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1 Introduction

Let K be an algebraically closed field of characteristic zero and let X be a Zariski open set
of K™ with a positive integer n. We fix a coordinate system z = (z1,...,2,) of X and write
d = (8y,...,8,) with 8; = 0/0z;. We denote by Dx the sheaf of algebraic linear differential
operators on X.

Let M be a coherent left Dx-module and u a section of M. Suppose that f = f(z) € K|z]
is an arbitrary non-constant polynomial of n variables. If M is holonomic, then for each point
pof Y = {z € X | f(z) = 0}, there exist a germ P(z,8,s) of Dx[s] at p and a polynomial
b(s) € K|[s] of one variable so that

P(z,8,5)(f* ) = b(s) f*u (1.1)

holds with an indeterminate s (cf. [8]). More precisely, (1.1) means that there exists a nonneg-
ative integer m so that

Q= f"°(b(s) - P(z,8,s)f)f* € Dx|s]

satisfies Qu = 0 in M(s] := K[s] ®x M. The monic polynomial b(s) of the least degree that
satisfies (1.1), if any, is called the (generalized) b-function for f and u at p. The b-function
in this sense was first studied by Kashiwara [8] (cf. also [29]). Some of its applications were
given by Kashiwara-Kawai [11]. In particular, when M coincides with the sheaf Ox of regular
functions and u = 1, we get the classical b-function (or the Bernstein-Sato polynomial) of f. An
algorithm for computing the Bernstein-Sato polynomial has been given in [20].

Suppose that a presentation (i.e., generators and the relations among them) of a coherent
left Dx-module M and a section u of M are given. Then we are concerned with algorithms for
solving the following problems:

(A1) to determine whether there exists and to find, if it does, the b-function for f and vu;

(A2) to obtain presentations of the algebraic local cohomology groups H{Y] (M) (7 =0,1) as
left Dx-modules (cf. [8] for the definition);
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(A3) to obtain a presentation of the localization M(*Y) = M| f~1 of M by f as a left Dx-
module;

(A4) to obtain a presentation of the left Dx|[s]-module Y 7_; Dx/[s](f* ® u;), where uy, ..., u,
are generators of M and f° ® u; is regarded as a section of (Ox[s, f1f*)Q0x M.

It turns out that these problems are closely related with one another not only from theoretical
but also from algorithmic point of view: Solutions to (A2)—(A4) need the existence of and
some information on the b-functions for f and wui,...,u,; one can solve the problem (A3) by
using a solution to (A4) by specializing the parameter s to an appropriate negative integer.
As an application, for two polynomials fi, f € K|[s], we can obtain a presentation of the left
Dx-module Dx (fi* f52) for generic constants s1,s2 € K. '

Kashiwara [8] proved that HfY] (M) and M(+Y") are holonomic if so is M. In this case (more
generally, under a weaker condition that the b-functions for f and us,. .., u, exist, which can be
determined algorithmically), we can solve the problems (A1)—(A4) completely except that we
need the condition'H([)Y] (M) = 0 to solve the latter part of (A1), (A3), and (A4); even if this
condition fails, we can obtain certain information (estimates ‘from above’) on solutions of these
problems. We solve the problem (A4) by generalizing a method developed in [21] for computing
a presentation of Dx[s]f*.

Our algorithms for (A1) and (A2) are actually obtained as applications of algorithms for
more general problems as follows: Now let M be a left coherent D;{:—module with ):(:' =K xX.
Let u1,...,u, be generators of M. We identify X with the hyperplane {(t,z) € X |t = 0} of
X. Then the b-function of M along X at p € X is the monic polynomial b(s) € K [s] of the least
degree that satisfies ‘ ’ ‘

(b(t8) + tPi(t,z,40;,0))u; =0 (i=1,...,7)

with germs Pi(t, z,t0;, 0) of D at p, where we write Oy := 8/3t. M is called specializable along
X at p if such b(s) exists. On the other hand, the restriction (also called the induced system or
the tangential system) of M to X is the complex of left Dx-modules:

My : 0—M-LBM—0.

It was proved by Laurent-Schapira [13] (and by Kashiwara [8]) that if M is specializable along
X (or holonomic), then the cohomology groups of MY are coherent left Dx-modules (holonomic
systems, respectively). ‘

Assume now that a presentation of a coherent left D-module M is given. Then we obtain
a complete algorithm for solving the problem

(B1) to determine whether M is specializable along X and to ﬁnd, if sb, the b-function of M
along X. - '

This algorithm is obtained by generalizing a method of Grobner basis computation (the Buch-
berger algorithm [4]) in the Weyl algebra with respect to the so-called V-filtration ([9]) developed
in [18], [19], [20]. We have solved (B1) for the case r = 1 in [20]. Here we generalize an algorithm
of [20] so that we can compute the b-function as a function of the point of X for arbitrary r > 1.

Under the condition that M is specializable along X, we also get an algorithm to solve the
problem
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(B2) to obtain presentations of the cohomology groups of M% as left Dx-modules.

It seems that no complete algorithm for (B2) used to be known (see [26],[27],[19] for partial
algorithms). Note that M is specializable if M is holonomic ([12]). Algorithms for (A1) and (A2)
are obtained by applying the algorithms for (B1) and (B2) to the module (Dzb(t— f(z)))®0x M
for a given Dx-module M, where §(t — f(z)) denotes the modulo class of (¢ — f(z))~! in
Ozt - f(z))~!]. Thus we can solve (A2) under the condition that (Dzb(t - f(2)))®ox M is
specializable along X, and (A1), (A3), (A4) under the additional assumption 'H?Y] (M) =0. We
can also show that (D36(t — f(z)))®0x M is specializable along X if and only if there exists
the b-function for f and each generator of M in the sense of (1.1).

When K = C, we can consider the problems explained so far with Dx replaced by the sheaf
D5 of analytic differential operators. Then our algorithms yield correct solutions also in this
analytic case if the left D3-module M?" in question is written in the form M?3® = D3 ®p, M
with a coherent Dx-module M whose presentation is given explicitly.

