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POLYHEDRAL HARMONICS
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1. POLYTOPES AND THE MEAN VALUE PROPERTY

Let P be any (not necessarily convex nor connected) solid polytope in the n-
dimensional Euclidean space R™. Here a solid polytope means a finite union of
closed convex polytopes, and a closed convex polytope means a finite intersection
of closed half-spaces in R™ which is bounded and contains an interior point. For
k=0,1,...,n, let P(k) be the k-skeleton of P, and p the k-dimensional Euclidean
measure on P(k), where yg is the Dirac measure on the vertices of P. We denote

by |P(k)| = px(P(k)) the total measure of P(k).

Definition 1.1. Let £ be an open set in R®. A G-valued continuous function f
in Q is said to satisfy the P(k)-mean value property if for each z € 2 there is a
sufficiently small positive constant 7, > 0 such that
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holds for any 0 < r < r,, where 7, depends on z € 2 in such a manner that
infzex rz > 0 for any compact subset K of Q. Let Hp(r)(£2) denote the set of all
such functions. Any f € Hp()(2) is refered to as a P(k)-harmonic function in 2.

It is easy to see that Hp()(f2) forms a linear space containing the constant
functions. Characterizing the function space Hp(«)(f2) is an interesting problem
which has a long history and has attracted many authors’ attention. Here we only
refer to the papers [1][2][4][5][6](7](8]{15][16]. Sec the rcferences in [10] for more
extensive literature. Neverthless, our knowledge about the space is still very poor.
In fact, the problem has been solved satisfactorily for only a few specific polytopes,
and what can be said in general remains quite restricted.

In 1962, A. Friedman and W. Littman [8] proposed the following problem.

Problem 1.2. Is Hp)(2) finite dimensional ?

This problem had been open until recently when the author was able to solve it
affirmatively (see [10]). Originally Friedman and Littman [8] assumed the convexity
of P and k = 0,n — 1,n, but these assumptions were unnecessary. The author’s
recent results are summarized in the following theorem.
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Theorem 1.3. Let P be any (not necessarily convex nor connected ) solid polytope
in R™, and let Q) be any open subset of R™: For any k =0,1,...,n,

(1) the restriction map Hp()(R™) — Hpk)(R) is an isomorphism, and hence
Hpk)(£2) is independent of the domain £,

(2) Hp)(S2) is a finite-dimensional linear space of polynomials,

(3) a basis of Hp)(2) can be taken from homogeneous polynomials,

(4) Hp(k)() admits a structure of C[8]-module, where C[d] is the ring of linear
partial differential operators with constant coefficients, and

(5) if the complete symmetry group G C O(n) of P is irreducible, then Hpw)(22)
is a finite-dimensional linear space of harmonic polynomials.

Let #(2) be the set of all (usual) harmonic functions in 2. Then the above
theorem offers a sharp contrast between Hp(t)(2) and H(Q2). Indeed, Hp)(2)
is independent of 2, while #(Q2) depends heavily on £, the dependence comming
partly from the presence of natural boundaries; P(k)(2) is finite dimensional,
while #(£2) is infinite dimentional; H P(&)(€2) contains only polynomials, while #(£2)
contains more transcendental functions. By a theorem of Gauss, the usual harmonic
functions are characterized by the mean value property with respect to a ball (or a
sphere). So the theorem implies that a polytope and a ball are completely different
as far as the mean value property is concerned.

Since Hp(«)(£2) is independent of (2, we can use the simplified notation # P(k) =
Hp)(82). The third assertion of Theorem 1.3 yields the direct sum decomposition:

finite

Hpw) = @ Hpk) (m),

m>0

where H p(i)(m) is the linear space of all homogeneous polynomials of degree m sat-
isfying the P(k)-mean value property (MVP). In view of Theorem 1.3, the following
problem seems interesting.

Problem 1.4.

(1) Determine dim A p(x) and constract a basis of # P(k)-
(2) Determine dim H p(x)(m) and construct a basis of P(k)(m).
(3) Determine the structure of Hp(x) as a C[8}-module.

We give an example to demonstrate what is relevant in this problem.

Example 1.5. Let P = {N/M} be the regular star-polygon in R? with center at
the origin, where M and N are coprime natural numbers. See Coxeter’s book (3]
for its definition. The case P = {5/2} is demonstrated in the figure below together
with its skeltetons. We remark that if M = 1 then P = {N} is a regular convex
N-gon. The dimension of H P(k) 1s given by :

dim Hp(k) =2N (k'= 0, 1, 2).

