has extensively discussed the interplays of operations research, game theories,
and theoretical computer science [8]. An interesting problem discussed by Kalai is a network
flow game. Consider a digraph $D=(V, E)$ with a source vertex $s$ and a sink vertex $t$ . Kalai
and Zemel [8, 10, 11] consider a cooperative game associated with the maximum flow from $s$ to
$t$ by identifying each arc as a player, and defining the value $v(S)$ of a subset (i.e., a coalition)
$S\subseteq E$ to be the value of a maximum flow in the subgraph $D[S]=(V, S)$ . Call a mapping
$z:Earrow R_{+}$ ( $R_{+}$ is the set of nonnegative reals) as an imputation if $z(V)=v(V)$ holds, where
$z(S)$ for $S\subseteq V$ represents $\sum_{u\in S}z(u)$ . The core is defined to be the set of imputations $z$ such
that $z(S)\geq v(S)$ holds for all $S\subseteq E[16,18]$ . The maximum flow game distributes the profit
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from the maximum flow to players who control the arcs in the network. In practice, this can
be regarded, for example, as a measure of reliability for maintaining a communication network
between $s$ and $t$ . An imputation is a way to distribute the credit for a subset of arcs toward
the level of connectivity maintained by them. The concept of core provides us a fundamental
principle for such imputation to be rational, as it says that any subgroup of players would acquire
at least as much payment as they can collectively obtain as a subgroup.

For a special case of the maximum flow game on unit networks, i.e., those with capacity ones,
Kalai and Zemel [11] showed a convex characterization theorem of the core: An imputation is
in the core if and only if it is a convex combination of the characteristic vectors of minimum
cuts. This immediately implies that the core is always nonempty and leads to polynomial time
algorithms for those problems related to the core; that is, one can find an imputation in the core
in polynomial time, as well as one can test in polynomial time whether a given imputation is in
the core or not. The maximum flow game enjoys a further nice property that it is totally balanced,
i.e., the cores of all the subgames are nonempty.

It is not accidental that the above special case of the maximum flow game always has a
nonempty core and allows polynomial time solution algorithms. In Section 2, we introduce a
general (and different from that of Kalai and Zemel for the network game on unit networks)
integer programming formulation of combinatorial optimization games, and show that the game
has a nonempty core if and only if the corresponding linear programming relaxation has an integer
optimal solution. In the network flow game on unit networks, it turns out that the linear program
relaxation always has an integer solution, as guaranteed by Menger’s Theorem [6].

In Section 3, we introduce several interesting examples. For the single source single sink net-
work game, the algorithm of Kalai and Zemel only works for edge players in a directed unit
network. As an advantage of our integer programming formulation, this can be immediately
extended to an undirected graph, to vertex players and s-t vertex-connectivity as the game value,
as well as the matching game for bipartite graphs. This approach can also be applied to solve
several other games. Of course, the integrality condition does not always hold. A specially inter-
esting case is the $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}$ -cover game for general graphs. Though one integer program
is polynomially solvable and the other is $\mathrm{N}\mathrm{P}$-hard for this pair of graph optimization problem,
the linear programming relaxations of the pair are dual to each other. However, we will see that
the condition for the nonemptiness of the core is polynomially checkable for both games in each
pair. This is not necessarily true of all the $\mathrm{N}\mathrm{P}$-hard combinatorial optimization problems. There
are cases in which none of the integrality and polynomial time solvability holds. For the graph
coloring game, it is an $\mathrm{N}\mathrm{P}$ -hard problem to decide whether the core is empty or decide whether
an imputation is in the core. Exactly in such situations, the complexity concept grown out of
theoretical computer science provides a better understanding on why a good mathematical char-
acterization is not obtainable [5]. For the graph coloring game, we could reveal the equivalence
between perfect graphs and totally balanced games.
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2 Maximization and Minimization Games

2.1 Definitions

Let $A$ be an $m\cross n\{0,1\}$-matrix. Let $1_{k}$ and $0_{k}$ denote the column vectors with all ones and
all zeros, respectively, of dimension $k$ . We may denote these vectors by 1 and $0$ for simplicity.
Let $M=\{1,2, \cdots, m\}$ and $N=\{1,2, \cdots, n\}$ be the corresponding index sets, and let $t$ denote
the transposition. Consider the following linear program,

$LP(c, A,\mathrm{n}\mathrm{a}\mathrm{x})$ : $\max y^{t}c$

$s.t$ . $y^{t}A\leq 1_{n}^{t}$ , $y\geq 0_{m}$ ,

and its dual,

$DLP(c,A, \max)$ : $\min 1_{n}^{t}x$

$s.t$ . $Ax\geq c$ , $x\geq 0_{n}$ ,

where $c$ is an $m$-dimensional column vector $\in R^{m},$ $y$ is an m-dimensiOna.1 column vect.o.r of
variables and $x$ is an $n$-dimensional column vector of variables.