We have implemented the algorithms in the present paper by using computer algebra systems
Kan [28] developed by Takayama of Kobe University, and Risa/Asir [16] developed by Noro et al.
at Fujitsu Laboratories Limited. We use Kan for Grobner basis computation in Weyl algebras,
and Risa/Asir for Grobner basis computation, factorizatibn, and primary decomposition in
polynomial rings.

2 V-filtration and involutory generators

Let X be a Zariski open subset of K x K™ with the coordinate system (¢,z) = (t,z1,...,%y).
We denote by 3; = §/0t and & = (8, ...,8,) the corresponding derivations with 8; = 8/0z;.
Put X := X N ({0} x K™). Then X can be identified with a Zariski open subset of K™. Let Ox
and Oy be the sheaves of regular functions on X and on X respectively. We denote by Df and
Dx the sheaves of rings of algebraic linear differential operators on X and on X respectively.
Let D)?I x be the sheaf theoretic restriction of ’D)‘E to X. Put Jx :=0O %t Then for each integer
k we put

Fp(Dz) == {P € Dglx | P(Jx)? € (Jx)?* for any j > 0}.

Let M be a left coherent D-module. We assume that M has a presentation M = (D
on X, where N is a left Dy-submodule of (Dg)". Then let us put

T/N

Z)

Fy(N) =NNF(Dg)",  Fx(M) = F(Dz)"/F:(N)

for each integer k € Z. These are called V-filtrations ([9]). The graded ring and modules
associated with these filtrations are defined by

g1(Dz) = P F(Dz)/Fea(Dy),
keZ

gr(N) = P F(N)/Fra(N),
keZ

gr(M) = P F(M)/Fii(M).
keZ
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Then gr(M) is a coherent left gr(Dz)-module. Note that gr(Dy) is isomorphic to Dxl[t, 8],
which consists of the sections of D§| x that are polynomials in ¢.

For a nonzero section P of (Dz)"|x, let k¥ = ordp(P) be the minimum k € Z such that
P € Fy(Dg)". Then let 6(P) be the modulo class of P in

Fp(Dg)"/Fe-1(Dg)" =~ (Dx[t0:]Sk)",

where Sy, := 8 if k > 0 and S, := ¢~ otherwise. Moreover, we define ¥(P)(s) € (Dx[s])" so
that 6(S_xP) = ¥(P)(td;) holds.

Definition 2.1 Let U be a Zariski open subset of X. A subset G of ['(U, N|x) is called a set
of F-involutory generators of N on U if G generates N|x as a left Dy |x-module on U and if
5(G) :={6(P) | P € G} generates gr(N) as a left gr(D5)-module.

The following two propositions are immediate consequences of the definitions:

Proposition 2.2 Let G = {Pi,..., Py} C (U, N|x) be a set of generators of N'|x on & Zariski
open set U C X. Then G is a set of F-involutory generators of N on U if and only if for an
arbitrary nonzero element P of the stalk Ny of N at p € U, and for an arbitrary integer j, there
ezist Q1, ..., Qm € Np so that ordp(QiP;) < ordp(P) (i=1,...,m) and

P—-P—...—QmPn € F](Di);

Proposition 2.3 Let G be a set of F-involutory generators of N. Denote by y(N) the left
Dx[s]-submodule of (Dx[s])" generated by {y(P) | P € N'}. Theny(N) is generated by (G) :=
{v(P)| P e G}.

3 Grobner bases with respect to the V-filtration

The purpose of this section is to show that a set of F-involutory generators of a given
submodule N of (D%)" can be provided by a Grébner basis in the Weyl algebra with respect
to an appropriate term ordering, which can be computed by the Buchberger algorithm ([4]) for
Grobner bases of polynomial rings. The fact that the Buchberger algorithm applies to the Weyl
algebra (the ring of differential operators with polynomial coefficients) was observed by Galligo
[5] (cf. also [3],[25]).

Let us denote by A, and A,4; the Weyl algebras on the n variables z and on the n + 1
variables (%,z) respectively with coefficients in K (cf. [1]). Let r be a positive integer and put
L:=N2t2" = N x N x N* x N* with N := {0,1,2,...}. An element P of (A,41)" is written
in a finite sum

P= Z Z a,,,,aﬂit“m"at”ye,- (31)
i=1 (uv,a,0)€L
with auaes € K, e1:= (1,0,...,0),..., e := (0,...,0,1),2% = 2% ... 3,9, 8% := 9Pt ... 9, P

for a = (aq,...,am), B=(f1,...,0n) € N™
Let <r be a total order on L x {1,...,r} which satisfies

(0-1) (a,i) <F (B,]) implies (a+7,4) <F (8+7,) for any @, 8,7 € Land 4,5 € {1,...,7};
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(0"2) fv—-p< V- U’Ia then (.U':Vaaaﬂ7i) <F (p'l:’/)alaﬂlaj) for any aaﬂyal,ﬂ, € N",
pv ' v € N and any i,5 € {1,...,7};

(0-3) (i, p,0,8,3) =F (0,0,0,0,4) for any p € N, o, € N*, i € {1,...,r}.

Note that <p is not a well order (linear ordering). However, throughout the present paper,
every order is supposed to satisfy (O-1). Let P be a nonzero element of (A, 11)” which is written
in the form (3.1). Then the leading ezponent lexpp(P) € L x {1,...,r} of P with respect to <g
is defined as the maximum element

maX{(,U/,l/,a,ﬂ,’l:) | ApvaBi 75 0} :

with respect to the order <p. The set of leading exponents Er(N) of a subset N of (Apq1)" is
defined by
Ep(N) := {lexp(P) | P € N\ {0}}.

Definition 3.1 A finite set G of generators of a left Apq1-submodule N of (A,41)" is called
an FW-Grobner basis of N if we have

Er(N) = | (lexp(P) + L),
PeG

where we write

(,6) +L={(a+p,i)|BeL}
foraeLandie {1,...,7}.

Proposition 3.2 Let G be an FW-Gribner basis of a left Any1-submodule N of (Apy1)". Then
G is o set of F-involutory generators of the left Dy -submodule N := D N of (Dx)" on X.