Let (z,y) be an orthonormal coordinate system of R? such that P is symmetric
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with respect to the z-axis. We set z = z + v/—1y. Then,

C (m =0),
CzmepCzm 1<m<N-1),

HP(k)(m) = (CIm(zN) Em ____Tr;V), )
{0} (m >N +1),

where Im(z%) is the imaginary part of zN. As a C[6]-module, Hp() is generated
N )

by the single element Im(z

¢ o (225
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2. PARTIAL DIFFERENTIAL EQUATIONS

The classical mean value property (with respect to a ball or a sphere) is charac-
terized by the Lapace equation Af = 0. The P(k)-mean value property can also
be characterized in terms of partial differential equations, though, not by a single
equation but by a system of infinitely many equations.

In order to describe this system, we introduce some notations. Fory =0,1,...,n,
let {P;; }i,er; be the set of j-dimensional faces of PP, H;; the j-dimensional affine
subspace of R™ containing P;;, m;; : R = Hj; the orthogonal projection from R™
down to the subspace H;;. Let p;; € R™ be the vector (or point) in R™ defined by

Pi; = T4 (0) € Hij-

We remark that P;, = H;, = {p;,} for any i € Ip and that H;, =R" and p;, =0
for any i, € I,. For i; € I; and 441 € ;41 we write ij <141 if P isa face of
P;,,,. For i; < iy let n;;;,, be the outer unit normal vector of OF;,,, in H;
at the face P;;. It is casy to see that the vector p;; —p;;,, 1s parallel to n;;,,, so
that one can define the incidence number [i; : i;41] € R by the relation:

Pij = Pij = (45 Zj-l~1]nijij+1-
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Let I(k) be the index set defined by
I(k) = {'i-: (io,il,...,ik); ij € Ij,io <1 << ik,}.

Each element ¢ € I(k) is refered to as a k-flag. For any k-flag i = (i9,%1,...,1) €
I(k), we set
i { 1 (k=0),
2 = . - - -
,[io 211)[21 1 2] - [Tk—1 ¢ 2k) (k=1,2,...,n).
Let hg) (€) be the complete symmetric polynomial of degree m in j-variables:
rd(e,6) =" Y. &g,
my+--tmi=m

where the summation is taken over all j-tuples (my,...,m;) of nonnegative integers
satisfying the indicated condition. Finally, we set (£,7) = &1m + - - - + &amn for two
complex vectors £ = (£1,...,&a),n = (M,...,7a) €C™.

The following theorem gives a characterization of the P(k)-mean value property
in terms of a system of partial differential equations.

Theorem 2.1. Any f € Hp(«)(2) is smooth in  and satisfies the system of partial
differential equations:
(%) ¥8)f=0 (m=1,23,...),

where 7.%) (€) is the homogeneous polynomial of degrec m defined by

) = > GRS (pigr ), (pirs ) -+, (Piny ),
i€1(k)
Conversely, any weak solution of () is real analytic and belongs to Hp ().

The system (*) enjoys the following remarkable property.
Theorem 2.2. The system (*) is holonomic.

The holonomicity follows from the geometry and combinatorics of the polytope
P. Theorems 2.1 and 2.2 play an essential role in establishing Theorem 1.3.



3. POLYTOPES WITH SYMMETRY

Our problem is of particular interest if P admits symmetry. Let G C O(n) be the
complete symmetry group of P. Then the following theorem gives a lower bound
of the dimension of Hp()({2) in terms of G.

Theorem 3.1. dim #Hp)(22) > |G].

The relations between the P(k)-harmonic functions and the symmetry of P must
be investigated more thoroughly.

We turn our attention to more specific polytopes. For any regular convex poly-
tope P, we are able to determine the function space Hp() explicitly. We begin
with the classification of regular convex polytopes. The complete symmetry group
G C O(n) of P is an irreducible finite reflection group. All irreducible finite reflec-
tion groups are classified in terms of connected Coxeter graphs (see e.g. [9]). Thus
we have the following diagram.