We denote the corresponding integer programming version of $LP(c, A, \max)$ by $ILP(C, A, \max)$ .
Since $A$ is a $\{0,1\}$-matrix, the integrality constraints are equivalent to require $y$ to have $\{0,1\}$

values. We define the packing game Game $(c, A, \max)$ as follows, where $\overline{S}=N-S$ :

1. The player set is $N$ .

2. For each subset $S\subseteq N,$ $v(S)$ is defined as the value of the following integer program:

$ILP(c, A_{M},s, \max)$ : $\max y^{t}c$

$s.t$ . $y^{tt}A_{M,S}\leq 1_{|s|}$ , $yA_{M,\overline{S}}t\leq \mathrm{o}tn-|s_{1}$ ,
$y\in\{0,1\}^{m}$ ,

where $A_{T,S}$ is the submatrix of $A$ with row set $T$ and column set $S$ , and $v(\emptyset)$ is defined to be $0$ .
Since this is a maximization problem, we may as well assume that $c_{j}>0$ for $j$ with $A_{j}$ . $\neq 0$ .

Otherwise, we can always choose $y_{j}=0$ . For a vector $z:Narrow R_{+}$ and a subset $S\subseteq N$ , let $z(S)$

denote $\sum_{j\in s^{Z}}(j)$ . Let us recall that a vector $z$ : $Narrow R_{+}$ is an imputation if $z(N)=v(N)$ , and
an imputation is in the core if $z(S)\geq v(S)$ holds for all $S\subseteq N$ .

We then introduce a covering game $c_{ame}(c, A, \min)$ for the minimization problem in the similar
manner:

1. The player set is $M$ .

2. For each subset $T\subseteq M,$ $v(T)$ is defined as the value of the following integer program:

$ILP(d,A \tau,N,\min)$ : $\min d^{t}x$

$s.t$ . $A_{T,N^{X}}\geq 1_{|T|}$ , $x\in\{0,1\}^{n}$ ,

where $v(\emptyset)$ is defined to be $0$ .
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Again we can assume $d_{j}>0$ for all $j$ . Otherwise we may always choose $x_{j}=1$ to simplify
the problem. Since the value of the game is defined by a solution to the minimization problem,
this is in fact a problem of sharing the cost of the game. Thus, we would revise the definitions
of imputation and core. A vector $w$ : $Marrow R_{+}$ is an imputation if $w(M)=v(M)$ , and an
imputation is in the core if $w(T)\leq v(T)$ holds for all $T\subseteq M$ .

From definition, we easily see that both packing game and covering game are monotone (i.e.,
$v(S’)\leq v(S),$ $S’\subseteq S\subseteq N$ holds for Game $(c, A, \max)$ , and $v(T’)\leq v(T),$ $T’\subseteq T\subseteq M$ holds for
Game$(d, A, \min))$ .

As a justification of introducing these general formulations, note that the maximum flow
game on a digraph $D=$ (V, $E$ ) with source $s$ and sink $t$ , studied in [11], can be formulated
as Game $(1_{m}, A, \max)$ if we interpret that $A$ is the path-arc incidence matrix: $A_{ij}=1$ if arc $j$ is
in the i-th directed s-t path, and $0$ otherwise. Constraint $y^{t}A\leq 1_{n}^{t}$ requires that, for each arc $j$ ,
there is at most one path chosen by $y$ , which goes through the arc (i.e., arc capacity is 1).

In this paper, we shall introduce a number of optimization games on graphs, which are formu-
lated as the above maximization $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ minimization games, and study the following properties
and questions concerning their cores.

1. Nonemptyness: Is the core of the game always nonempty?

2. Convex characterization: Can any imputation in the core be represented as a convex com-
bination of some well-defined dual objects (such as minimum s-t cuts)?

3. Testing nonemptiness: Can it be tested in polynomial time whether a given instance of the
game has nonempty core?

4. Checking membership: Can it be checked in polynomial time whether a given imputation
belongs to the core?

5. Finding a core member: Is it possible to find an imputation in the core in polynomial time?

As our discussion will focus on games on graphs, the polynomiality is determined in terms
of the input size of the graph (i.e., the number of vertices $|V|$ and the number of arcs or edges
$|E|)$ . Even though the sizes of the constraint matrices $A$ in the above formulations are sometimes
exponential in $|V|$ and $|E|$ (e.g., the $A$ for the maximum flow game has exponentially many rows),
we would like to obtain algorithms of polynomial time in the input size of the graphs.

We note at this point that two games Game $(c, A, \max)$ and Game $(c, A, \min)$ are not dual in
the sense of the underlying linear programs since the roles of objective function and the right
hand side of the constraint are not interchanged. In the case of $c=1$ , however, the corresponding
linear relaxations become dual to each other.