Since the order <p is not a well-order, the Buchberger algorithm for computing Grébner
bases does not work directly. We use the homogenization with respect to the V-filtration in
order to bypass this difficulty (cf. [18], [19], [20]). The following arguments generalize those in
[20], where the case with 7 = 1 is treated. Since this generalization is straightforward, we omit
the proof. » ,

Definition 8.3 For A\, i, v, X, 1/, € N, 0, 8,0/, € N*, and i,j € {1,...,r}, an order <y on
Lyx{1,...,7} with L; :== N x L is defined so that we have (\, s, v, o, B,4) =g (N, u/, v, 3, 5)
if and only if one of the following conditions holds:

(1) A< X;

2 X=X, (w+LlvapBi) <p (W +0,V,d,8,5) with £,¢' € N such that v — pu — £ =
V-l =0

(3) (AvVaaaﬁai) :(/\/’y’,a/,ﬁ’,j), /J'</-/'/

This definition is independent of the choice of £,¢' in view of the condition (O-1).
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For a nonzero element P = P(zq) of (An+1[20])", let us denote by lexpy (P) € Ly x{1,...,r}
the leading exponent of P with respect to <g. :

Definition 3.4 An element P of (Ap41[zo])" of the form

T
P = Z Z awmﬂixg)‘t"x“at"ﬁﬁei

i=1Apv,a,8

is said to be F-homogeneous of order m if ajyvapi = 0 whenever v — u — A # m.

Definition 3.5 For an element P of (A,1)" of the form (3.1), put m := min{v — p | auvepi #
0 for some p,v € N, a,8 € N, and i € {1,...,7}}. Then the F-homogenization P* € (Apy1]zo])”
of P is defined by :

’ T
ph .= Z Z ay,,agia;o”‘“_mt“a:aat"aﬂei

i=1 [.L,V,a,ﬂ
with a parameter xy which commutes with all the other variables and derivations. Ph is F-
homogeneous of order m.

Proposition 3.6 Let N bea left Apt1lzo]-submodule of (Ani1[zo])" generated by F-homogeneous
operators. Then there exrists an H-Grobner basis (i.e. a Grobner basis with respect to <g) of N
consisting of F-homogeneous operators. Moreover, such an H-Grobner basis can be computed by
the Buchberger algorithm. '

Proposition 8.7 Let N be a left Ay 41-submodule of (Ap41)" generated by Py, ...,Pq € (Apy1)".
Let us denote by N" the left Apy1|zo]-submodule of (Any1]zo])” generated by (P1), ..., (Pg)k.
Let G = {Q1(=0), . - -, Qr(o)} be an H-Grébner basis of N* consisting of F-homogeneous oper-
ators. Then G(1) := {Q1(1),...,Qr(1)} is an FW-Grobner basis of N. A

These two propositions, combined with Proposition 3.2, provide us with an algorithm of
computing a finite set of F-involutory generators of N’ = DgzN on X.

4 The b-function of a D-module

We retain the notation in the preceding section. Let M be a left coherent D -module on X.
We assume that a left A, 1-submodule N of (An+1)" is given explicitly so that M = Dz®a, M
holds with M := (An41)"/N. Set N := Dz ®a,,, N C (Dg)". Let Fr(N), Fi(M) be the V-
filtrations of A/ and M respectively defined in Section 2 and put

grx(Dz) = Fu(Dg)/Fk-1(Dgx),
gry(N) = F(N)/Fr1(N),
gry(M) = Fp(M)/Fr_1(M).

In particular, gro(M) and gro(N) are left gro(D5)-modules and we can identify gro(Dy) with
Dx[t0}]. ' '
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Definition 4.1 The b-function b(s,p) € K|[s] of M along X (with respect to the V-filtration
{Fr(M)}) at p € X is the monic polynomial b(s,p) € K|[s] of the least degree, if any, that
satisfies

b(£d;, p)gro(M)p = 0. (4.1)

If such b(s, p) exists, M is called specializable along X at p. If M is not specializable at p, we
put b(s,p) = 0.

It is known that if M is holonomic, then M is specializable at any p € X ([12]). In the
sequel, we describe an algorithm for computing b(s,p) € K|[s] as a function of p € X.

Proposition 4.2 Put J := ¢(N) N (Ox[s])", which is an Ox[s]-submodule of (Ox[s])". Let
Ann((Ox|[s])"/T) C Ox|s] be the annihilator ideal for (Ox|s])"/J. Then the ideal Ann((Ox[s])"/T)pN
K|[s] of K[s] is generated by b(s,p) for each pe X.

A set of generators of ¥(N) on X can be computed by using Propositions 2.3, 3.6, 3,7.
Hence our first task here is to compute a set of generators of 7. Let <p be a total order on
Lo x {1,...,7} with Ly := N*2? which satisfies (O-1) with L replaced by Lg and

(0-4) (a,i) »p (0,%) for any e € Lo\ {0} and i € {1,...,7};

(O0-5) |B| < |B'] implies (u,a, B,i) <p (', e/, B, j) for any p,p’ € N, a,a/, 3,8 € N*, i,j €
{1,...,7}.

Note that the order <p is a well-order.

Proposition 4.3 Let G be a finite subset of (An[s])” which generates Y(N) as a left Dx|s]-
module on X. Let Gy be a Grobner basis with respect to <p of the submodule of (Ay[s])”
generated by G1. Put Gz := Gy N K(s,z]". Then J is generated by G3 on X as an Ox]|s]-
module.

The final step will be devoted to the computation of b(s, p) with a set of generators of 7 as
an input. For i =1,...,r, put

TV = {f=(fr,....,f) €T | fj=0if j > i}.

Then J® /761 can be regarded as an ideal of Ox [s] whose generators can be computed via a
Grobner basis with respect to an order < on N7 x {1,...,r} satisfying (a,4) < (8, j) for any
a,fe Nt if i < j.

So far we have used only the Buchberger algorithm, which does not require field extension,
for computing Grobner bases with respect to various orders. Hence we do not need to assume
that K is algebraically closed from the viewpoint of algorithms. Thus, in the rest of this section,
we assume that K is an arbitrary field of characteristic zero so that the inputs are defined over
K. Since we will make use of primary decomposition, which is sensitive to field extension, we
will have to pay attention to the coefficient fields.