Diagram 3.2.
{regular convex polytopes} 3 P
! |l (symmetry group)
{irreducible finite reflection groups} > G
) (one-to-one)
{connected Coxeter graphs} 5 T

An irreducible finite reflection group G is the complete symmetry group of a
regular convex polytope P if and only if the Coxeter graph I" of G has no node.
Therefore all admissible graphs are precisely those of types A,, By, Fy, H3, H4 and

Ig(m)

An O—O0—O0-—------m--- -O——0—0
By O—O—O-mmmmaeeeO——O—20
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Graphs of types D,,, Eg¢, F7 and Eg do not correspond to any regular convex poly-
tope.

D O—O—O---=---
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O
O
O

E7 NS
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-O0——O0—0—~=0

E, O—O

A regular convex polytope P and its dual P* correspond to the same Coxeter
graph T, but no other regular convex polytopes correspond to I"'. Moreover, P is
self-dual if and only if I' = IV, where IV is the reversed graph of T'.

r o—o0—0—790

Accordingly, we have the following classification of regular convex polytopes.

Classification of regular convex polytopes. (n = dim P)
(1) A, (regular simplexes!, self-dual),
(2) B, (cross polytopes and measure polytopes?),
(3) H3 (icosahedron and dodecahedron),
(4) Hy (600-cells and 120-cells),
(5) Fy (24-cells, self-dual), and
(6) Iy(m) (regular m-gon, self-dual).

ltetrahedron for n = 3
2octahedron and cube for n =3



Theorem 3.3. Let P be any regular convex polytope in R™ with center at the
origin. Let G C O(n) be the complete symmetry group of P. Then, for any

k=0,1,...,n,

dim'Hp(k) = |G|,
Hpw) = C0]A(z),

where A(z) is the fundamental alternating polynomial of the reflection group G.

See also [1][2][4][6](7][14], where a part of Theorem 3.3 has already been ob-
tained. But our treatment is completely different and much more thorough, and

the result is a final one. :
Theorem 3.3 reminds us of the G-harmonic functions due to Steinberg [14]. For

a finite subgroup G of GL(n,R), let R be the ring of G-invariant polynomials, R}
the maximal ideal of R consistsing of all elements ¢ € R such that ¢(0) = 0. Then
f € C=(R™) is said to be G-harmonic if f satisfies the system of partial differential
‘equations:

#(@)f=0 (€ Ry).

Let Hg denote the set of all G-harmonic functions. It is known that Hg is a finite-
dimensional linear space of polynomials (see [14]). Now Theorem 3.3 is restated as

follows.

Theorem 3.4. Let P be any regular convex polytope in R™ with center at the
origin, and G C O(n) be its complete symmetry group. Then, :

Hp(k) = Hg (k=0,1,...,n).

Invariant theory for finite reflection groups, as well as systems of invariant differ-
ential equations plays an essential role in establishing Theorem 3.4. In the course
of the proof, we were able to introduce a distinguished basis of G-invarinat poly-
nomials (canonically attached to the invarinat differential equations) for each finite

reflection group G (see [11]).

4. OPEN PROBLEM

There is an open problem which has constantly interested the author. A poly-
tope P is said to admits ample symmetry if the complete symmetry group G of
P is irreducible. Recall that if P admits ample symmetry, then Hp(y) is a finite-
dimensional linear space of harmonic polynomials (see (5) of Theorem 1.3). So the

following problem naturally occurs to us.

Problem 4.1. Is there any infinite sequence Py, Pa,..., Pm,... of polytopes in
R™ with ample symmetry such that, for any/some k = 0,1,...,n, the following
properties hold:

(1) the polytopes Pr, approximate the unit ball B™ as m — oo,

(2) Hp,(k) €T Hpoi) € CHpa(k) Ty

(3) the spaces Hp,_, (1) exhaust the set of all harmonic polynomials in n-variables

as m — oQ.
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In the case of two-dimension, we know that the answer is yes. Indeed, in view
of Example 1.5, we can take P, to be a regular convex m-gon (m = 3,4,5,...).
However, the problem becomes quite difficult if the dimension n is greater than two.
At present the author has no substantial idea to tackle it. The difficulty lies in the
fact that if nn is greater than two, then there are only finitely many irreducible finite
subgroups of O(n) up to conjugacy. Therefore group theoretical approach based on
the symmetry of polytopes is not sufficient for solving the problem. We hope that
a completely new idea is introduced in the future.
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