2.2 Main theorems

We give important lemmas and theorems that characterize the cores of the maximization and
minimization games defined in the previous sebsection.

Lemma 1 A vector $z$ : $Narrow R_{+}$ is in the core of Game $(c, A, \max)$ if and only if
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1. $z(N)=v(N)$ ( $i.e.,$ $z$ is an imputation),

2. $z(s_{i})\geq c_{i}$ for all $i\in M$ , where $S_{i}=\{j\in N|A_{ij}=1\}(i.e.,$ $z$ is feasible to $DLP(C, A, \max)$

of $LP(c, A, \max)$ . $\square$

Theorem 1 The core for Game $(c, A, \max)i_{\mathit{8}}$ nonempty if and only if $LP(C, A, \max)$ has an
integer optimal $\mathit{8}oluti_{\mathit{0}}n$ . In $\mathit{8}uch$ case, a vector $z$ : $Narrow R_{+}$ is in the core if and only if it is an
optimal solution to $DLP(C, A, \max)$ . $\square$

Lemma 2 A vector $w$ : $Marrow R_{+}$ is in the core of Game $(d,A, \min)$ if and only if

1. $w(M)=v(M)$ ( $i.e.,$ $w$ is an imputation),

2. $w(T_{j})\leq d_{j}$ for all $j\in N$ , where $T_{j}=\{i\in M|A_{ij}=1\}(i.e.,$ $z$ is feasible to the dual
$DLP(d,A, \min)$ of $LP(d, A, \min))$ . $\square$

Theorem 2 The core for Game $(d,A, \min)$ is nonempty if and only if $LP(d,A, \min)$ has an
integer optimal solution. In such case, a vector $w:Marrow R_{+}$ is in the core if and only if it is an
optimal solution to $DLP(d, A, \min)$ . $\square$

3 A Selection of Examples

There are many interesting optimization games on graphs, which can be formulated as in
Section 2. We will focus on the following games.

1. Maximum flow game in unit networks, s-t edge connectivity game in undirected graphs, s-t
vertex connectivity game in undirected graphs, and maximum matching game in bipartite
graphs.

2. Maximum $r$-arborescence game.

3. Maximum matching game and minimum vertex cover game.

4. Maximum independent set game and minimum edge cover game.

5. Minimum coloring game.

3.1 Network Flow Game and Its Variants

Let us consider the maximum flow game in a unit directed network $D=(V, E)$ with source
$s\in V$ and sink $t\in V$ , which is also denoted simply by $D=(V, E, s, t)$ . We call a unit network
(i.e., with arc capacity one) also as a digraph. The value of a maximum flow in the case of a
digraph $D$ is the number of arc disjoint s-t paths in $D$ . For this reason, it is also called the s-t
arc-connectivity of $D$ . A partition of $V,$ $C=(U, V-U)$ , is called a cut in $G$ , and represents the
set of arcs $\{(i,j)\in E|i\in U,j\in V-U\}$ . A cut is an s-t cut if $s\in U$ and $t\in V-U$ . A minimum
s-t cut is an s-t cut with the minimum cardinality as an arc set. The following property is well
known as Menger’s theorem (which is a special case of a more general result called the max-flow
$\min$-cut theorem for capacitated networks) [3].
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Lemma 3 Given a digraph $D=(V, E, s, t)$ , the s-t arc-connectivity of $D(i.e.$ , the value of a
maximum flow) is equal to the size of a minimum s-t cut in D. $\square$

Based on this lemma, we see that there is a polynomial time algorithm to generate a imputation
in the core. Take a minimum 8-t cut $C$ in $D$ , and let $I_{C}$ be its characteristic vector; $I_{C}(j):=1$ if
$j\in C$ and $0$ otherwise. Let $z:=I_{C}$ . Then $z$ is an imputation since $z(E)=|C|=v(E)$ by Lemma
3. Furthermore, for any $S\subseteq E$ , we have $z(S)=|C\cap S|\leq v(S)$ by Lemma 3 and the fact that
$C\cap S$ is an 8-t cut in $D[S]$ . Therefore, this $I_{C}$ is indeed in the core, and the core is nonempty.
Now a vector $z\in R^{|E|}$ is a convex combination of a family of $C$ if $z= \sum_{C}\lambda_{C}IC$ holds for some
$\lambda_{C}$ such that $\sum_{c^{\lambda_{C}=}}1$ and $\lambda_{C}\geq 0$ for all $C$ . If the family of $C$ is finite, the set of such $z$ forms
a convex polyhedron whose extremal points are precisely those characteristic vectors $I_{C}$ . Kalai
and Zemel [10] went one step further to show that an imputation $z$ is in the core if and only if it
is a convex $\mathrm{c}\mathrm{o}\mathrm{m}\dot{\mathrm{b}}$ ination of $I_{C}$ of minimum s-t cuts C. $\cdot$ .