Let K be the algebraic closure of K and suppose that X is a Zariski open subset of K. We
denote by Ox the sheaf of regular functions on X. In particular, Ox is a sheaf of K-algebras.
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In general, for an ideal @) of K|[s,z] and p € K™, let us denote by b(s,Q,p) € K|s] a generator
of the ideal K[s] N Ox[s],Q. We may assume that b(s, Q,p) is monic if it is not zero. Put

Vx(Q):={ze€eX| f(z)=0 forany fe QnK]|z]}.
Note that Vx(Q) can be computed by eliminating s by means of a Grobner basis of ().

Lemma 4.4 In the above notation, the ideal Ox[s],Q N K[s] of K[s] is also generated by
b(s, Q, p)- |

Proposition 4.5 Assume that Q is a primary ideal of K[s,z] and let h(s,(Q)) be a generator of
the ideal Q N K [s] of K|s].

(1) Case h(s,Q) # 0: In this case there ezists an irreducible polynomial ho(s,Q) € K|s] and
v € N so that h(s,Q) = ho(s,Q)*”°. Put

V(@) ={ze X | f(z)=0 for any f € K[z]N(Q : ho(s,Q)")}

for each v € N, where : denotes the ideal quotient in K[s,z|. Then we have a decreasing
sequence of algebraic sets

X2 Vx(Q) =VX(Q) d>VX(@Q)>...0VR(Q) =10

of X. If p € V5 1(Q) \ V%(Q), then we have b(s,Q,p) = ho(s,Q)” for v =0,...,u,
where we put VH(Q) = X.

(2) Case h(s,Q) = 0: In this case we have b(s,Q,p) = 0 if p € Vx(Q) and b(s,Q,p) = 1

otherwise.

Note that h(s, @) and the ideal quotient @ : ho(s,Q)” can be computed also by Grobner
bases ([4]). ’

Proposition 4.6 Under the above assumptions and notation, let J; be an ideal of K|[s,z] such
that Ox[s]J;i = JD/TED fori=1,...,r. Let

Ji=Qi1N...NQim,

be a primary decomposition of J; in K[s,z]. Then the b-function b(s,p) of M atp € X is the least
common multiple of b(s, Qi j,p)’s where (i, ) runs over the set {(i,j) |1 <i<r, 1< j<mi}.

Thus by combining Propositions 4.2, 4.3, 4.5 and 4.6, we have obtained an algorithm to
compute the b-function b(s,p) of M as a function of p € X. In particular, note that b(s,p)
belongs to K|[s] for any p € X. Let us assume that X is defined over K, i.e., there exists an
ideal I'x of K[z] so that K\ X is the set of the zeros of Ix in K. Then the following theorem
provides us with an algorithm to determine whether M is specializable along X at every point
of p € X, and to compute the set {s € K | b(s,p) =0 for some p € X}. This will be needed
in order to compute the restriction and the algebraic local cohomology groups globally on X in
the subsequent sections (cf. Proposition 5.2 below). Let us denote by rad @’ the radical of an
ideal @' C K|[z].
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Theorem 4.7 Let J; and Q;; be as in the preceding proposition.
(1) M is specializable along X at each point of X if and only if the condition

Qij N K|[s] # {0} or rad(Qs; N K[z]) D Ix (4.2)

holds for each i =1,...,r and j =1,...,m;.

(2) Assume that (4.2) holds for each i and j. Let bi;(s) be a generator of Qi; N K|s] if
rad(Qi; N K [z]) 2 Ix, and put b;(s) := 1 if rad(Q;; N K [z]) D Ix. Let b(s) be the least common
multiple of bj(s)’s with1 < i <r and 1 < j < m;. Then the b-function b(s,p) of M divides
b(s) for any p € X. Moreover, for any irreducible factor g(s) of b(s), there exists some p € X
so0 that g(s) divides b(s,p).

(8) Assume X = K". Then M is specializable along X at each point of X if and only if
JiNK[s]#0 for anyi =1,...,r. In this case let b;(s) be a generator of J;N K [s] and let b(s) be
the least common multiple of bi(s),...,b.(s). Then b(s) is the least common multiple of b(s, p)’s
where p runs over X.

5 The restriction of a D-module

We retain the notation of the preceding section. In particular, let b(s,p) be the b-function
of M at p € X. The (D-module theoretic) restriction of M to X is the complex

My @+ 0—M-HM—0

of left Dx-modules, where the homomorphism ¢ denotes the one defined by ¢(u) = tu for each
u € M. We regard the right M to be placed at the degree 0 in considering the cohomology

groups of M%. Put D, - = Dy /tD;. Then D, is a (Dx, Dx)-bimodule, and MY is

—X
L L

isomorphic to D, & ®D; M in the derived category, where ® denotes the left derived functor

of ® (cf. [6]). Let us denote by Mx = H®(M$%) = M/tM the 0-th cohomology group of the

complex M$%.

Lemma 5.1 The homomorphism t : gry, (M), — grp (M), is bijective if b(k,p) # 0 for
peX.

Proposition 5.2 Assume that M is specializable along X at each point of X. Let kg < k1 be
integers such that the b-function b(s,p) of M satisfies b(k,p) # 0 for any p € X and for any
integer k such that k < kg or k > k1. Then MY% is quasi-isomorphic to the complex

0 — Fiy11(M)/Firo(M) =5 Fiey, (M) /Fro—1 (M) — 0

of left Dx-modules on X. In particular, t : M — M is bijective if b(k,p) # 0 for any p€ X
ond k € Z.

The following proposition provides a sufficient condition for the —1th cohomology group
H~1 (M%) to vanish.
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Proposition 5.8 Assume that there ezists by(s) € K[s] and m € N so that
bo(t0;) 0™ gro(M)p = 0.

Assume, moreover, by(k) # O for any k € Z. Then the homomorphism t : My — My is
injective.