In some cases, there may be dummy players in the game in the sense that those players $j$ always
get $z(j)=0$ in an imputation $z$ : $Narrow R_{+}$ . We say that an imputation $z$ is in the core of a game
with a set $\dot{N}\subseteq N$ \’Of dummy players if it is in the core of the gain$\mathrm{e}$ and $z(j)=0,$ $j\in\dot{N}$ holds.
Of course, a game may not have a core for some set $\hat{N}$ of players, even if $\mathrm{i}.\mathrm{t}$ has a nonempty core
(if there is no dummy player).

To make Game$(1|M|’ A, \max)$ more general for the purpose of utilizing it in discussing the
s-t vertex-connectivity game and some other games later, we introduce a set $\hat{E}\subseteq E$ of dummy
players. A set $\hat{E}$ of arcs (for dummy players) is called valid if $F=E-\hat{E}$ contains at least one
minimum s-t cut $C\subseteq E$ of $D$ . A game is trivial if $v(N)=0$ for the set of entire players.

Theorem 3 For a digraph..D $=(V, E, s,t)$ and a set $\hat{E}$ of dummy players, the nontrivial s-t arc
connectivity game has nonempty core if and only if $\hat{E}$ is valid. $\square$

Theorem 4 Let $z$ : $Earrow R_{+}$ be an imputation of the nontrivial s-t arc-connectivity game on a
digraph $D=(V, E, s,t)$ with a valid set $\tilde{E}$ of dummy players. Then $z$ is in the core with respect to
$\dot{E}(i.e., z(e)=0,$ $e\in\hat{E})$ if and only if it $i_{\mathit{8}}$ a convex combination of the set of the characteristic
vectors for minimum s-t cuts $C$ contained in $F=E-\hat{E}$ . $\square$

Corollary 1 For a valid set $\hat{E}$ of dummy players, testing nonemptiness, checking membership
and finding a core member of the 8-t arc-connectivity game, can all be answered in polynomial
time. $\square$

We emphasize at this point that the results in Theorems 3 and 4 can be extended to other
optimization games on graphs, which can be reducible to the maximum flow game in a directed
network. Those problems include:

Pl: s-t edge-connectivity $\dot{\mathrm{g}}$ame in an undirected graph $G=(V, E, s,t)$ , where players are on
edges and $v(S),$ $S\subseteq E$ is defined to be the size of maximum flow from $s$ to $t$ in the induced
network $G[S]$ ,

P2: s-t vertex-connectivity game in a digraph $D=(V, E, s,t)$ (resp. undirected graph $G=$

(V, $E,$ $s,t$) $)$ , where players are on vertices except $s$ and $t$ , and $v(S),$ $S\subseteq V-\{s,t\}$ is defined
to be the maximum number of arc (resp., edge) disjoint paths from $s$ to $t$ in the induced
digraph $D[S]$ (resp., graph $G[S]$ ),
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P3: maximum matching game with edge players on a bipartite graph $G=(V_{1}, V_{1}, E)$ , where
$v(S),$ $S\subseteq E$ is defined to be the size of maximum matching in the induced graph $G[S]$ .

For a digraph $D=(V, E, s, t)$ (or undirected graph $G=(V,$ $E,$ $s,t)$ ), a subset $W\subseteq V-\{s,t\}$

is called an s-t vertex-cut if the graph induced by $V-W$ has no path from $s$ to $t$ .

Corollary 2 For a game in the above $Pl$ (resp., $P\mathit{2}$ and $P\mathit{3}$), the core is always nonempty, and

if the game. is not trivial, the core is a convex combination of a set of characteristic vectors of
minimum s-t cuts (resp., minimum s-t vertex-cuts for $P\mathit{2}$ and minimum $vert\dot{e}x$-covers for $P\mathit{3}$).
Furthermore, testing $nonemptineS\mathit{8}$ , checking membership and finding a core member of all these
games, can be answered in polynomial time. $\square$

One may define a minimum cut game in a digraph $G=(V, E, s, t)$ as the covering game
Game$(1_{1}E|’ A, \min)$ , which is the dual game of the s-t arc connectivity game Game $(1_{||}p, A, \max)$ ,
where $A=A_{P,E}$ is the incidence matrix between the arc set $E$ and the s-t path set $\prime P$ . This
game has players on 8-t paths in $’\rho$ , which may be exponentially many in the size of $|V|$ and
$|E|$ . Recall that, for any subset $S\subseteq E,$ $LP(1_{|\mathcal{P}|}, Ap,s, \min)$ naturally represents the maximum
flow problem in the induced digraph $G[S]=(V, S, s,t)$ , and hence it has an integer optimal
solution due to Lemma 3, which is now applied to $G[S]$ . However, this is not the case in the
minimum cut game. Although $LP(1_{|E}|’ A, \min)$ has an integer optimal solution due to Lemma 3,

the corresponding linear programs $LP(1_{|E|},A \tau,E,\min)$ for subsets $T\subset \mathcal{P}$ may not enjoy such
an itegral property. For example, $G$ possibly contains three s-t paths $P_{i},$ $i=1,2,3$ such that
$P_{i}\cap P_{j}=\{e_{ij}\},$ $1\leq i<j\leq 3$ hold for some arcs $\{e_{12}, e_{23}, e_{13}\}\subseteq E$ . For $T=\{P_{1}, P_{2}, P\mathrm{s}\}\subseteq \mathcal{P}$ ,
$LP(1_{|E|}, A \tau,E,\min)$ has an optimal solution $x$ : $Earrow R_{+}$ such that $x(e_{12})=x(e23)=x(e_{1}3)=0.5$

and $x(e)=0$ for other arcs, implying that it is has no integer optimal soltion (with the optimal
value 1.5).

3.2 Arborescence Game

The maximum $r$-arborescence game and minimum $r$-cut game is played on a digraph $D=$

(V, $E$) with a root $r\in V$ . Recall that an $r$-arborescence in $D$ is a spanning directed tree such
that every vertex in $D$ is reachable from $r$ . For each subset $S\subseteq E$ of arcs (i.e., players), the game
value $v(S)$ is defined to be the size of the maximum number of $r$-arborescences on the subgraph
$G[S]–(V, S)$ . This game can be formulated as a packing game Game $(1_{|M}A, \max|’)$ by matrix
$A$ such that the rows correspond to all $r$ -arborescences and the columns correspond to all arcs;
$A_{ij}=1$ if and only if arc $j$ is in the i-th r-arborescence.

The model of the $r$ -arborescence game can arise when we want to maintain paths from a
distinguished source $r$ to all the vertices in the network. For each arc in $D$ , there is one player
in control of this arc. Note that such $k$ is equal to the maximum number of pairwise disjoint
$r$-arborescences. For this reason, we call the maximum $r$-arborescence game also as the single
source connectivity game (on digraphs). By Lemma 1, an imputation is in the core of this game if
and only if there is no $r$-arborescence such that the sum of the imputation on the r-arborescence

is less than one.
The questions about of the core of this game can be answered in polynomial time, similar to

that of s-t arc-connectivity, because the integrality of the corresponding linear programs for both
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the $r$-arborescences and the $r$ -cuts follows from the next well known result of Edmonds [2]. A
cut $C=(U, V-U)$ in a digraph represents the set of arcs from $U$ to $V-U$ . It is called an r-cut
if $r\in U$ holds.

Lemma 4 [2] In a digraph $D=(V, E)$ with root $r\in V$ , the maximum number of pairwise disjoint
$r$ -arborescences is equal to the minimum cardinality of an $r$ -cut. $\square$

Let the maximum number of disjoint $r$ -arborescences be $k$ . Since these $k$ pairwise disjoint
$r$-arborescences form a solution to the primal linear program $LP(1_{|M|}, A, \max)$ of this game, and
the minimum cardinality $r$ -cut of size $k$ is a solution to its dual linear program, it follows that
they are optimal solutions to the primal and the dual, respectively, by the duality theory of linear
programming. Therefore the primal linear program has an integer solution.

A set $\hat{E}$ of arcs (for dummy players) is called valid if $F=E-\hat{E}$ contains at least one minimum
$r$-cut $C\subseteq E$ of $D$ . Analogously with Theorems 3 and 4, we have the following results.

Theorem 5 For a digraph $D=(V, E)$ with root $r\in V$ and a set $\hat{E}$ of dummy players, the
maximum $r$ -arborescence game with $v(E)>0$ has nonempty core if and only if $\hat{E}$ is valid. $\square$

Theorem 6 Let $z$ : $Earrow R_{+}$ be an imputation of the maximum $r$ -arborescence game on a digraph
$D=(V, E)$ with root $r\in V$ and a valid set $\hat{E}$ of dummy players and let $v(E)>0$ . Then $z$ is in
the core with respect to $\hat{E}(i.e., z(e)=0,$ $e\in\hat{E})$ if and only if it $i_{\mathit{8}}$ a convex combination of the
set of the characteristic vectors for minimum $r$ -cuts $C$ contained in $F=E-\hat{E}$ . $\square$

Corollary 3 For a set $\hat{E}$ of dummy players, testing nonemptiness, checking membership and
finding a core member of the maximum $r$ -arborescence game, can all be answered in polynomial
time. $\square$

3.3 Matching and Vertex Cover

Given a graph $G=(V, E)$ , we define the maximum matching game by a game such that the
players are on vertices and the game value $v(S)$ for a subset $S\subseteq V$ is the maximum matching
size in the subgraph $G[S]$ induced by $S$ . Similarly, the minimum vertex cover game is defined by
a game such that players are on edges and $v(S)$ for $S\subseteq E$ is the minimum vertex cover size in the
subgraph $G[S]=(V, S)$ . These games are formulated by packing game Game $(1|E|’ A, \max)$ and
covering game Game $(1|V|’ A, \min)$ , respectively, where the constraint matrix $A$ is the incidence
matrix of $G$ in which the rows correspond to edges $E$ and the columns correspond to vertices $V$ ;
$A_{ij}=1$ if and only if edge $i$ and vertex $j$ are incident.