Now we shall give an algorithm to compute Mx. Let P be an element of Fi(D5)". Then
we can write P in the form

P =YY" Pu(td;,z,0)8 ei+ R

i=1 k=0

uniquely with P € Dx[t0;] and R € F_l(fD}?)T. Then we put

p(Pkg) == 5" Py(0,3,8)8 e

i=1 k=kg

for each integer kg with 0 < kg < m.

Theorem 5.4 Assume that M is specializable along X and let ko, k1 be as in Proposition 5.2.
Redefine ko to be 0 if ko < 0. (We have kg = 0 and k1 = m — 1 under the assumption of
Proposition 5.8.) Let G be a finite set of F-involutory generators of N on X. Then we have an

isomorphism
r ki

Mx = (P P Dxdre)/Nx

i=1 k=ko

of left Dx -modules, where Nx is the left Dx-module generated by a finite set
Gx = {p(8’P,ko) | P € G, j€N, ko < j +ordp(P) < k1}.
In particular, we have Mx = 0 if b(v,p) #0 for anyv € N and p€ X.

In order to interpret the preceding theorem more concretely, let ug,...,u, be the modulo
classes of eq,...,e, in M. Then as is seen by the proof of the preceding theorem, Mx =~
DX_& ®p§ M is generated by 1 ® (@kui) with kg < k < ky and 1 < i < r as left Dx-module. ’
Moreover, for Py, € Dx, we have

r ki

33 Pr(1®8 u) =0
i=1 k=ko
if and only if 3-7_y kL, Pixei € Nx.
Our next aim is to give an algorithm for computing the structure of the kernel HY (M) of
t - M — M as a left Dx-module. Note that H~1(M$%) has a structure of left Dx[t6;]-module
which is compatible with that of left Dx-module. For two integers ko < ki, put

T

~ kl
D(koikl) = @ @ DX[tat]rSkei’

i=1 k=ko
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where Sy, := 8% if k >0,and Sy :=t"% if k < 0. Let P be a section of Fm(D;()’". Then we can
write P uniquely in the form

T m

P = Z Z Py, (t0, z, 8) Ske; (5.1)

i=1k=-—o00
with Py, € Dx[t;]. Then we define
T m
T(P,ko) :=) " Y Py(tds, z,8)Spe;.
i=1 k=kg
Proposition 5.5 Let G be a finite set of F -involutory generators of N' on X. Then, for any
integers kg < k1, we have an isomorphism
Fry(M)/Fiy_1(M) =~ ﬁ(ko,kl)/g(ko,kl)
of left Dx[t0;]-modules, where G*o*¥1) is g left Dy [t0;]-module generated by o finite set
Gk .= {7(8;P ko) | P € G, j€Z, ky < j+ordp(P) < k1}.

Let x : Dotlkitl) _, Dlkok1) be a left Dy [t8¢]-module homomorphism defined by

r ki r k1
X (Z E Pi,k+1(t3t,$,3)5k+1ei) = Z Z P k41(t0 — 1,z,0) Txe;

i=1 k=ko i=1 k=ko
with
Sk (k < -1)
Ty =
10;Sy (k> 0).

Theorem 5.6 Under the same assumptions as in Proposition 5.2, we have an isomorphism
HTH M) = x7H(glok) jglotthty
as left Dx [td;]-modules. Moreover, x~1(G*ok1)) /Gko+1ki+1) s o coherent left Dx-module.

A presentation of H~1(MY¥) as a left coherent Dx-module can be obtained by the following
algorithm. Put

r k

A®F) = O €D A,[t6;)Ske;.

i=1 k=kgo
We regard A%0#%1) a5 a free left Ay [td]-module of rank k; — ko + 1.

Algorithm 5.7 Input: a finite set G C (Ant1)" of F-involutory generators of A" on X , and
integers ko, k1 satisfying the assumption of Proposition 5.2.

(1) Let N; be the left Ay,[td;, z]-submodule of

r ki

4G [2) = ) ) Anltd, 2)Ser
which is generated by
r ki
U U {Q~2)Tie;}U{zP | Pe G(ko,kl)}

with an indeterminate z.
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(2) Let Gy be a Grobner basis of N7 with respect to a well-order <, on L x {1,...,7}
for eliminating z, i.e., satisfying (u,v, @, 8,1) <, (W',v/, ¢/, 3, j) whenever pn < p’; here
(u,v,a,B,i) € L x {1,...,r} corresponds to the monomial z#s”2%8%¢; with s = td;.

(3) Each element P of G; N A%0*1) can be written uniquely in the form

r .k
P=Y">" Qu(td)Txes
i=1 k=ko
with Qix(t8;) € Ap[td;]. Then we define x~1(P) € AkotLkitl) by
r ki
xTUP) =) Qin(td+ 1)Spire.
i=1 k=ko

Put
Gy = {x"}(P) | P € Gyn AkokD},

Then G generates the left Dx[td;}-module x~1(G*o-F1)),

(4) Suppose Gy = {Py,..., Py} and Gkotlki+) — [p,., . P} and put

I4
S = {(Q1,-..,Qe) € An[td]" | Y Q,P; = 0}.
j=1

J

Compute a set of generators Gz of S by means of a Grobner basis. Let mg : Ap[td;]¢ —
An|td;]?® be the projection to the first d components. Then we have an isomorphism

x 1 (gHeAD) GRoATRIAY o Dy [80)7/(Dx [t0] @ anjean) Ta(S))
of left Dx[td;]-modules and Dx[t0;] ® 4,19, Ta(S) is generated by 74(Gs).

(5) Put Ly := N*27 and let <, be a well-order on Ly x {1,...,d} for eliminating s, where
(4, @, B,4) € Lox{1,...,d} corresponds to s*228%¢, with s = t8; and €} = (1,0,...,0),...,e;, =
(0,...,0,1) € Z%. Let G4 be a Grobner basis of 4(S) with respect to <,. At this stage,
we have H~1(M$%) = 0 if and only if there exists P € G4 whose leading exponent with
respect to <, is (0,4) € Lo x {1,...,d} foreachi=1,...,d.