For bipartite graphs as discussed at the end of Section 3.1, the maximum matching game can be
formulated as a special case of the s-t arc-connectivity problem with a subset of edges as players.
Thus, we have the convex characterization of the core, and all problems about the core can be
answered in polynomial time. Similar results also hold for the minimum vertex cover game (as
will be discussed in Section 3.3.2). However, these nice properties break down for general graphs,
and the core is nonempty only for some special classes of graphs.

By Lemma 1, an imputation $z$ is in the core of the matching game if and only if $z(u)+z(u^{/})\geq 1$

holds for all edges $(u,u’)\in E$ . Based on this observation, we can easily find two classes of graphs
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for which the cores are always nonempty. The class of graphs for which the size of a minimum
vertex cover is the same as the size of a maximum matching, and the class of graphs with perfect
matching. For a graph $G=(V, E)$ in the first class, we assign $z(v)=1$ if $v$ is in the minimum
vertex cover and $z(v)=0$ otherwise. It is easy to see that this $z$ is indeed in the core. For
a graph $G=(V, E)$ in the second class, we assign every vertex $v\in V$ with $z(v)=0.5$ . Then
$z(V)=|V|/2=v(E)$ , since $G$ has a perfect matching. Furthermore, since the size of a maximum
matching in any subgraph $G[S]$ induced by $S\subseteq V$ is no more than $|S|/2$ , this $z$ is indeed in the
core.

On the other hand, one can easily construct graphs with non-empty cores which are not in
the above two classes. For example, take two graphs one from each of the above classes, and
connect them with edges between the vertices in the minimum cover and the vertices in the
perfect matching. However, the next theorem says that these are essentially all graphs which
have nonempty cores for the maximum matching game.

Theorem 7 An undirected graph $G=(V, E)$ has a nonempty core for the maximum matching
game if and only if there exists a $\mathit{8}ubsetV_{1}\subseteq V$ such that

1. the subgraph $G_{1}=G[V_{1}]$ induced by $V_{1}$ has a minimum vertex cover $W$ with the same size
$a\mathit{8}$ its maximum matching,

2. the subgraph $G_{2}=c[V-V_{1}]$ induced by $V-V_{1}$ has a perfect matching,

3. all the remaining edges $(u, u^{/})\in E$ between $G_{1}$ and $G_{2}$ satisfy $u\in W$ for the vertex cover
$W$ in 1. $\square$

Corollary 4 For the core of the maximum matching game, testing nonemptiness, checking mem-
bership and finding a core member, can be done in polynomial time. $\square$

Recall that an integer solution of its dual $LP$ problem $DLP(1_{|E|}, A, \max)=LP(1|V|’ A, \min)$

of the maximum matching game implies a minimum vertex cover. In some class of graphs which
have a nonempty core, the size of a maximum matching is not equal to the size of a minimum
vertex cover (e.g., $K_{4}$ has a perfect matching, but its minimum size of a vertex cover is 3).

In such a case, the core of the matching game cannot be represented by a convex combination
of integer solutions of its dual problem $LP(1_{|V}|’ A, \min)$ , i.e., minimum vertex covers (because

their optimal values are different), implying that the convex characterization of the core of the
maximum matching game is not possible.

Theorem 8 The core for the minimum vertex cover game on graph $G=(V, E)$ is nonempty if
and only if the size of a maximum matching is equal to the size of a minimum vertex cover. $\square$

Theorem 9 For the core of the minimum vertex cover game, testing nonemptiness, checking

membership and finding a core member, can be done in polynomial time. $\square$

3.4 Edge Cover and Independent Set

For an undirected graph $G=(V, E)$ , we can define a mutually dual pair of the minimum
edge cover game and the independent set game by Game $(1_{|E|}, A/, \min)$ and Game $(1_{1}V|’ A’, \max)$ ,
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respectively, where the constraint matrix $A^{/}$ is the incidence matrix of $G$ in which the rows
correspond to vertices and the columns correspond to edges (i.e., the transposition of the matrix
$A$ used for the pair of the maximum matching game and the minimum vertex cover game). Thus,
for the minimum edge cover game, the players are on vertices, and the game value $v(S)$ for $S\subseteq V$

is the minimum number of edges that cover all vertices in $S$ , i.e.,

$\min\{|F||F\cap E(u)\neq\emptyset, \forall u\in S\}$ ,

where $E(u)$ denotes the set of edges in $E$ which are incident to $u$ . Note that $v(S)$ is not necessarily
the size of a minimum edge cover in the subgraph $G[S]$ induced by vertex set $S$ . For the minimum
edge cover game, we assume that $G$ has no isolated vertex to prevent it from becoming infeasible.

Similarly, the players for the maximum $\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\dot{\mathrm{d}}$ ent set game are on edges and the game value
$v’(T)$ for $T\subseteq E$ is the size of a maximum independent set in the subgraph $G[V\langle T\rangle]$ induced by
$V\langle T\rangle$ , where $V\langle T\rangle$ is defined by

$V\langle T\rangle=$ {$i\in V|i$ is adjacent only to edges in $T$}.

(Note that $v’(\tau)$ is not the size of a maximum independent set in the subgraph $G[T].$ )

Theorem 10 Let $G=(V, E)$ an undirected graph with no isolated vertex. Then $w$ : $Varrow R_{+}$ is
in the core of the minimum edge cover game on $G$ if and only $if\overline{w}=1_{|V|}-W$ is in the core of
the maximum matching game on G. $\square$

Corollary 5 An undirected graph $G=(V, E)$ has a nonempty core for the minimum edge cover
game if and only if there exists a subset $V_{1}\subseteq V$ such that

$1^{/}$ . the subgraph $G_{1}=G[V_{1}]$ induced by $V_{1}$ has a maximum independent set $W’$ with the same
size as its minimum edge cover,

$2^{/}$ . the subgraph $G_{2}=G[V-V_{1}]$ induced by $V-V_{1}$ has a perfect matching ( $i.e.$ , an edge cover
with $|V|/2$ edges),

$3’$ . all the remaining $edge\mathit{8}(u, u’)\in E$ between $G_{1}$ and $G_{2}$ satisfy $u\in V-W’$ for the maximum
independent set $W’$ in $1^{/}$ . $\square$

Theorem 11 Let $G=(V, E)$ be an undirected graph with no isolated vertex. Then the core for
the maximum independent set game on graph $G$ is nonempty if and only if the size of a maximum
independent set is equal to the size of a minimum edge cover in G. $\square$

Theorem 12 For the core of the maximum independent set game, testing nonemptiness, checking
membership and finding a core member, can be done in polynomial time. $\square$

Theorem 13 Given an undirected graph $G=(V, E)$ with $V\neq\emptyset$ but no isolated vertex, $an$

imputation is in the core of the maximum independent set game if and only if it is a convex
combination of the characteristic $vector\mathit{8}$ of minimum edge covers. $\square$

One may define the maximum clique problem in an undirected graph $G=(V, E)$ as the
maximum independent set problem on its complement $\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}^{\mathrm{h}\overline{c}}}=(V,\overline{E})$. Obviously, such clique
game is given by a packing game Game $(1A//, \max|\overline{E}|’)$ which has players on the edges in $\overline{G}$, where
$A^{\prime/}$ is the vertex-edge incidence matrix $A^{\prime/}$ of the complement $\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}^{\mathrm{h}\overline{c}}}$. Therefore, all the results
in this subsection can be generalized to the maximum clique problem.
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3.5 Chromatic Number

Let $\chi(G’)$ denote the chromatic number of an undirected graph $G’$ (i.e., the minimum number
of maximal independent set which together covers all vertices of $G’$ ). For the minimum coloring
game on a graph $G=(V, E)$ , we define the game value $v(S),$ $S\subseteq V$ as $\chi(G[S])$ , i.e., the size of
a minimum coloring of the subgraph $G[S]$ induced from $G$ by $S$ . This game can be represented
by a covering game Game $(1| \mathcal{I}|’ A, \min)$ , the rows of the matrix $A$ correspond to the vertices in
a graph $G$ , and the columns correspond to maximal independent sets, where $\mathcal{I}$ denotes the set
of all maximal independent sets in $G$ . The coloring game arises frequently in applications if the
smallest number of conflict-free groups are sought in a system where vertices represent members
and edges represent conflicts between members. This type of conflict graphs, for example, can be
found in many resource sharing problems.

By Lemma 2, a vector $w$ : $Varrow R_{+}$ is in the core of the minimum coloring game if and only if

1. $w(V)=\chi(G)$ ,

2. $w(S)\leq 1$ for any independent set $S\subseteq V$ .