(6) For an element P of (Ay[s])? of the form

d
P= Z Z a#aﬁis“maﬁﬁ e,

i=1p,a,8
we put
deg(P,s) := max{pu € N |auqg # 0 for some a,8 € N, i € {1,...,d}},
d
lcoef(P,s) := ZZammxaaﬂeg € (Ap)?
i=lap

with m := deg(P, s). Let </, be a well-order on N?" x {1,...,d} for eliminating 8, where
(a, 8,4) € N?® x {1,...,d} corresponds to z*8¢]. For each m € N, let Hy, be a Grobner
basis with respect to <, of the left submodule of (Ap)? generated by

{lcoef(P, s) | P € Gg4, deg(P,s) < m}.
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(7 Pﬁt Hyno := Hp, N (K[z])¢ and
Um = {p € X | rank [h(p) | h € Hp] = d},

where [h(p) | h € Hiyo] denotes the matrix consisting of the row vectors h(p) with A € H,y.
Then we have Uy C Uy C Uz C ... and Uy, = X for some m € N. On U,,, we have an
isomorphism

(Dx[t8:))*/ (Dx [t0:] ® 4, ta) 7a(S)) = (Dx[td] ™) /N,

of left Dx-modules, where

d m-1

(DIta] ™) = P €D Dx(tdy) e
i=1 pu=0
and N, is the left Dx-submodule of (D[t3;]}(™)? generated by {P € G4 | deg(P,s) <
m—1}.

6 Algebraic local cohomology groups

In this section, let X be a Zariski open set of K™ and put X := K x X. We identify X with
the subset {0} x X of K™t as in the preceding sections. In the sequel we consider a Dx-module
M instead of a Dy-module. Let N be a left A,-submodule of (A,)" and put M := (A,)"/N
and M :=Dx ®4, M. Then we have M = (Dx)"/N with N := DxN.

Let f = f(z) € K|[z] be a non-constant polynomial and put Y := {z € X | f(z) = 0}.
Then the algebraic local cohomology group 'H (M) has a structure of left Dx-module and
vanishes for j # 0,1 ([8]). Our purpose is to give an algorithm of computing ’H[Y] (M) as a left
Dx-module. In general, for an Ox-module F, put

Ly)(F) :={ueF| ffu =0 forsomek e N}.

Then ’H{Y] (F) is defined as the j-th derived functor of INI%E

Put Z := {(t,z) € K x X | t— f(z) = 0}. Let Jz be a left ideal of D generated by t— f(z),
01+ (0f/021)0, ..., On + (0f/0%4)0;, and put Bz := Dy /Jz. We denote by §(t — f) the
residue class of 1 € Dy in Bjz.

Put £ := Ox[f~},s]f%, where f* is regarded as a free generator. Then £ has a natural
structure of left Dx[s]-module. As was observed by Malgrange [14], £ has a structure of left

D )z—module so that

t(g(s)f*) = g(s + 1)F*H, Bh(g(s)f*) = —sg(s ~ D>~ - (6.1)

for g(s) € Ox[f~1,s]. This implies that there exists an injective homomorphism ¢ : Bizlx — L
of left D-modules such that «(8(t — f)) = f* ([14]).

Lemma 6.1 We have an isomorphism (Biz))% =~ RI[y|(Ox)[1] in the derived category of left
Dx-modules, where RI'y] denotes the right derived functor of Ty}, and [1] the translation

functor ([6]).
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Now let 7 : X — X be the projection. Then the tensor product Byz ®,,-1@X 77IM has a
structure of sheaves of left Dy-modules. Let m; and 7 be the projections of X x X to X and
to X respectively defined by 7r1(t z,y) = (t,z) and m2(t,z,y) =y for t € K and z,y € X. Put

A:={(tz,y) € X x X |z=y}

and
DA-—-}EXX = ,DXXX/(("L'1 - yl)Dfo +...F (a;" - yn),D)?xX)'

Lemma 6.2 Let F be a left Di-module. Then we have

L L N
F ®r-104 TIM Dp_%xx ®p (FOM)

with

FOIM = Dfxx ®1r1—1”D§('®7rz—1’Dx (771_17: QK 7T2—1M)-

Lemma 6.3 The i-th torsion group Torf_lox (Biz), 7' M) vanishes for i # 0.
Theorem 6.4 We have isomorphisms

H ((Biz) ®n-10, 7' M)%) = HEH (M)
of left Dx-modules for j = —1,0.

In what follows, we shall denote F ®,-1¢),, 7~ IM by F ®p, M for a D z-module F. In view
of Theorems 5.6, 5.8, 5.10 and 6.3, we obtain an algorithm for computing the algebraic local
cohomology groups 'H[Y] (M) for j = 0,1 if there is an algorithm for computing Bjz®0, M as
a left Dx-module. In fact, this tensor product can be computed as follows:

Lemma 6.5 Let Jz be as above. Then we have an isomorphism Biz1QM =~ (D, )"/ Nz with
Nz = Tz8(Dx)" + Dz QN :
Fori=1,...,n, put

Ai={tz,y)e X xX| gj=y;forj=1,... i}

Then we have

Biz1®0x M == (... (Biz1®M)a)a, - )i,
by virtue of Lemma 6.2. Since A; is non-characteristic for B[z]®M in view of the proof of
Lemma 6.3, we can compute B{z ®ox M by applying Theorem 5.7 repeatedly with kg = k1 = 0.

Lemma 6.6 If M is holonomic, then Bjz®o, M is specializable along X.

Thus we have obtained an algorithm for computing 'H (M) ( = 0,1) by applying Theorem
5.7 and Algorithm 5.10 to Bjz®0, M under the condmon that B|z1®0x M is specializable along
X . In particular, we have proved the following statement effectively:
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Corollary 6.7 If Bz ®0, M is specializable along X, then ’HfZ] (M) (7 = 0,1) are coherent
left Dx -modules.

Let us describe ’H[IY] (M) more concretely. First note that ’H[IY] (M) ~ M[f~11/M with
Mf~1 = Ox[f'|®o, M. By applying Theorem 5.7 to Bz ®0x M, we know that M[f~1]/ M
is generated by the modulo classes v = [f~% ® ;] in (O[f~'|®0, M)/ M with kg < k < ky
and 1 <7 < r, and the relations among the generators klv;, are given by Nx of Theorem 5.7.
Actually, vy, with 1 <4 < r generate M[f~1]/M and the relations among these generators can
be obtained by eliminating v, with k < ky.

Our next aim is to give an algorithm of computing the b-function for a polynomial fand a
section u of M. Put M(s] := K|[s] ®x M. Then we have

L Rox]s| Ms]=L Rox|s] (Ox[8]®oxM) = Loy M.

Note that an arbitrary element of £ ®¢),, [s M[s] can be expressed in the form f*~™ ® u with
some m € N and u € M|s].

Lemma 6.8 Let u be a section of M[s] and let m be a nonnegative integer. Then we have
[T ®u=0in Loy Mls] if and only if f*u = 0 holds in M([s] with some k € N.

Let u be a section of M and P a section of Dx[s]. Then the identity P(f*s) = 0 means
by definition that there exists m € N so that Q := f™~*Pf* is contained in Dx[s] and that
Qu = 0 holds in M(s] (cf. [8]).

Lemma 6.9 For u € M and P € DX[s;], we have P(f°u) = 0 if and only if P(f* @ u) =0 in
Loy M.

Lemma 6.10 'H?Y] (M) =0 if and only if f : Biz1®0x M — Bz ®0x M is injective.

Lemma 6.11 Let p be a point of Y. Then any germ v of Biz1®ox M at p is uniquely written

in the form
k

v=> 0'8(t- f)®u; (6.2)

i=0
with u; € M, and k € N.

Proposition 6.12 The homomorphism
t®1 : Biz1®0x M — L0, M
is injective if and only if H?Y] (M) =0.

Theorem 6.13 Assume r =1 and let u € M be the residue class of 1 € Dx. Let bx(s) be the
b-function of Biz) ®oy M along X with respect to the filtration {Fu(Dz)(8(t— ) @ u) }kez and
let b(s) be the b-function for f and u defined by (1.1), both at a point p of Y. Then we have the
following:

(1) b(s) divides bx(—s—1);
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(2) if ’H([)Y] (M)p =0, then we have b(s) = £bx(—s— 1);

(3) A nonzero b-function b(s) for f and u ezists at p € X if and only if Bz ®ox M is
specializable along X at p.

Thus we have obtained an algorithm for computing the b-function for f and u € M under
the assumption ’H?Y] (Dxu) = 0, which can be determined by Algorithm 5.10. Note that we do
not need this assumption for deciding whether a nonzero b-function exists. This generalizes an
algorithm of computing the Bernstein-Sato polynomial given in [19].

Example 6.14 Put M := H[IY](OX) and u be the residue class of f~! in M = Ox[f~!]/Ox.
Let p be a point of Y. Then the b-function for f and u at p is 1 since fu=0in M. On
the other hand, the b-function of Bjz®cp, M along X at pis bx(s) = s+ 1. In fact, since
t(6(t— f) @ u) = 8§(t — f) ® (fu) =0, we know that bx(s) divides s + 1. If bx(s) =1, then we
should have

M = Hy(M) =~ H Y (Biz®ox M)X) =0

by virtue of Proposition 5.2 and Theorem 6.4, which is a contradiction.

It is also possible (in generic cases) to compute H{Y] (M) for algebraic set Y of codimension
greater than one. For example, let fi(z), f2(z) be two polynomials and put

Y; == {zeX|filz)=0} (i=1,2),
Y = YinYs

Assume that ’H{Yl] (M) =0 for j # jo. Then we can compute
Hiy) (M) = Hpy* (i (M)
explicitly by applying the above method first to fi and M, then to f, and H{XOG] (M).

Example 6.15 Put X = K3, f; = 22 — 33, fy := y? — 23, and consider the space curve
Y :={(z,y,2) € X | fi(z,y,2) = fo(z,y,2) = 0}. Then we have 'HfY](Ox) =0 for j # 2 and

H[ZY](OX) =~ Dx/I,
where Z is the left ideal of Dx generated by fi, f2 and
928, + 6y0y + 420, + 30, 992228, + 6:1:z28y + 4zyd,.

Let u; be the residue class of fi~tin H[lyj](ox) = Ox[f; 1/Ox with Y; = {(z,9,2) |
fi(z,y,z) = 0}. Then the b-function for f2 and u; is

e B) (BB DB

at (0,0,0), and s +1on Y \ {(0,0,0)}. The b-function for f; and u is

(s+1) (3+-1-7§) (8+%) <s+%) (s—l-%) (s+%) (s+-}§) <s+g) (s+§—z>

at (0,0,0), and s +1on Y \ {(0,0,0)}.
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7 Localization of a D-module

We retain the notation of the preceding section. Our primary goal in this section is to obtain
an algorithm for computing the localization M[f~1] := Ox[f1|®0xM as a left Dx-module
under the assumptlon ’H v](M) = 0. For this purpose, we shall first compute

P = Dx[s](f° ®u1) + ...+ Dx[s](f* @ uy),
which is a left Dx[s]-submodule of L&®¢, M, and then specialize the parameter s.

Proposition 7.1 Assume 'H[Y] (M) = 0. Then there is an algorithm to compute a set of gen-
erators on X of the left Dx|[s]-module

Q:={(Q1,...,Qr) € (Dx[s])" ZQ ($)(f* ® us) = 0}.

Now let us fix an arbitrary element sy of K and consider the specialization s = sy of
the parameter s. Put L(sg) := Ox[f~!]f%, where f% is regarded as a free generator. Let
p : L — L(s0) be the surjective homomorphism of left Dx-modules defined by p(g(s,z) f*~™) =
g(s0,z) f*~™ for g(s,z) € Ox[s,f!] and m € N. Then it is easy to see that p induces an
isomorphism L£(sg) =~ L/(s — s9)L as left Dx-modules.

Since the proof of Lemma 6.8 is also valid with s specialized to an element of K, we get the
following;:

Lemma 7.2 Let u be a section of M and let m be a nonnegative integer. Fizx so € K. Then
we have f™ @ u =0 in L(sg) ®oy, M if and only if f*u = 0 holds in M with some k € N.