Let $\omega(G)$ denote the size of a maximum clique in $G$ , which satisfies $\omega(G)\leq\chi(G)$ , as widely
known in the coloring problem. We can easily observe that the characteristic vector $I_{C}$ of a
maximum clique $C\subseteq V$ is a core of the coloring game if $\omega(G)=\chi(G)$ holds. Therefore the
minimum coloring game on such a graph has nonempty core. However, the converse is not true.
That is, there is a graph $G=(V, E)$ such that $\omega(G)<\chi(G)$ but the core of the coloring game
is nonempty. For example, for a graph $G$ with $\omega(G)<\chi(G)$ and $\alpha(G)\chi(G)=|V|$ , the $z$ defined
by $z(u):=\chi(G)/|V|$ for all $u\in V$ is in the core, where $\alpha(G)$ is the stable number of $G,\mathrm{i}.\mathrm{e}.$ ,
the size of a maximum independent set. Therefore, in general, the coloring game has no convex
characterization by a set of maximum cliques. Also, from such a graph $G$ , construct the graph
$G’=G+K_{\chi(}c)$ by adding complete graph $K_{\chi(}c$ ) via a single common vertex. Then $G’$ satisfies
$\omega(G’)=\chi(G’)$ , but has nonempty core because its core is the same as that of $G$ , which is not
a convex combination of cliques. That is, in general, the coincidence of the optimum values of
$ILP(1_{m}, A, \max)$ and $IPL(1_{n}, A, \min)$ does not imply the convex characterization of the core of
a covering game Game $(1n’ A, \min)$ .

Theorem 14 If a graph $G=(V, E)$ is bipartite and $E\neq\emptyset$ , an imputation $w$ : $Varrow R_{+}$ is in the
core of the minimum coloring game if and only if it $i_{\mathit{8}}$ a convex combination of the $Characteri_{\mathit{8}}ti_{C}$

vectors of $edge\mathit{8}$ in $E;i.e.,$ $w= \sum_{e\in E}\lambda_{e}I_{e}$ , with $\sum_{e\in E}\lambda_{e}=1$ and $\lambda_{e}\geq 0$ for all $e\in E.$ This can
be tested in polynomial time. $\square$

Theorem 15 For the minimum coloring game, it is $NP$-complete to decide whether the core is
empty or not. It is $al_{\mathit{8}}oNP$-complete to decide whether a given imputation is in the core or not.

$\square$

Theorem 16 Let $G=(V, E)$ be a perfect graph. Then the core of the minimum coloring game
is $alway\mathit{8}$ nonempty. Furthermore it can be tested in polynomial time whether an imputation $w$ is
in the core or not. $\square$

Theorem 17 A graph $G=(V,E)$ is perfect if and only if the minimum coloring game on $G$ is
totally balanced. $\square$
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4 Conclusion

The computational issues in game theory have received much attention recently, and have been
a motivation of our investigation into the classes of optimization games on graphs. We conclude
the paper by giving a table of the results considered for the five $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}/\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ raised in
Section 2.

Table 1. Summary of the results for optimization games on graphs.

Core Convex Testing Checking if an Finding an
Games nonemptiness characterization nonemptiness imputation $\mathrm{i}_{1}\mathrm{n}\mathrm{p}_{\mathrm{U}}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$

$\frac{\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{C}\circ \mathrm{r}\mathrm{e}\mathrm{i}_{\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{i}1\mathrm{t}\mathrm{h}\mathrm{o}}\mathrm{e}\mathrm{c}\mathrm{o}\Gamma \mathrm{e}1\mathrm{e}\mathrm{C}\mathrm{r}\mathrm{e}}{{\rm Max} \mathrm{f}\mathrm{l}\mathrm{o}\mathrm{w}(G,D)-\mathrm{p}\mathrm{p}}$

of the core
yes yes

s-t connectivity $(G, D)$ yes yes $\mathrm{P}$ $\mathrm{P}$

$r$ -arborescence $(D)$ yes yes $\mathrm{P}$ $\mathrm{P}$

${\rm Max}$ matching $(G)$ no no $\mathrm{P}$ $\mathrm{P}$ $\mathrm{P}$

${\rm Min}$ vertex cover $(G)$ no yes $\mathrm{P}$ $\mathrm{P}$ $\mathrm{P}$

${\rm Min}$ edge cover $(G)$ no no $\mathrm{P}$ $\mathrm{P}$ $\mathrm{P}$

${\rm Max}$ indep. set $(G)$ no yes $\mathrm{P}$ $\mathrm{P}$ $\mathrm{P}$

${\rm Max}$ clique $(G)$ no yes $\mathrm{P}$ $\mathrm{P}$ $\mathrm{P}$

${\rm Min}$ coloring $(G)$ no no NPC NPC NPH

$D:\mathrm{d}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}}\mathrm{h}\mathrm{S}_{)}G$: undirected graphs, $\mathrm{P}$ : polynomial time, NPC: $\mathrm{N}\mathrm{P}$-complete, NPH: $\mathrm{N}\mathrm{P}$-hard, –: trivial
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