Consider the homomorphism
PO : L®oy M[s] = LOo0x M — L(s0)Q@0, M

and put P(sg) := (p ® 1)(P). Our aim is to obtain an algorithm of computing P(sg). Since
(s — s0)P is contained in the kernel of p ® 1, there exists a surjective homomorphism P/(s —
50)P — P(sp) induced by p ® 1. A sufficient condition for this homomorphism to be an
isomorphism is given as follows (cf. Proposition 6.2 of [7] for the case M = Ox).

Proposition 7.3 Assume that the b-function b;(s,p) for f and u; ot p € X exists for i =
1,...,7. Assume, moreover, that bj(so —v) # 0 for anyi=1,...,7r,v=1,2,3,..., andp€ Y.
Then the homomorphism P [(s—s9)P — P(so) is a left Dx-module isomorphism. In particular,
we have an isomorphism P(so) ~ (Dx)"/Q(s0) with Q(so) := {Q(s0) | Q(s) € Q}.

Thus we have obtained an algorithm for computing P(sq) under the conditions of the above
proposition. Note that it amounts to computing £(s9)®0, M as follows.

)

Proposition 7.4 Under the same assumptions as in the preceding proposition, we have P(sg) =
L(50)®0x M.
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Proposition 7.5 Assume that Bjz®0, M is specializable along X. Then there exists o positive
integer kg so that M[f~1] is isomorphic to (Dx)"/Q(—k) as left Dx-module for any integer
k > ky.

Thus under the condition that B}z ® M is specializable along X and that ’H?Y} (M) =0, we
have obtained an algorithm of computing M[f~1] combining Propositions 7.1 and 7.5. More

concretely, we have
T
M[fT =D Dx(f™ @ uy),
i=1

and our algorithm computes a finite subset of (A,)" which generates the left Dx-module

™
Q(—ko) ={P e Dx | D Pi(f ™™ ®u;) =0}
i=1
on X. In particular, by applying the above argument to M := Dxg¢*? with another polynomial
g € K|s] and a constant s3 € K, we obtain an algorithm for computing Dx(f*! f*2) for generic
51,52 € K as follows: First, we can compute Dxg¢* if the Bernstein-Sato polynomial by(s) of g
satisfies by(s2 —v) # 0 for v =1,2,3,... (cf. [21]). Then we have

(Dx f*)®0x (Pxg*) ~ Dx(f*¢*)

by virtue of Lemma 7.2, where Dx(f*1¢*?) is the left Dx-submodule of Ox[f~!, g~ !]f* ¢*
generated by f°¢%2. Thus by applying the arguments in this section, we can compute Dx (f*1¢°)
if, in addition to the above condition, the b-function b12(s) for f and g2 satisfies b1a(so—v) # 0
for v =1,2,3,.... Note that we always have ’H?Y] (Dxg®?) =0.

Hence by choosing positive integers ki, ko so that s; = —k; and sp = —k; satisfy the above
conditions, we get an algorithm to compute the localization Ox[f~,g71] = Ox[f 7%, g7%2] as
Dx-module.

If we regard s1, s2 as inderterminates not as constants, then it is also interesting to consider
the left Dx[s1, sg]-module Dx|s1, s2]f*1¢*2. An algorithm for computing this module can be
obtained by generalizing a method used in [21], or also by modifying the arguments in this
section so as to be adapted to the case where M is a Dx[sz]-module. We shall discuss this
problem elsewhere.

Exami)le 7.6 Put X = K3 5 (z,y,2) and write 8; := 8/0z,8y := 8/0y,d. = 8/0z. Put
fi =22 —1% and f, := y? — 23. Let 51,52 € K be constants. The Bernstein-Sato polynomial
of f, at the singular point (0,0,0) is ba(s) = (s +1) (s + ‘%’) (s + %) We have Dx f%2 = Dx /T
with the left ideal of Dx generated by

Oz, 3YyOy + 220, — 632, 3220y + 2y0:, (y? — 23)8; + 32252
if by(s2 — v) # 0 for any v =1,2,3,.... Then the b-function for f; and f2%is

bia(s) = (s+1)(s+% s+%)(s+%52+%§)<5+§32+%)
(54—%82—!—% s+§52+%%)<s+%52+%)<s+%52+%)
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at (0,0,0); while at the other points we have

(s+1)(s+%) (s—l—%) on {(0,0,z2) | z # 0},
bia(s) = s+1 on {(z,y,2) | 2% —y* =0, yz # 0},
1 on {(ma:‘hz) 'mz_y37é0}'

If 51 satisfies bia(s1 — v) # 0 for any v = 1,2,3,... in addition to the above condition on s2..
Under the same assumptions, we have Dx(f;* f32) = Dx/Z(s1,s2) with the left ideal Z(s1, s2)
of Dx generated by

4

928y + 6y8y + 420, — 6(3s1 + 2s3),

(y? — 28)0, + 32252,

(CBZ - y3)8m ~ 251z,

9y22233 + 61'2'28;1; + 4$y62a

3y(z? — 3)0y + 22(z? — 4*)0, + 3(—2s22% + (351 + 252)°),
322(2? — y®) 0y + 2y(2? — 4*)0; + 9519222

\

In particular the above assumptions are satisfied for s; = sp = —1. Hence we have Ox[f; L fa 1] o

Dx /I(—1,-1). By regarding s1, 53 as indeterminates not as constants, we have also Dx[s1, s2](f3! f52) =
Dx|s1, s2]/Z(s1,52). Then we can verify by elimination that the ideal (Z(s1, s2)+Dx|[s1, s2]f1f2)oN
Ks1,s2] of K[s1,s2] is generated by a single element

b(s1,82) = (s1+1)(6s1+5)(6s1+7)(s2+ 1)(6s2 +5)(6s2 + 7)(€ + 19)(£ + 23)
(€ + 25)(€ + 29)(£ + 31)(£ + 35) (£ + 37) (€ + 41) (£ + 43)(£ + 47)

with £ := 18s1 + 12s3. This means that b(s1,s2) is a minimum polynomial that satisfies a
functional equation of the form P(f{1™ £2%1) = b(sy, s5) £2* 52 with some germ P of Dx|[s1,52]
at 0 (cf. [22], [15]).
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